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Bjørn Kjos-Hanssen A conflict between some

semantic conditions
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Abstract. We show that Carmo and Jones’ condition 5(e) conflicts with the other

conditions on their models for contrary-to-duty obligations. We then propose a resolution

to the conflict.
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We shall point out a conflict between some semantic conditions proposed
by Carmo and Jones [1, 2, 3] in the area of contrary-to-duty obligations
in deontic logic. Then, we shall propose a resolution of the conflict. For
a comprehensive treatment of contrary-to-duty obligations, introduced by
Chisholm [5], one may consult [10].

1. The conflict

Let W be the set of possible worlds of a given model, and let P denote
the power set operation. Carmo and Jones1 give the following conditions
(whose numbering we retain) on a function ob : P(W ) → P(P(W )) picking
out that which is obligatory in a given context.

5(a) ∅ 6∈ ob(X).

5(b) If Y ∩X = Z ∩X then Y ∈ ob(X) iff Z ∈ ob(X).

5(c) If Y ∈ ob(X) and Z ∈ ob(X) then Y ∩ Z ∈ ob(X).

5(d) If Y ⊆ X and Y ∈ ob(X) and X ⊆ Z, then (Z \X) ∪ Y ∈ ob(Z).

5(e) If Y ⊆ X and Z ∈ ob(X) and Y ∩ Z 6= ∅, then Z ∈ ob(Y ).
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1Conditions 5(a)–(d) and 5(e) are first introduced on pages 331 and 341, respectively,

of [1], where ob is called pi. 5(a)–(d) are also given in [2], page 291, with 5(e) on page
319. The conditions 5(a)(b)(d)(e) and a condition (c∗) are given in [3], page 590.
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We shall now show how these conditions, in particular 5(d) and 5(e), are
inherently in conflict with each other.

Definition 1.1. Suppose X and Y are subsets of W . We say that X and
Y are mutually generic, or in general position, if all the four sets

X ∩ Y, X \ Y, Y \X, W \ (X ∪ Y )

are nonempty. Let A and B be propositions. Let ‖A‖ be the set of worlds
in which A is true. We say that A and B are mutually generic if ‖A‖ and
‖B‖ are mutually generic sets.

Theorem 1.2. Suppose A and B are mutually generic propositions, and ob
satisfies conditions 5(b), 5(d), and 5(e). Then

‖A‖ ∈ ob(‖⊤‖) =⇒ ‖B‖ ∈ ob(‖¬A‖).

Proof. Using ‖A ∨ ¬(A ∨ ¬B)‖ = ‖A ∨B‖, we deduce:

‖A‖ ∈ ob(‖⊤‖) (hypothesis)

‖A‖ ∈ ob(‖A ∨ ¬B‖) (by 5(e))

‖A ∨ ¬(A ∨ ¬B)‖ ∈ ob(‖⊤‖) (by 5(d))

‖A ∨B‖ ∈ ob(‖⊤‖)

‖A ∨B‖ ∈ ob(‖¬A‖) (by 5(e))

‖B‖ ∈ ob(‖¬A‖) (by 5(b))

The conclusion in Theorem 1.2 is patently absurd. Just because A was
obligatory initially, why would we upon violation of A have a contrary-to-
duty obligation that B, without any further information about B?

The argument just given is a refinement of a twenty-year-old one [6] The
latter is summarized in [2, footnote 28]. Carmo and Jones responded to [6]
in [2]. They argued that condition 5(c) should be weakened [2, p. 323]. In-
deed, doing so takes care of the problem pointed out in [6], but the argument
in Theorem 1.2 above makes no use of 5(c).

Carmo and Jones did see some potential for problems with the com-
bination of just 5(b), (d), and (e) [2, pp. 319–320 and Figure 1]. However,
in the end they kept all three conditions for the system studied in [3].

If our aim were mostly destructive, then we could perhaps end this paper
here. Instead, we shall now outline a possible constructive response.
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2. A resolution of the conflict

On our reading of Carmo and Jones, their conditions 5(d) and 5(e) belong
to two distinct approaches.

Both approaches start with a simpler function F : P(W ) → P(W )
which picks out the ideal worlds in a given context. According to the first
approach, we then let

ob(X) = {Y : Y ⊇ F (X)}. (I)

Thus, any sufficiently unrestrictive proposition will be obligatory.
In the second approach, we let

ob(X) = {Y : Y ∩X = F (X)}. (II)

Thus, there is essentially only one obligatory proposition in a given context.
In both cases, we assume

F (X) ⊆ X (III)

and
X 6= ∅ =⇒ F (X) 6= ∅. (IV)

For (I), we consider the following two additional conditions. The first,

F (X ∩ Y ) ⊇ F (X) ∩ Y, (I-d)

ensures 5(d). It expresses the idea that

our standards of perfection can only be relaxed, not strengthened,
when moving to a more restricted context.

The second,

F (X ∩ Y ) = F (X) ∩ Y whenever F (X) ∩ Y 6= ∅, (I-e)

is a weakening of 5(e). It expresses the idea that

standards of perfection should only be relaxed when absolutely nec-
essary.

The Prisoners’ Dilemma will serve to explain these conditions. There, four
worlds are possible, depending on whether we and our fellow prisoner defect
or not. Assuming we are completely selfish, these worlds are each given
a numerical score, namely the number of units of time we must spend in
prison. Among the possible contexts are “we and our fellow prisoner do
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the same thing” and “our fellow prisoner defects”. In each case, F (X) will
consist exactly of those elements of X in which we serve the smallest prison
term.

The first three conditions, 5(a)–(c), all hold both under (I) and (II).

5(a) ∅ 6∈ ob(X).

For each of (I), (II) this is equivalent to F (X) 6= ∅, which follows from (IV)
when X 6= ∅. When X 6= ∅, we are forced by (III) to set F (∅) = ∅. We do
not expect that Carmo and Jones or anyone else would object strongly to
F (∅) = ∅. It merely concerns the “corner case” of the impossible context, in
which we need not insist that anything is obligatory.

5(b) If Y ∩X = Z ∩X then Y ∈ ob(X) iff Z ∈ ob(X).

This follows from (III) for both cases (I) and (II).

5(c) If Y ∈ ob(X) and Z ∈ ob(X) then Y ∩ Z ∈ ob(X).

True for both (I) and (II).
Things get more interesting with 5(d)–(e).

5(d) If Y ⊆ X and Y ∈ ob(X) and X ⊆ Z, then (Z \X) ∪ Y ∈ ob(Z).

Under (II), 5(d) is plainly unreasonable, as Z \X may contain many non-
ideal worlds.

Theorem 2.1. Under (I), 5(d) becomes true if we add condition (I-d).

Proof. Suppose Y ⊆ X, Y ∈ ob(X), and X ⊆ Z. By (I), Y ⊇ F (X). By
(I-d), F (Z) ∩X ⊆ F (Z ∩X) = F (X). Hence

F (Z) = F (Z) ∩ Z = (F (Z) ∩X) ∪ (F (Z) ∩ (Z \X))

⊆ Y ∪ (Z \X),

as desired.

We now consider

5(e) If Y ⊆ X and Z ∈ ob(X) and Y ∩ Z 6= ∅, then Z ∈ ob(Y ).

Theorem 2.2. Under (II), 5(e) becomes true if we add condition (I-e).

Proof. Suppose Y ⊆ X, Z ∈ ob(X), and Y ∩ Z 6= ∅. By (II), Z ∩ X =
F (X). By (I-e), F (Y ) = F (Y ∩X) = F (X)∩Y since F (X)∩Y 6= ∅. Hence
Z ∩ Y = F (Y ), meaning by (II) that Z ∈ ob(Y ), as desired.
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Under (I), 5(e) must be weakened. We find that much of the same spirit is
retained by using (I-e).

We could now go back to the rest of Carmo and Jones’ system and
explore two notions, corresponding to (I) and (II) respectively, of “weakly”
and “strongly” obligatory propositions. We leave that for future research.

If we define A ⇒ B (or in another notation, O(B | A)) by ‖B‖ ∈ ob(‖A‖)
then we recover a standard conditional model in the sense of Chellas [4, Chap-
ter 10]; see also [7], [8]. In fact, it is a special case of standard conditional
model in which the truth of A ⇒ B does not depend on the actual world.

Finally, we mention a relationship with preference-based approaches (see
[9] and [2, Section 7.3]). Our function F induces a preference order by letting

a ≤ b ⇐⇒ (∀X)(a ∈ F (X) → b ∈ F (X)).

Thus, a is no more desirable than b (a ≤ b) if in any context X, if a is ideal
given X then b is ideal given X. This ordering can also be localized to a
context:

a ≤Y b ⇐⇒ (∀X ⊆ Y )(a ∈ F (Y ) → b ∈ F (Y )).

While Prakken and Sergot [9] argued that a preference ordering on
worlds is essential in order to cope with CTD-phenomena, Carmo and

Jones concluded that it is not [2, page 343]. Instead they conjecture that
“the concept(s) of settledness provide the fundamental key to unravelling
the tangled knot of CTD-problems” [loc. cit., emphasis ours].

We find some middle ground between these two conclusions. A pref-
erence ordering does appear, but it does so as a byproduct of a concept of
settledness: the context X is a settled fact when considering the ideal worlds
in F (X).
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