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Abstract

In previous work, we have introduced and studied a lifting property in congruence–distributive universal
algebras which we have defined based on the Boolean congruences of such algebras, and which we have called
the Congruence Boolean Lifting Property. In a similar way, a lifting property based on factor congruences
can be defined in congruence–distributive algebras; in this paper we introduce this property, which we have
called the Factor Congruence Lifting Property, and study it, partly in relation to the Congruence Boolean
Lifting Property, and to other lifting properties in particular classes of algebras.
2010 Mathematics Subject Classification: Primary: 08B10; secondary: 03C05, 06F35, 03G25.
Keywords: Boolean Lifting Property; Boolean center; lattice; residuated lattice; reticulation; (congruence–
distributive, congruence–permutable, arithmetical) algebra; factor congruence.

1 Introduction

The Idempotent Lifting Property (abbreviated ILP or LIP), that is the property that every idempotent element
can be lifted modulo every left (respectively right) ideal, is intensely studied in ring theory. The ILP is related
to important classes of unitary rings: clean rings, exchange rings, Gelfand rings, maximal rings ([2], [26], [35]
etc.). In [35], it is proven that any clean ring has ILP, and that the rings with ILP are exactly exchange rings;
furthermore, in the commutative case, clean rings, exchange rings and rings with ILP coincide.

Lifting properties inspired by the ILP have been studied in algebras related to logic: MV–algebras [10], BL–
algebras [9], [25], (commutative) residuated lattices [12], [28], [13], [14], [33], [6], bounded distributive lattices
[13], [14], [6]. All these kinds of algebras have Boolean centers (subalgebras with a Boolean algebra structure),
which allows the so–called Boolean Lifting Properties (BLP) to be defined. In bounded distributive lattices, three
significant kinds of BLP naturally occur: the BLP modulo ideals (Id–BLP), the BLP modulo filters (Filt–BLP)
and the BLP modulo all congruences (simply, BLP). In residuated lattices, a lifting property for idempotent
elements (ILP) has also been studied [14]. A generalization of these lifting properties to universal algebras,
called the ϕ–Lifting Properties, have been studied in [14], [33].

In the case of congruence–distributive universal algebras, a notion of Boolean Lifting Property can be defined,
based on the Boolean center of the lattice of congruences of such an algebra; we have called it the Congruence
Boolean Lifting Property [15]. It turns out that the CBLP coincides to the BLP in residuated lattices (which
includes BL–algebras and MV–algebras), but differs from the BLP, Id–BLP and Filt–BLP in the case of bounded
distributive lattices, where CBLP is always present, unlike the BLP, Id–BLP and Filt–BLP. The study of
universal algebras with CBLP is motivated by both their properties, including strong representation theorems
and topological characterizations, and by the remarkable classes of universal algebras with CBLP, which include
local algebras, discriminator equational classes etc..

As we have already mentioned, for defining the CBLP in a congruence–distributive algebra A, we have used
B(Con(A)), the Boolean center of the lattice of congruences of A. The present paper is concerned with the study
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of the Factor Congruence Lifting Property (FCLP); the FCLP is defined for congruence–distributive universal
algebras, like the CBLP, except, instead of being defined starting from B(Con(A)), the FCLP is defined based
on the Boolean algebra FC(A) of the factor congruences of A; this Boolean algebra is present in a wider class of
universal algebras than that of congruence–distributive algebras, thus the FCLP can be defined for this wider
class; its study in this more general context remains a theme for future research; here we restrict our investigation
to the context of congruence–distributive algebras, and compare the FCLP to the CBLP. These lifting properties
coincide, for instance, in arithmetical algebras, but, in general, they differ, and, moreover, none of them implies
the other; we shall see examples of finite non–distributive lattices with FCLP and without CBLP, and vice–versa.
In residuated lattices, which are arithmetical algebras, the FCLP, CBLP and BLP coincide, while, in bounded
distributive lattices, the FCLP coincides to the BLP, which implies that it differs from the CBLP, the Id–BLP
and the Filt–BLP.

In Section 2 of the present article, we recall some previously known notions and results from universal
algebra and lattice theory that we use in the sequel. The results in the following sections are new, with the
only exceptions of the results cited from other papers. In Section 3, we introduce the FCLP and obtain its main
properties, including its preservation by quotients and finite direct products, a characterization for it through a
certain behaviour of factor congruences in the lattice of congruences, and the fact that it coincides to the CBLP
in arithmetical algebras. In Section 4, we compare the FCLP to the CBLP and the BLP in residuated lattices
and bounded distributive lattices, and prove that, in general, the CBLP does not imply the FCLP. In Section 5,
we provide some more properties of the FCLP, as well as many examples in lattices, in which we compare the
FCLP to the CBLP; here we prove that the FCLP does not imply the CBLP either.

2 Preliminaries

For the purpose of self–containedness, in this section we present a set of results on the congruences of universal
algebras, out of which most are well known, and the rest are straightforward. We refer the reader to [1], [3], [4],
[17] for a further study of the notions and properties we recall here.

We shall denote by N the set of the natural numbers and by N∗ = N \ {0}. Throughout this paper,
whenever there is no danger of confusion, any algebra shall be designated by its underlying set. All algebras
shall be considerred non–empty, regardless of whether they have constants in their signature; by trivial algebra
we mean an algebra with only one element, and by non–trivial algebra we mean an algebra with at least two
distinct elements. All direct products and quotients of algebras shall be considerred with the operations defined

canonically. For any non–empty family (Mi)i∈I of sets and any M ⊆
∏

i∈I

Mi, by (xi)i∈I ∈ M we mean xi ∈ Mi

for all i ∈ I, such that (xi)i∈I ∈ M . If we don‘t specify otherwise, then we denote the (bounded) lattice
operations, the Boolean operations and the partial orders in the usual way: ∨,∧,¬ , 0, 1,≤. For any lattice L,
we denote by Filt(L) and Id(L) the set of the filters and that of the ideals of L, respectively; for any X ⊆ L,
we shall denote by [X) and (X ] the filter, respectively the ideal of L generated by X ; for any x ∈ L, we denote
by [x) the principal filter of L generated by x: [x) = [{x}) = {y ∈ L | x ≤ y}. It is well known that bounded
lattice morphisms between Boolean algebras are Boolean morphisms and surjective lattice morphisms between
bounded lattices are bounded lattice morphisms; also, the congruences of any Boolean algebra coincide to the
congruences of its underlying lattice.

Let τ be an arbitrary but fixed signature of universal algebras. Everywhere in this paper, except where it is
mentioned otherwise, by algebra we shall mean τ–algebra, by morphism we shall mean morphism of τ–algebras,
and isomorphism shall mean isomorphism of τ–algebras. If A and B are two algebraic structures of the same
kind and there is no danger of confusion, we shall denote by A ∼= B the fact that A and B are isomorphic.

Throughout the rest of this section, A shall be an arbitrary algebra, unless mentioned otherwise. We shall
denote by Con(A) the set of the congruences of A, by ∆A = {(a, a) | a ∈ A} and by ∇A = A2. Clearly, the
algebra A is non–trivial iff ∆A 6= ∇A. We shall denote by Max(A) the set of the maximal congruences of A,
that is the maximal elements of (Con(A) \ {A},⊆). A is called a local algebra iff it has exactly one maximal
congruence, and it is called a semilocal algebra iff it has only a finite number of maximal congruences. See in
[4], [17], [14], [15] the definition of a maximal algebra, and the property that all maximal algebras are semilocal
algebras. Also, we shall denote by Spec(A) the set of the prime congruences of A, that is the congruences θ of A
which fulfill this condition: for all α, β ∈ Con(A), if α∩β ⊆ θ, then α ⊆ θ or β ⊆ θ. For any M ⊆ A2, we denote
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by CgA(M) the congruence of A generated by M ; for any a, b ∈ A, the principal congruence CgA({(a, b)}) shall
also be denoted by CgA(a, b). It is well known that (Con(A),∨,∩,∆A,∇A) is a bounded lattice, where, for all
φ, ψ ∈ Con(A), φ ∨ ψ = CgA(φ ∪ ψ), and with ⊆ as partial order; moreover, Con(A) is a complete lattice, in

which, for any family (θi)i∈I ⊆ Con(A),
∨

i∈I

θi = CgA(
⋃

i∈I

θi). A congruence θ of A is said to be finitely generated

iff there exists a finite subset X of A2 such that θ = CgA(X); clearly, θ = CgA(θ), so, if θ is finite, then it is
finitely generated. The radical of A, denoted by Rad(A), is the intersection of the maximal congruences of A,
which is a congruence of A by the above. For any φ, ψ ∈ Con(A), we denote by φ ◦ ψ the composition of φ with
ψ: φ ◦ ψ = {(a, b) ∈ A2 | (∃x ∈ A) ((a, x) ∈ ψ, (x, b) ∈ φ)}; note that φ ◦ ψ is not always a congruence of A, and
that φ ∪ ψ ⊆ φ ◦ ψ, because φ and ψ are reflexive, that is φ ⊇ ∆A and ψ ⊇ ∆A, thus φ = φ ◦∆A ⊆ φ ◦ ψ and
ψ = ∆A ◦ ψ ⊆ φ ◦ ψ.

The algebra A is said to be congruence–distributive iff the lattice Con(A) is distributive. A is said to be
congruence–permutable iff φ◦ψ = ψ◦φ for all φ, ψ ∈ Con(A). A is said to be arithmetical iff it is both congruence–
distributive and congruence–permutable. For instance, it is well known that lattices are congruence–distributive
algebras, and that Boolean algebras are arithmetical algebras.

Let B be an algebra and f : A → B be a morphism. We denote by Ker(f) = {(x, y) ∈ A2 | f(x) =
f(y)} the kernel of f . Clearly, Ker(f) ∈ Con(A). For any M ⊆ A2 and any N ⊆ B2, we denote: f(M) =
{(f(x), f(y)) | (x, y) ∈ M} and f−1(N) = {(x, y) ∈ A2 | (f(x), f(y)) ∈ N}. It is straightforward that, for any
φ ∈ Con(A) and any ψ ∈ Con(B), the following hold: f−1(ψ) ∈ Con(A) and f(f−1(ψ)) = ψ; if Ker(f) ⊆ φ,
then f(φ) ∈ Con(B) and f−1(f(φ)) = φ. Therefore, if a θ ∈ Con(A) has the property that Ker(f) ⊆ θ, then
the mapping α 7→ f(α) is a bounded lattice isomorphism between the sublattice [θ) = {α ∈ Con(A) | θ ⊆ α} of
Con(A) and Con(B), whose inverse maps β 7→ f−1(β).

For any θ ∈ Con(A), we shall denote by A/θ the quotient algebra of A through θ. Obviously, if A/θ is
non–trivial, then so is A, thus, if ∆A/θ 6= ∇A/θ, then ∆A 6= ∇A. For any a ∈ A and any X ⊆ A, we denote by
a/θ the congruence class of a with respect to θ, and by X/θ = {x/θ | x ∈ X}. We shall denote by pθ : A→ A/θ
the canonical surjective morphism: pθ(a) = a/θ for all a ∈ A. We also denote, for any M ⊆ A2, by M/θ =
pθ(M) = {(a/θ, b/θ) | (a, b) ∈M}. Clearly, Ker(pθ) = θ, hence, by the above, the mapping α 7→ pθ(α) = α/θ is
a bounded lattice isomorphism between [θ) and Con(A/θ), whose inverse maps β 7→ p−1

θ (β). We shall denote by
sθ : Con(A/θ) → [θ) the bounded lattice isomorphism defined by: sθ(β) = p−1

θ (β) = {(a, b) ∈ A2 | (a/θ, b/θ) ∈ β}
for all β ∈ Con(A/θ).

Now let θ ∈ Con(A) and α, β ∈ [θ), arbitrary. Since s−1
θ : [θ) → Con(A/θ), s−1

θ (γ) = pθ(γ) = γ/θ for all
γ ∈ [θ), is a lattice isomorphism, and thus it is injective, we have: α/θ = β/θ iff α = β. Notice, moreover,
that, for any a, b ∈ A, the following equivalence holds: (a/θ, b/θ) ∈ α/θ iff (a, b) ∈ α. Indeed, (a, b) ∈ α implies
(a/θ, b/θ) ∈ α/θ by the very definition of α/θ; conversely, if (a/θ, b/θ) ∈ α/θ, then there exist a′, b′ ∈ A such
that a′/θ = a/θ, b′/θ = b/θ and (a′, b′) ∈ α, which means that (a, a′) ∈ θ ⊆ α, (a′, b′) ∈ α and (b′, b) ∈ θ ⊆ α,
hence (a, b) ∈ α by the transitivity of α.

Now let us notice that α ◦ β ∈ [θ) and (α ◦ β)/θ = α/θ ◦ β/θ. First, since β is reflexive, it follows that
α◦β ⊇ α◦∆A = α ⊇ θ, so α◦β ∈ [θ). Now let a, b ∈ A. If (a/θ, b/θ) ∈ (α◦β)/θ, then there exist a′, b′ ∈ A such
that a′/θ = a/θ, b′/θ = b/θ and (a′, b′) ∈ α◦β, which means that there exists an x ∈ A such that (a′, x) ∈ β and
(x, b′) ∈ α; then (a′/θ, x/θ) = (a/θ, x/θ) ∈ β/θ and (x/θ, b′/θ) = (x/θ, b/θ) ∈ α/θ, thus (a/θ, b/θ) ∈ α/θ ◦ β/θ.
Conversely, if (a/θ, b/θ) ∈ α/θ◦β/θ, then there exists an x ∈ A such that (a/θ, x/θ) ∈ β/θ and (x/θ, b/θ) ∈ α/θ;
by the above, this is equivalent to (a, x) ∈ β and (x, b) ∈ α, which implies (a, b) ∈ α◦β, thus (a/θ, b/θ) ∈ (α◦β)/θ.
So indeed (α◦β)/θ = α/θ ◦β/θ, thus, since α and β are arbitrary: α/θ ◦β/θ = β/θ ◦α/θ iff (α◦β)/θ = (β ◦α)/θ
iff α ◦ β = β ◦ α by the above. Since s−1

θ is surjective, that is Con(A/θ) = s−1
θ (Con(A)) = {γ/θ | γ ∈ [θ)}, it

follows that: A/θ is congruence–permutable iff the congruences in [θ) permute with respect to composition; in
particular, if A is congruence–permutable, then A/θ is congruence–permutable.

Throughout the rest of this section, the algebra A shall be congruence–distributive and θ ∈ Con(A). Since
Con(A) is distributive, it follows that [θ) is distributive, hence Con(A/θ) is distributive since Con(A/θ) ∼= [θ).

Let us note, from the above, that all the quotient algebras of a congruence–distributive algebra are congruence–
distributive, and all the quotient algebras of a congruence–permutable algebra are congruence–permutable. Con-
sequently, all the quotient algebras of an arithmetical algebra are arithmetical.

Lemma 2.1. [23, Theorem 2.3, (iii)] For any M ⊆ A2, CgA/θ(M/θ) = (CgA(M) ∨ θ)/θ.
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Now let us consider the functions: uθ : Con(A) → Con(A/θ) and vθ : Con(A) → [θ), defined by: uθ(α) =
(α ∨ θ)/θ and vθ(α) = α ∨ θ for all α ∈ Con(A). Then, clearly, uθ and vθ are bounded lattice morphisms, and
the following diagram is commutative (see also [15]):

Con(A) ✲
◗
◗
◗◗s

✑
✑

✑✑✰

uθ

vθ sθ

Con(A/θ)

[θ)

Throughout the following sections, we shall keep the notations for the surjective morphism pθ, the bounded
lattice morphisms uθ, vθ and the bounded lattice isomorphism sθ, for any congruence–distributive algebra A and
any θ ∈ Con(A). In the same context, we shall denote by ¬θ the complementation in the Boolean algebra B([θ)).

Remark 2.2. For all α ∈ [θ), vθ(α) = α ∨ θ = α, thus vθ is surjective. Since vθ = sθ ◦ uθ and sθ is bijective, it
follows that uθ is surjective, as well.

Remark 2.3. Let n ∈ N∗ and A1, . . . , An be algebras. If θi ∈ Con(Ai) for all i ∈ 1, n, then we denote by
θ1 × . . . × θn = {((x1, . . . , xn), (y1, . . . , yn)) | (∀ i ∈ 1, n) ((xi, yi) ∈ θi)}; it is immediate that θ1 × . . . × θn ∈

Con(

n∏

i=1

Ai). Furthermore, according to [20, Corollary 4.2], the mapping (θ1, . . . , θn) 7→ θ1 × . . . × θn is a

bounded lattice isomorphism from
n∏

i=1

Con(Ai) to Con(
n∏

i=1

Ai) which preserves ◦, that is, if αi, βi ∈ Con(Ai) for

all i ∈ 1, n, then (α1 × . . .× αn) ◦ (β1 × . . .× βn) = (α1 ◦ β1)× . . .× (αn ◦ βn). Consequently, if A1, . . . , An are

congruence–distributive (respectively congruence–permutable, respectively arithmetical), then so is

n∏

i=1

Ai.

Now let A =

n∏

i=1

Ai. Then A/θ ∼=

n∏

i=1

Ai/θi. Indeed, let us define j :

n∏

i=1

Ai/θi → A/θ by: for all

a1 ∈ A1, . . . , an ∈ An, j(a1/θ1, . . . , an/θn) = (a1, . . . , an)/θ. Then, clearly, j is surjective. Now let a1, b1 ∈
A1, . . . , an, bn ∈ An, such that j(a1/θ1, . . . , an/θn) = j(b1/θ1, . . . , bn/θn), that is (a1, . . . , an)/θ = (b1, . . . , bn)/θ,
so that ((a1, . . . , an), (b1, . . . , bn)) ∈ θ = θ1 × . . . × θn, which means that, for all i ∈ 1, n, (ai, bi) ∈ θi, that is,
for all i ∈ 1, n, (ai, bi) ∈ θi, ai/θi = bi/θi, so (a1/θ1, . . . , an/θn) = (b1/θ1, . . . , bn/θn). Hence j is injective. It is
straightforward that j is a morphism. Therefore j is an isomorphism.

So let us note that finite direct products of congruence–distributive algebras are congruence–distributive,
and finite direct products of congruence–permutable algebras are congruence–permutable, hence finite direct
products of arithmetical algebras are arithmetical.

For any bounded distributive lattice L, we denote by B(L) the Boolean center of L, that is the Boolean
sublattice of L made of the complemented elements of L, which, obviously, is the largest Boolean sublattice of L.
IfM is also a bounded distributive lattice and f : L→M is a bounded lattice morphism, then f(B(L)) ⊆ B(M),
thus we can define B(f) = f |B(L): B(L) → B(M), which is a bounded lattice morphism between two Boolean
algebras, and thus it is a Boolean morphism. In this way, B becomes a covariant functor from the category of
bounded distributive lattices to the category of Boolean algebras.

We shall call the congruences from B(Con(A)) the Boolean congruences of A. A congruence φ of A is called a
factor congruence iff there exists a congruence φ∗ of A such that φ∨φ∗ = ∇A, φ∩φ

∗ = ∆A and φ ◦φ∗ = φ∗ ◦φ;
in this case, (φ, φ∗) is called a pair of factor congruences. We denote by FC(A) the set of the factor congruences
of A. Clearly, if (φ, φ∗) is a pair of factor congruences, then φ∗ ∈ FC(A) and it is uniquely determined by
φ∗ = ¬φ, and hence FC(A) = {φ ∈ B(Con(A)) | φ ◦ ¬φ = ¬φ ◦ φ}. In other words, the factor congruences of
A are the Boolean congruences of A which permute with their complement with respect to composition. Thus,
if the algebra A is arithmetical, then FC(A) = B(Con(A)). Clearly, (∆A,∇A) is a pair of factor congruences
of A. Moreover, according to [5], FC(A) is a Boolean sublattice of Con(A), and thus a Boolean subalgebra of
B(Con(A)) (see also [20]). Consequently, if B(Con(A)) = {∆A,∇A}, then FC(A) = B(Con(A)) = {∆A,∇A};
also, if Con(A) = {∆A,∇A}, then FC(A) = B(Con(A)) = Con(A) = {∆A,∇A}.
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Let S be an arbitrary set. We shall denote by Eq(S) the set of the equivalences on S and, for any ρ ⊆ S2,
by ρ−1 = {(y, x) ∈ S2 | (x, y) ∈ ρ} and by ρ2 = ρ ◦ ρ. So Eq(S) = {ρ | ρ ⊆ S2, ρ ⊇ ∆S , ρ = ρ−1, ρ2 ⊆ ρ}.
Now let ρ, σ ∈ Eq(S). Then: ρ ◦ σ ∈ Eq(S) iff ρ ◦ σ = σ ◦ ρ iff ρ ◦ σ = (ρ ◦ σ)−1. Indeed, we always have:
(ρ ◦ σ)−1 = σ−1 ◦ ρ−1 = σ ◦ ρ, hence the last of the equivalences above, and ρ ◦ σ ⊇ ∆S ◦ ∆S = ∆S ; also, if
ρ ◦ σ ∈ Eq(S), then ρ ◦ σ = (ρ ◦ σ)−1; conversely, if ρ ◦ σ = (ρ ◦ σ)−1, then, by the above: ρ ◦ σ = σ ◦ ρ, thus
(ρ ◦ σ)2 = ρ ◦ σ ◦ ρ ◦ σ = ρ ◦ ρ ◦ σ ◦ σ = ρ2 ◦ σ2 ⊆ ρ ◦ σ, therefore ρ ◦ σ ∈ Eq(S).

Now let φ, ψ ∈ Con(A), arbitrary. Then, clearly, φ ◦ ψ preserves the operations of A, hence, by the above:
φ ◦ψ ∈ Con(A) iff φ ◦ψ ∈ Eq(A) iff φ ◦ψ = ψ ◦φ iff φ ◦ψ = (φ ◦ψ)−1. Let us notice that φ∪ψ ⊆ φ ◦ψ ⊆ φ∨ψ.
Indeed, we have already seen that φ ∪ ψ ⊆ φ ◦ ψ; now let (a, b) ∈ φ ◦ ψ, so that (a, x) ∈ ψ and (x, b) ∈ φ for
some x ∈ A; since φ ⊆ φ ∨ ψ and ψ ⊆ φ ∨ ψ, it follows that (a, x), (x, b) ∈ φ ∨ ψ, hence (a, b) ∈ φ ∨ ψ by the
transitivity of the congruence φ ∨ ψ. Thus, if φ ◦ ψ = ∇A, then φ ◦ ψ = φ ∨ ψ = ∇A; also, if φ ∪ ψ = ∇A, then
φ ∪ ψ = φ ◦ ψ = φ ∨ ψ = ∇A. Furthermore, φ ◦ ψ ∈ Con(A) iff φ ◦ ψ = φ ∨ ψ iff φ ∨ψ ⊆ φ ◦ ψ, where the second
equivalence is obvious from the above and the converse implication in the first equivalence is trivial, and, since
φ ∪ ψ ⊆ φ ◦ ψ and φ ∨ ψ = CgA(φ ∪ ψ), it follows that: φ ◦ ψ ∈ Con(A) implies φ ∨ ψ ⊆ φ ◦ ψ. Consequently,
if φ ∨ ψ = ∇A, then: φ ◦ ψ ∈ Con(A) iff φ ◦ ψ = ∇A. From the above, it follows that, for any φ ∈ B(Con(A)),
the following equivalences hold: φ ∈ FC(A) iff φ ◦ ¬φ ∈ Con(A) iff φ ◦ ¬φ = ¬φ ◦ φ iff φ ◦ ¬φ = (φ ◦ ¬φ)−1 iff
φ ◦ ¬φ = ∇A iff ¬φ ∈ FC(A).

Remark 2.4. Let φ, φ∗, ψ ∈ Con(A). Then:

(i) (φ, φ∗) is a pair of factor congruences iff φ ◦ φ∗ = ∇A and φ ∩ φ∗ = ∆A ([23]);

(ii) if φ ∈ FC(A), then φ ◦ ψ = ψ ◦ φ ([20, Theorem 3] and [37, Theorem 3]).

Remark 2.5. (i) Let φ ∈ FC(A) and ψ ∈ Con(A). Then φ ◦ψ = φ∨ψ. Indeed, by Remark 2.4, (ii), we have
φ ◦ ψ = ψ ◦ φ, which implies φ ◦ ψ = φ ∨ ψ by the above.

(ii) If A is an arithmetical algebra, then all φ, ψ ∈ Con(A) fulfill φ◦ψ = ψ ◦φ, thus they all fulfill φ◦ψ = φ∨ψ
by the above.

Remark 2.6. Let B be a congruence–distributive algebra such that there exists an isomorphism f : A → B.
Then it is straightforward that the mapping θ 7→ f(θ) is a bounded lattice isomorphism between Con(A) and
Con(B) and a Boolean isomorphism between B(Con(A)) and B(Con(B)), as well as between FC(A) and FC(B).
If we replace A and B by two lattices L and M , respectively, then the above also hold if f : L → M is a dual
lattice isomorphism.

Lemma 2.7. [37] Let L be a bounded distributive lattice. Then the function fL : B(L) → FC(L), defined by
fL(a) = CgL(a, 0) for all a ∈ B(L), is a Boolean isomorphism.

Lemma 2.8. Let n ∈ N∗ and A1, . . . , An be congruence–distributive algebras. Then the mapping (θ1, . . . , θn) 7→

θ1 × . . .× θn sets a Boolean isomorphism between the Boolean algebras
n∏

i=1

B(Con(Ai)) and B(Con(
n∏

i=1

Ai)), as

well as between the Boolean algebras

n∏

i=1

FC(Ai) and FC(

n∏

i=1

Ai).

Proof. Notice that

n∏

i=1

B(Con(Ai)) = B(

n∏

i=1

Con(Ai)), thus the mapping (θ1, . . . , θn) 7→ θ1 × . . . × θn between

n∏

i=1

B(Con(Ai)) and B(Con(

n∏

i=1

Ai)) is well defined and it is a Boolean isomorphism, namely the image through

the functor B of the bounded lattice morphism from Remark 2.3. The statement on
n∏

i=1

FC(Ai) and FC(
n∏

i=1

Ai)

follows from [20, Theorem 11], or straightforward from Remark 2.3.
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Let Ω ⊆ Con(A). We say that Ω satisfies the Chinese Remainder Theorem (CRT, for short) iff, for all n ∈ N∗,
all θ1, . . . , θn ∈ Ω and all a1, . . . , an ∈ A such that (ai, aj) ∈ θi ∨ θj for all i, j ∈ 1, n, there exists an a ∈ A such
that (a, ai) ∈ θi for all i ∈ 1, n. We say that A satisfies the CRT iff Con(A) satisfies the CRT.

Proposition 2.9. [8] Let Ω be a bounded sublattice of Con(A). Then Ω fulfills the CRT iff the bounded lattice
Ω is distributive and all α, β ∈ Ω satisfy α ◦ β = β ◦ α.

Corollary 2.10. (i) If A is congruence–distributive, then FC(A) fulfills the CRT.

(ii) A fulfills the CRT iff A is arithmetical.

3 FCLP: Definition, Main Properties, Characterization

In this section we provide some more results on factor congruences, introduce the Factor Congruence Lifting
Property, and obtain some of its properties, including its preservation by quotients and finite direct products,
and a characterization for it through a certain property of the lattice of congruences that we have called FC–
normality. We also recall the Congruence Boolean Lifting Property from [15] and start comparing these two
lifting properties; we will show more on the way they relate to each other in the following sections.

Proposition 3.1. Let n ∈ N∗ and A,A1, . . . , An be congruence–distributive algebras. Then the following state-
ments are equivalent:

(i) A ∼=

n∏

i=1

Ai;

(ii) there exist α1, . . . , αn ∈ FC(A) such that
n⋂

i=1

αi = ∆A, αi ∨ αj = ∇A for all i, j ∈ 1, n with i 6= j, and

Ai ∼= A/αi for all i ∈ 1, n.

Proof. (i)⇒(ii): If n = 1, then just take α1 = ∆A ∈ FC(A). Now assume that n ≥ 2. Clearly, we may assume

that A =

n∏

i=1

Ai. For each i ∈ 1, n, let πi : A → Ai be the canonical projection: for all (a1, . . . , an) ∈ A,

πi(a1, . . . , an) = ai, and αi = Ker(πi) = {(a, b) ∈ A2 | πi(a) = πi(b)} = {((a1, . . . , an), (b1, . . . , bn)) ∈ A2 | ai =

bi} ∈ Con(Ai), since πi is a morphism. Clearly,

n⋂

i=1

αi = ∆A.

Let i, j ∈ 1, n such that i 6= j, and let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ A, arbitrary. Let x =
(a1, . . . , ai−1, bi, ai+1, . . . , an) ∈ A. Since i 6= j, we have πi(a) = ai = πi(x), that is (a, x) ∈ αi. We also
have πi(x) = bi = πi(b), that is (x, b) ∈ αi. Thus (a, x), (x, b) ∈ αi ∨ αj , so (a, b) ∈ αi ∨ αj by the transitivity of
αi ∨ αj . Hence αi ∨ αj = A2 = ∇A.

Now let i ∈ 1, n. A/αi = {a/αi | a ∈ A}, where, for all a ∈ A, a/αi = {b ∈ A | (a, b) ∈ αi} = {b ∈
A | πi(a) = πi(b)} Let fi : A/αi → Ai, for all a ∈ A, fi(a/αi) = πi(a). Then, clearly, fi is well defined and it is
an isomorphism, thus Ai ∼= A/αi.

Let βi =
⋂

j∈1,n\{i}

αj ∈ Con(A). Then αi∩βi =
⋂

j∈1,n

αj = ∆A. Now let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ A,

arbitrary, and let x = (a1, . . . , ai−1, bi, ai+1, . . . , an) ∈ A. For all j ∈ 1, n \ {i}, πj(a) = aj = πj(x), which means

that (a, x) ∈
⋂

j∈1,n\{i}

αj = βi; and πi(x) = bi = πi(b), that is (x, b) ∈ αi. Thus (a, b) ∈ αi◦βi, hence αi◦βi = ∇A.

By Remark 2.4, (i), it follows that (αi, βi) is a pair of factor congruences.
Therefore α1, . . . , αn ∈ FC(A).

(ii)⇒(i): Let us define f : A →

n∏

i=1

A/αi by: f(a) = (a/α1, . . . , a/αn) for all a ∈ A. Let a, b ∈ A such that

f(a) = f(b), that is a/αi = b/αi for all i ∈ 1, n, which means that (a, b) ∈

n⋂

i=1

αi = ∆A, that is a = b, so f is
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injective. For all i ∈ 1, n, let qi ∈ A/αi, so that qi = ai/αi for some ai ∈ A. Then, for all i, j ∈ 1, n with i 6= j,
(ai, aj) ∈ A2 = ∇A = αi ∨ αj . By Corollary 2.10, (i), FC(A) satisfies the CRT, hence there exists an a ∈ A
with the property that, for all i ∈ 1, n, (a, ai) ∈ αi, that is a/αi = ai/αi. Therefore f(a) = (a/α1, . . . , a/αn) =
(a1/α1, . . . , an/αn) = (q1, . . . , qn); thus f is surjective. Clearly, f is a morphism. Therefore f is an isomorphism,

so A ∼=

n∏

i=1

A/αi ∼=

n∏

i=1

Ai.

Throughout the rest of this section, A shall be a congruence–distributive algebra and θ ∈ Con(A), arbitrary.
vθ : Con(A) → [θ) is a bounded lattice morphism, thus B(vθ) : B(Con(A)) → B([θ)) is a Boolean morphism,

hence, for all ψ ∈ B(Con(A)), we have: ψ ∨ θ = vθ(ψ) = B(vθ)(ψ) ∈ B([θ)), and ¬θ(ψ ∨ θ) = ¬θ(B(vθ)(ψ)) =
B(vθ)(¬ψ) = vθ(¬ψ) = ¬ψ∨θ. s−1

θ : [θ) → Con(A/θ) is a bounded lattice isomorphism, thus B(s−1
θ ) : B([θ)) →

B(Con(A/θ)) is a Boolean isomorphism, hence B(Con(A/θ)) = B(s−1
θ )(B([θ))) = s−1

θ (B([θ)) = {ψ/θ | ψ ∈
B([θ))} and, for any ψ ∈ B([θ)), the complement of ψ/θ in B(Con(A/θ)) is ¬ (ψ/θ) = (¬θψ)/θ. By the above, for
any ψ ∈ B(A), it follows that (ψ∨θ)/θ ∈ B(Con(A/θ)) and ¬ ((ψ∨θ)/θ) = (¬θ(ψ∨θ))/θ = (¬ψ∨θ)/θ. Therefore
FC(A/θ) = {γ ∈ B(Con(A/θ)) | γ ◦ ¬ γ = ¬ γ ◦ γ} = {ψ/θ | ψ ∈ B([θ)), ψ/θ ◦ (¬θψ)/θ = (¬θψ)/θ ◦ ψ/θ} =
{ψ/θ | ψ ∈ B([θ)), ψ ◦ ¬θψ = ¬θψ ◦ ψ} = {ψ/θ | ψ ∈ FC([θ))} = pθ(FC([θ))) = FC([θ))/θ.

Proposition 3.2. uθ(FC(A)) ⊆ FC(A/θ).

Proof. Let ψ ∈ FC(A), which means that ψ ∈ B(Con(A)) and ψ ◦ ¬ψ = ∇A. Then, by the above, uθ(ψ) =
(ψ∨θ)/θ ∈ B(Con(A/θ)) and ¬θuθ(ψ) = ¬ ((ψ∨θ)/θ) = (¬ψ∨θ)/θ; also, (ψ∨θ)◦(¬ψ∨θ) ⊇ ψ◦¬ψ = ∇A, thus
uθ(ψ)◦¬uθ(ψ) = (ψ∨θ)/θ◦(¬ψ∨θ)/θ = ((ψ∨θ)◦(¬ψ∨θ))/θ = ∇A/θ = ∇A/θ. Therefore uθ(ψ) ∈ FC(A/θ).

We denote by FC(θ) = uθ |FC(A): FC(A) → FC(A/θ).

Proposition 3.3. (i) FC(θ) is well defined and it is a Boolean morphism;

(ii) the following diagrams are commutative:

FC(A) B(Con(A)) Con(A)

FC(A/θ) B(Con(A/θ)) Con(A/θ)
❄ ❄ ❄
FC(θ) B(uθ) uθ

✲ ✲

✲ ✲

where the horizontal arrows represent bounded lattice embeddings (thus the ones to the left are Boolean
embeddings).

Proof. (i) By Proposition 3.2, FC(θ) is well defined. Since uθ : Con(A) → Con(A/θ) is a bounded lattice
morphism and FC(θ) = uθ |FC(A): FC(A) → FC(A/θ), with FC(A) a Boolean sublattice of Con(A) and FC(A/θ)
a Boolean sublattice of Con(A/θ), it follows that FC(θ) is a bounded lattice morphism between two Boolean
algebras, hence it is a Boolean morphism.
(ii) By the fact that B(uθ) = uθ |B(Con(A)) and FC(θ) = uθ |FC(A)= B(uθ) |FC(A).

Definition 3.4. We say that θ has the Factor Congruence Lifting Property (abbreviated FCLP) iff the Boolean
morphism FC(θ) : FC(A) → FC(A/θ) is surjective.

We say that A has the Factor Congruence Lifting Property (FCLP) iff each congruence of A has the FCLP.

Definition 3.5. [15] We say that θ has the Congruence Boolean Lifting Property (abbreviated CBLP) iff the
Boolean morphism B(uθ) : B(Con(A)) → B(Con(A/θ)) is surjective.

We say that A has the Congruence Boolean Lifting Property (CBLP) iff each congruence of A has the CBLP.

Remark 3.6. The properties on CBLP that we cite in the rest of this article do hold without enforcing the
hypothesis (H) from [15], namely the requirement that∇A is a finitely generated congruence of A, or, equivalently,
a compact element of Con(A).

Remark 3.7. [15] θ has CBLP iff the Boolean morphism B(vθ) : B(Con(A)) → B([θ)) is surjective. This is
immediate, since sθ is a bounded lattice isomorphism and thus B(sθ) is a Boolean isomorphism, and we have
the following commutative diagram in the category of Boolean algebras:

7



B(Con(A)) ✲
◗
◗
◗◗s

✑
✑

✑✑✰

B(uθ)

B(vθ) B(sθ)

B(Con(A/θ))

B([θ))

Lemma 3.8. θ has FCLP iff, for any ψ ∈ [θ) such that ψ/θ ∈ FC(A/θ), there exists a φ ∈ FC(A) such that
φ ∨ θ = ψ.

FC(A) ✲
◗
◗
◗◗s

✑
✑

✑✑✰

FC(θ)

vθ |FC(A) sθ |FC(A/θ)

FC(A/θ)

[θ)

Proof. Let us apply the commutativity of the diagram above. By Definition 3.4, θ has FCLP iff, for any
ψ ∈ [θ) such that ψ/θ ∈ FC(A/θ), there exists a φ ∈ FC(A) such that ψ/θ = FC(θ)(φ) = (φ ∨ θ)/θ, that is
pθ(ψ) = pθ(φ ∨ θ), that is s−1

θ (ψ) = s−1
θ (φ ∨ θ), which means that ψ = φ ∨ θ by the injectivity of the bounded

lattice isomorphism s−1
θ .

Proposition 3.9. Let A be a congruence–distributive algebra. Then: A has FCLP iff, for all φ ∈ Con(A), A/φ
has FCLP. The same goes for CBLP instead of FCLP.

Proof. The statement on CBLP is known from [15].
For the converse of the statement on FCLP, just take φ = ∆A, so that A/φ = A/∆A

∼= A.
Now assume that A has FCLP, and let φ ∈ Con(A) and ψ ∈ [φ). Let f : Con(A/φ) → Con(A/ψ), for all

α ∈ [φ), f(α/φ) = (α ∨ ψ)/ψ. It is immediate that f is well defined and it is a bounded lattice morphism. Let
g : Con((A/φ)/(ψ/φ)) → Con(A/ψ), for all α ∈ [ψ) ⊆ [φ), g((α/φ)/(ψ/φ)) = α/ψ. According to the Second

Isomorphism Theorem ([4]), g is well defined and it is a bounded lattice isomorphism. Then the following
diagram in the category of bounded distributive lattices is commutative:

Con(A) ✲
PPPPPPq ❄

f

uφ

uψ

Con(A/φ) Con((A/φ)/(ψ/φ))
✲

✏✏✏✏✏✏✏✮ g

u(ψ/φ)

Con(A/ψ)

Indeed, for all α ∈ Con(A), f(uφ(α)) = f((α ∨ φ)/φ) = (α ∨ φ ∨ ψ)/ψ = uψ(α), and, for all β ∈ [φ),
g(u(ψ/φ)(β/φ)) = g((β/φ) ∨ (ψ/φ)/(ψ/φ)) = g((β ∨ ψ)/φ)/(ψ/φ)) = (β ∨ ψ)/ψ = f(β/φ). By considerring the

restrictions of the morphisms in the previous diagram to the Boolean algebras of factor congruences, we obtain
the following commutative diagram in the category of Boolean algebras:

FC(A) ✲
PPPPPPq ❄

f ′

FC(φ)

FC(ψ)

FC(A/φ) FC((A/φ)/(ψ/φ))
✲

✏✏✏✏✏✏✏✮ g′

FC(ψ/φ)

FC(A/ψ)

where f ′ = f |FC(A/φ) and g′ = g |FC((A/φ)/(ψ/φ))
both have the image within FC(A/ψ) by the very com-

mutativity of the first diagram and the fact that the image of FC(ψ) is included in FC(A/ψ). Therefore
f ′ ◦ FC(φ) = FC(ψ) and f ′ = g′ ◦ FC(ψ/φ). Since A has FCLP, ψ has FCLP, that is FC(ψ) is surjective, hence
f ′ is surjective, thus g′ is surjective. But g is injective, so g′ is injective. Therefore g′ is bijective, so there exists
(g′)−1 : FC(A/ψ) → FC((A/φ)/(ψ/φ)), hence FC(ψ/φ) = (g′)−1 ◦ f ′, with (g′)−1 bijective and f ′ surjective,

thus FC(ψ/φ) is surjective, which means that ψ/φ has FCLP. Therefore A/φ has FCLP.

Proposition 3.10. Let n ∈ N∗ and A1, . . . , An be congruence–distributive algebras and A =

n∏

i=1

Ai. Then: A

has FCLP iff each of the algebras A1, . . . , An has FCLP. The same goes for CBLP instead of FCLP.
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Proof. The statement on CBLP is known from [15].
The direct implication in the statement on FCLP follows from Propositions 3.1 and 3.9.
Now assume that A1, . . . , An have FCLP, and let φ ∈ Con(A). By Remark 2.2, there exist φ1 ∈ Con(A1), . . . ,

φn ∈ Con(An) such that φ = φ1 × . . . × φn, and it follows that A/φ ∼=

n∏

i=1

Ai/φi. Let j :
n∏

i=1

Ai/φi → A/φ

be the isomorphism from Remark 2.3: for all a1 ∈ A1, . . . , an ∈ An, j(a1/φ1, . . . , an/φn) = (a1, . . . , an)/φ. Let

g : FC(
n∏

i=1

Ai/φi) → FC(A/φ), defined by: for all β ∈ FC(
n∏

i=1

Ai/φi), g(β) = j(β) = {(j(a), j(b)) | (a, b) ∈ β}. By

Remark 2.6, g is a Boolean isomorphism. Let f :

n∏

i=1

FC(Ai) → FC(A) and h :

n∏

i=1

FC(Ai/φi) → FC(

n∏

i=1

Ai/φi) be

the Boolean isomorphisms from Lemma 2.8: for all α1 ∈ FC(A1), . . . , αn ∈ FC(An), f(α1, . . . , αn) = α1×. . .×αn,

and, for all γ1 ∈ FC(A1/φ1), . . . , γn ∈ FC(An/φn), h(γ1, . . . , γn) = γ1×. . .×γn. Let us denote by p =

n∏

i=1

FC(φi) :

n∏

i=1

FC(Ai) →

n∏

i=1

FC(Ai/φi), defined in the usual way: for all α1 ∈ FC(A1), . . . , αn ∈ FC(An), p(α1, . . . , αn) =

(FC(φ1)(α1), . . . ,FC(φn)(αn)) = (uφ1
)(α1), . . . , uφn

)(αn)) = ((α1 ∨ φ1)/φ1, . . . , (αn ∨ φn)/φn). Then, clearly, p
is a Boolean morphism. The following diagram in the category of Boolean algebras is commutative:

FC(A) ✲

✻f h✻

p =
n∏

i=1

FC(φi)

✲

FC(φ)
FC(A/φ)

n∏

i=1

FC(Ai)

FC(

n∏

i=1

Ai/φi)

n∏

i=1

FC(Ai/φi)

✛ g

Indeed, the following hold, for all α1 ∈ FC(A1), . . . , αn ∈ FC(An):

FC(φ)(f(α1, . . . , αn)) = uφ(f(α1, . . . , αn)) = (f(α1, . . . , αn) ∨ φ)/φ =

((α1 × . . .× αn) ∨ (φ1 × . . .× φn))/(φ1 × . . .× φn) =

((α1 ∨ φ1)× . . .× ((αn ∨ φn))/(φ1 × . . .× φn) = ((α1 ∨ φ1)× . . .× ((αn ∨ φn))/φ

and g(h(p(α1, . . . , αn))) = g(h((α1 ∨ φ1)/φ1, . . . , (αn ∨ φn)/φn)) =

g((α1 ∨ φ1)/φ1 × . . .× (αn ∨ φn)/φn) = j((α1 ∨ φ1)/φ1 × . . .× (αn ∨ φn)/φn) =

{(j(a1, . . . , an), j(b1, . . . , bn)) | ((a1, . . . , an), (b1, . . . , bn)) ∈ (α1 ∨ φ1)/φ1 × . . .× (αn ∨ φn)/φn} =

{(j(a1, . . . , an), j(b1, . . . , bn)) | (a1, b1) ∈ (α1 ∨ φ1)/φ1, . . . , (an, bn) ∈ (αn ∨ φn)/φn} =

{(j(c1/φ1, . . . , cn/φn), j(d1/φ1, . . . , dn/φn)) | (c1/φ1, d1/φ1) ∈ (α1∨φ1)/φ1, . . . , (cn/φn, dn/φn) ∈ (αn∨φn)/φn}

= {((c1, . . . , cn)/φ, (d1, . . . , dn)/φ) | (c1, d1) ∈ α1 ∨ φ1, . . . , (cn, dn) ∈ αn ∨ φn} =

{((c1, . . . , cn)/φ, (d1, . . . , dn)/φ) | ((c1, . . . , cn), (d1, . . . , dn)) ∈ (α1 ∨ φ1)× . . .× (αn ∨ φn)} =

((α1 ∨ φ1)× . . .× (αn ∨ φn))/φ = FC(φ)(f(α1, . . . , αn)).

Since A1, . . . , An have FCLP, it follows that φ1, . . . , φn have FCLP, that is FC(φ1), . . . ,FC(φn) are surjective,

hence p =

n∏

i=1

FC(φi) is surjective. But, as we have seen, FC(φ)◦f = g◦h◦p, and f, g, h are bijections. Therefore

FC(φ) is surjective, which means that φ has FCLP. Thus A has FCLP.

Proposition 3.11. If A is an arithmetical algebra, then:

(i) θ has FCLP iff θ has CBLP;
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(ii) A has FCLP iff A has CBLP.

Proof. (i) If A is arithmetical, then so is A/θ, thus B(Con(A)) = FC(A) and B(Con(A/θ)) = FC(A/θ), hence
FC(θ) = B(uθ) |FC(A)= B(uθ), thus FC(θ) is surjective iff B(uθ) is surjective, that is θ has FCLP iff θ has CBLP.
(ii) By (i).

Lemma 3.12. [15]

• Any bounded distributive lattice has CBLP.

• Any algebra from a discriminator equational class has CBLP.

Proposition 3.13. • Any Boolean algebra has FCLP.

• Any algebra from a discriminator equational class has FCLP.

Proof. By Proposition 3.11, (ii), Lemma 3.12 and the fact that Boolean algebras are arithmetical algebras, and,
according to [23], algebras from discriminator equational classes are arithmetical algebras, as well.

Proposition 3.14. If A is an arithmetical algebra, then:

• A is semilocal and it has CBLP iff A is semilocal and Rad(A) has CBLP iff A is isomorphic to a finite
direct product of local algebras iff A is semilocal and it has FCLP iff A is semilocal and Rad(A) has FCLP;

• A is maximal and it has CBLP iff A is maximal and Rad(A) has CBLP iff A is isomorphic to a finite
direct product of local maximal algebras iff A is maximal and it has FCLP iff A is maximal and Rad(A)
has FCLP.

Proof. In each of the two statements, the first two equivalences have been proven in [13], and the rest follow
from Proposition 3.11.

Definition 3.15. [15] We say that the algebra A is B–normal iff, for all φ, ψ ∈ Con(A) such that φ ∨ ψ = ∇A,
there exist α, β ∈ B(Con(A)) such that α ∩ β = ∆A and φ ∨ α = ψ ∨ β = ∇A.

Note that A is a B–normal algebra iff Con(A) is a B–normal lattice.

Proposition 3.16. [15] A has CBLP iff A is B–normal.

Definition 3.17. We say that the algebra A is FC–normal iff, for all φ, ψ ∈ Con(A) such that φ ◦ ψ = ∇A,
there exist α, β ∈ FC(A) such that α ∩ β = ∆A and φ ◦ α = ψ ◦ β = ∇A.

By an observation in Section 2, the condition that φ◦ψ = ∇A in Definition 3.17 implies φ◦ψ = ψ ◦φ, as well
as φ ∨ ψ = ∇A, because φ ◦ ψ = ∇A ∈ Con(A) implies φ ∨ ψ = φ ◦ ψ = ∇A. By Remark 2.5, (i), the equalities
φ ◦ α = ψ ◦ β = ∇A in Definition 3.17 are equivalent to φ ∨ α = ψ ∨ β = ∇A.

Remark 3.18. If A is an arithmetical algebra, then: A is B–normal iff A is FC–normal, by Remark 2.5, (ii),
and the fact that any arithmetical algebra A has B(Con(A)) = FC(A).

Remark 3.19. A is FC–normal iff, for any φ, ψ ∈ Con(A) such that φ ◦ ψ = ∇A, there exists an α ∈ FC(A)
such that φ ∨ α = ψ ∨ ¬α = ∇A, which, in turn, is equivalent to φ ◦ α = ψ ◦ ¬α = ∇A, according to Remark
2.5, (i). Indeed, since α∩¬α = ∆A and ¬α ∈ FC(A) for any α ∈ FC(A), the converse implication is trivial. As
for the direct implication, for any α, β ∈ B(Con(A)) ⊇ FC(A), the fact that α ∩ β = ∆A means that β ⊆ ¬α,
thus, for any ψ ∈ Con(A), the equality ψ ∨ β = ∇A implies ψ ∨ ¬α ⊇ ψ ∨ β = ∇A, thus ψ ∨ ¬α = ∇A.

Proposition 3.20. A has FCLP iff A is FC–normal.
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Proof. For the direct implication, assume that A has FCLP, and let φ, ψ ∈ Con(A) such that φ ◦ ψ = ∇A.
Then φ ∩ ψ has FCLP, that is the Boolean morphism FC(φ ∩ ψ) is surjective. We have: φ, ψ ∈ [φ ∩ ψ),
φ/(φ ∩ ψ) ∩ ψ/(φ ∩ ψ) = (φ ∩ ψ)/(φ ∩ ψ) = ∆A/(φ∩ψ) and φ/(φ ∩ ψ) ◦ ψ/(φ ∩ ψ) = (φ ◦ ψ)/(φ ∩ ψ) =
∇A/(φ ∩ ψ) = ∇A/(φ∩ψ), hence φ/(φ ∩ ψ), ψ/(φ ∩ ψ) is a pair of factor congruences by Remark 2.4, (i), so
φ/(φ∩ψ), ψ/(φ∩ψ) ∈ FC(A/(φ∩ψ)) and ψ/(φ∩ψ) = ¬ (φ/(φ∩ψ)). Since FC(φ∩ψ) : FC(A) → FC(A/(φ∩ψ))
is surjective, it follows that there exists an α ∈ FC(A) such that φ/(φ∩ψ) = FC(φ∩ψ)(α) = (α∨(φ∩ψ))/(φ∩ψ),
and so (¬α ∨ (φ ∩ ψ))/(φ ∩ ψ) = FC(φ ∩ ψ)(¬α) = ¬FC(φ ∩ ψ)(α) = ¬ (φ/(φ ∩ ψ)) = ψ/(φ ∩ ψ). Therefore
φ = α ∨ (φ ∩ ψ) and ψ = ¬α ∨ (φ ∩ ψ), thus φ ∨ ¬α = ψ ∨ α = α ∨ ¬α ∨ (φ ∩ ψ) = ∇A ∨ (φ ∩ ψ) = ∇A. By
Remark 3.19, it follows that A is FC–normal.

For the converse implication, assume that A is FC–normal, and let ρ ∈ Con(A) and φ ∈ [ρ) such that
φ/ρ ∈ FC(A/ρ). Then, according to Remark 2.4, (i), there exists a ψ ∈ [ρ) such that φ/ρ ∩ ψ/ρ = ∆A/ρ and
φ/ρ ◦ ψ/ρ = ∇A/ρ, so that φ/ρ ∨ ψ/ρ = ∇A/ρ, ρ/ρ = ∆A/ρ = (φ ∩ ψ)/ρ and ∇A/ρ = ∇A/ρ = (φ ◦ ψ)/ρ,
thus φ ∩ ψ = ρ, φ ◦ ψ = ∇A and φ/ρ = ¬ (ψ/ρ). By Remark 3.19, since A is FC–normal, it follows that
there exists an α ∈ FC(A) which fulfills φ ∨ α = ψ ∨ ¬α = ∇A, hence ψ ⊇ ¬¬α = α. Thus ¬α ∈ FC(A)
and α ∨ ρ = α ∨ (φ ∩ ψ) = (α ∨ φ) ∩ (α ∨ ψ) = ∇A ∩ ψ = ψ, so FC(ρ)(α) = (α ∨ ρ)/ρ = ψ/ρ, hence
φ/ρ = ¬ (ψ/ρ) = ¬FC(ρ)(α) = FC(ρ)(¬α). Therefore FC(ρ) is surjective, which means that ρ has FCLP. Thus
A has FCLP.

Corollary 3.21. If A is an arithmetical algebra, then: A has FCLP iff A has CBLP iff A is FC–normal iff A
is B–normal.

Proof. Propositions 3.11, 3.16 and 3.20 and Remark 3.18 provide several proofs for this corollary.

4 FCLP versus CBLP and BLP in Residuated Lattices and Bounded

Distributive Lattices

Now let us study the relations between FCLP, CBLP and the Boolean Lifting Property in residuated lattices
and bounded distributive lattices. For a further study of the properties of residuated lattices that we use in
what follows, we refer the reader to [11], [18], [19], [21], [22], [24], [36], [38].

We recall that a (commutative) residuated lattice is an algebra (R,∨,∧,⊙,→, 0, 1) of type (2, 2, 2, 2, 0, 0),
where (R,∨,∧, 0, 1) is a bounded lattice, (R,⊙, 1) is a commutative monoid and the following property, called
the law of residuation, holds for every a, b, c ∈ R: a ⊙ b ≤ c iff a ≤ b → c, where ≤ is the partial order of the
lattice (R,∨,∧). For any a, b ∈ R, we denote by a ↔ b = (a → b) ∧ (b → a). For any a ∈ R and any n ∈ N, we
denote by a0 = 1 and an+1 = an ⊙ a.

It is well known that residuated lattices are arithmetical algebras, and that the underlying bounded lattice
of a residuated lattice R, although not necessarily distributive, is uniquely complemented and has the property
that its set of complemented elements is a Boolean sublattice of R; this Boolean algebra is denoted B(R) and
called the Boolean center of R. If R and S are residuated lattices and f : R → S is a residuated lattice morphism,
then f(B(R)) ⊆ B(S), and B(f) = f |B(R): B(R) → B(S) is a Boolean morphism. Thus B becomes a covariant
functor from the category of residuated lattices to that of Boolean algebras. We consider that denoting this
functor the same as the one from the category of bounded distributive lattices to that of Boolean algebras poses
no danger of confusion.

If R is a bounded distributive lattice or a residuated lattice and φ ∈ Con(R), then: we say that φ fulfills
the Boolean Lifting Property (abbreviated BLP) iff the Boolean morphism B(pφ) : B(R) → B(R/φ) is surjective,
and we say that R fulfills the Boolean Lifting Property (BLP) iff all congruences of R fulfill the BLP ([6], [7],
[13], [14]). Notice that, for any φ ∈ Con(R): φ has the BLP iff B(R/φ) = B(R)/φ iff B(R/φ) ⊆ B(R)/φ, since
the inclusion B(R)/φ ⊆ B(R/φ) always holds.

Throughout the rest of this section, R shall be an arbitrary residuated lattice and L shall be an arbitrary
bounded distributive lattice, unless mentioned otherwise. For any F,G ∈ Filt(L), we denote by F ∨ G =
[F ∪ G), and, for any I, J ∈ Id(L), we denote by I ∨ J = (I ∪ J ]. We recall that (Filt(L),∨,∩, {1}, L) and
(Id(L),∨,∩, {0}, L) are bounded distributive lattices embedded in Con(L).

We recall that the filters of R are the non–empty subsets of R which are closed with respect to ⊙ and to
upper bounds. We shall denote by Filt(R) the set of the filters of R. Just as in the case of bounded distributive
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lattices, Filt(R) is closed with respect to arbitrary intersections, thus, for any X ⊆ R, there exists the filter
of R generated by X , which we shall denote by [X). For any x ∈ R, [{x}) is also denoted by [x) and it is
called the principal filter of R generated by x; its elements are: [x) = {y ∈ R | (∃n ∈ N∗) (xn ≤ y)}. We shall
denote by PFilt(R) the set of the principal filters of R. Just as in lattices, for any F,G ∈ Filt(R), we denote
by F ∨G = [F ∪G). (Filt(R),∨,∩, {1}, R) is a bounded distributive lattice isomorphic to Con(R), and having
PFilt(R) as bounded sublattice. Let F ∈ Filt(R). Just as in bounded distributive lattices, F is called a prime
filter iff, for all x, y ∈ R, x ∨ y ∈ F implies x ∈ F or y ∈ F , and F is called a maximal filter iff it is a maximal
element of Filt(R)\ {R} with respect to ⊆. R is called a local residuated lattice iff it has a unique maximal filter.

Let us denote by f : Filt(R) → Con(R) the canonical bounded lattice isomorphism, and by g : Filt(L) →
Con(L) and h : Id(L) → Con(L) the canonical bounded lattice embeddings: for all F ∈ Filt(R), G ∈ Filt(L)
and I ∈ Id(L), f(F ) = {(x, y) ∈ R2 | x ↔ y ∈ F} = {(x, y) ∈ R2 | (∃ a ∈ F ) (x ⊙ a = y ⊙ a)}, g(G) = {(x, y) ∈
L2 | (∃ a ∈ G) (x ∧ a = y ∧ a)} and h(I) = {(x, y) ∈ L2 | (∃ a ∈ I) (x ∨ a = y ∨ a)}. For any F ∈ Filt(R),
G ∈ Filt(L) and I ∈ Id(L), we say that F , G, respectively I, has the Boolean Lifting Property (BLP) iff the
congruence f(F ), g(G), respectively h(I), has the BLP. Clearly, R has the BLP iff all its filters have the BLP.
We say that L has the Boolean Lifting Property for filters (abbreviated Filt–BLP) iff all filters of L have the
BLP. We say that L has the Boolean Lifting Property for ideals (abbreviated Id–BLP) iff all ideals of L have the
BLP ([6], [7], [14]). Clearly, if L has BLP, then L has Filt–BLP and Id–BLP.

Let L be the reticulation functor for residuated lattices: a covariant functor from the category of resid-
uated lattices to that of bounded distributive lattices which takes every residuated lattice S to a bounded
distributive lattice L(S) whose set of prime filters, endowed with the Stone topology, is homeomorphic to that
of S ([12], [14], [27], [28], [29], [30], [31], [32]); L(S) is uniquely determined, up to a bounded lattice isomor-
phism, by: L(S) is isomorphic to the dual of the bounded distributive lattice PFilt(S), thus we may take
L(S) = (PFilt(S),∩,∨, [0) = S, [1) = {1}). L(S) is called the reticulation of S. L has good preservation
properties, which make it adequate for transferring many algebraic and topological results from the category of
bounded distributive lattices to that of residuated lattices.

If we denote by λ : R→ PFilt(R) = L(R) the canonical surjection: for all a ∈ R, λ(a) = [a), then the direct
image of λ sets a bijection from Filt(R) to Filt(L(R)): F ∈ Filt(R) 7→ λ(F ) = {λ(x) | x ∈ F} ∈ Filt(L(R)).

Lemma 4.1. [14, Proposition 5.19]

(i) For any F ∈ Filt(R): F has BLP (in R) iff λ(F ) has BLP (in L(R)).

(ii) R has BLP iff L(R) has Filt–BLP.

Proposition 4.2. (i) For any F ∈ Filt(R): F has BLP iff f(F ) has BLP iff f(F ) has CBLP iff f(F ) has
FCLP.

(ii) For any φ ∈ Con(R): φ has BLP iff φ has CBLP iff φ has FCLP.

(iii) R has BLP iff R has CBLP iff R has FCLP.

Proof. (i) Let F ∈ Filt(R). By the definition of the BLP for filters, F has BLP iff f(F ) has BLP. In [15], we
have proven that F has BLP iff f(F ) has CBLP. By Proposition 3.11, (i), and the fact that R is an arithmetical
algebra, f(F ) has CBLP iff f(F ) has FCLP.
(ii) By (i) and the fact that f : Filt(R) → Con(R) is a bijection.
(iii) By (ii).

Proposition 4.3. (i) For any φ ∈ Con(L): φ has BLP iff φ has FCLP.

(ii) L has BLP iff L has FCLP.

Proof. (i) Let φ ∈ Con(L). According to Lemma 2.7, the following functions are Boolean isomorphisms: fL :
B(L) → FC(L) and fL/φ : B(L/φ) → FC(L/φ), defined by: for all a ∈ L, if a ∈ B(L), then fL(a) = CgL(a, 0),
and, if a/φ ∈ B(L/φ), then fL/φ(a/φ) = CgL/φ(a/φ, 0/φ). The following diagram is commutative:
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B(L)

B(L/φ)

FC(L)

FC(L/φ)

B(pφ)❄
FC(φ)
❄

fL ✲

fL/φ ✲

Indeed, B(pφ)(B(L)) = B(L)/φ ⊆ B(L/φ) and, by Lemma 2.1, for all a ∈ B(L), the following equalities
hold: FC(φ)(fL(a)) = uφ(CgL(a, 0)) = (CgL(a, 0) ∨ φ)/φ = CgL/φ(a/φ, 0/φ) = fL/φ(a/φ) = fL/φ(pφ(a)). So
FC(φ) ◦ fL = fL/φ ◦ B(pφ), thus, since fL and fL/φ are bijections, it follows that: B(pφ) is surjective iff FC(φ)
is surjective, which means that: φ has BLP iff φ has FCLP.

Remark 4.4. Obviously, L has Filt–BLP iff the dual of L has Id–BLP, while, just as in the case of BLP and
CBLP, L has FCLP iff the dual of L has FCLP, because the congruences of L coincide with those of its dual.

Corollary 4.5. (i) For any F ∈ Filt(R): f(F ) has FCLP iff f(F ) has CBLP iff f(F ) has BLP iff λ(F ) has
BLP iff g(λ(F )) has BLP iff g(λ(F )) has FCLP.

(ii) R has FCLP iff R has CBLP iff R has BLP iff L(R) has Filt–BLP iff each congruence in g(Filt(L(R)))
has BLP iff each congruence in g(Filt(L(R))) has FCLP iff PFilt(R) has Id–BLP iff each congruence in
h(Id(PFilt(R))) has BLP iff each congruence in h(Id(PFilt(R))) has FCLP.

Remark 4.6. To conclude on the above:

• in residuated lattices, BLP, CBLP and FCLP coincide; see, in [13] and [14], examples of residuated lattices
without BLP, thus without CBLP or FCLP, as well as examples of residuated lattices with BLP, thus with
CBLP and FCLP;

• in bounded distributive lattices, CBLP is always present, while FCLP coincides to the BLP, which implies
Filt–BLP and Id–BLP; see, in [6] and [7], examples of bounded distributive lattices without BLP, thus
without FCLP, as well as examples of bounded distributive lattices without Filt–BLP and/or Id–BLP;
thus CBLP does not imply FCLP, BLP, Filt–BLP or Id–BLP; see, also, in [6] and [7], examples of bounded
distributive lattices with BLP, thus with FCLP;

• so, in residuated lattices and bounded distributive lattices, BLP and FCLP are neither always present, nor
always absent.

Corollary 4.7. CBLP does not imply FCLP.

Proof. As pointed out in Remark 4.6, all bounded distributive lattices have the CBLP, but they do not all have
the FCLP.

Remark 4.8. Regarding the behaviour of the functor L with respect to these lifting properties, we conclude,
by the above, that:

• L reflects the BLP; equivalently, L reflects the FCLP;

• L does not reflect the CBLP, as shown by the examples of residuated lattices without BLP, and thus
without CBLP;

• L preserves the CBLP, trivially;

• L does not preserve the BLP, or, equivalently, L does not preserve the FCLP, as shown by this example
of a residuated lattice with BLP, thus with FCLP, whose reticulation does not have the BLP, thus it does
not have the FCLP: R0 = {0, a, b, c, 1}, with the lattice structure given by the following Hasse diagram,
⊙ = ∧ and → given by the following table:
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1

0

c
a b

r

r

r

r r

�❅
❅�

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 b b 1
b 0 a 1 a 1
c 0 1 1 1 1
1 0 a b c 1

[c) = {a, b, c, 1} is the unique maximal filter of R0, so R0 is a local residuated lattice, thus, according to
[13, Corollary 4.9], R0 has BLP, thus R0 has FCLP. Since ⊙ = ∧, it follows that L(R0) is isomorphic to the
underlying bounded lattice of R0 ([28], [29]), which, according to [6, Example 2], does not have Id–BLP,
thus it does not have BLP, so it does not have FCLP.

5 FCLP versus CBLP, with Examples

For the properties related to lattices that we recall in this section, see [1], [3], [16].
We have seen that, in arithmetical algebras, FCLP and CBLP coincide. In Section 4, we have seen that, in

general, they differ (Corollary 4.7). In this section we shall see that, moreover, in general, FCLP and CBLP
are independent of each other. We shall do this by obtaining some properties that are useful in calculations
and then providing some examples in lattices. But, first, just to show that the following results are not trivial,
let us notice that the lattice structure of the set of congruences of a congruence–distributive algebra does not
determine its factor congruences, also by examples in lattices.

First, let us notice that, in lattices, FCLP and CBLP are self–dual, that is a lattice L has FCLP or CBLP
iff its dual has FCLP or CBLP, respectively, which can be easily seen, for instance, from Remark 2.6.

It is well known that, if L is a finite distributive lattice, then its lattice of congruences is a Boolean algebra,
hence B(Con(L)) = Con(L). If B is a Boolean algebra, then B is an arithmetical algebra, thus FC(B) =
B(Con(B)). If B is a finite Boolean algebra, then, by the above and/or the well–known fact that, in this case,
Con(B) is isomorphic to B, it follows that FC(B) = B(Con(B)) = Con(B) ∼= B. It is also well known that the
classes of any congruence of a lattice L are convex sublattices of L.

Remark 5.1. It is clear that, if L is a lattice, S is a sublattice of L and θ ∈ Con(L), then θ ∩ S2 ∈ Con(S).

For any n ∈ N∗, we shall denote by Ln the n–element chain. We shall denote by D the diamond and by P
the pentagon. We shall use the following ad–hoc notation: for any set M and any partition π of M , we denote
by eq(π) the equivalence on M that corresponds to π; if π is finite: π = {M1, . . . ,Mn} for some n ∈ N∗, then
eq(π) shall be denoted, simply, by eq(M1, . . . ,Mn). For any lattice L with 1 and any lattice M with 0, we
shall denote by L ∔M the ordinal sum between L and M and, for any φ ∈ Con(L) and any ψ ∈ Con(M), by
φ∔ ψ = eq((L/φ \ c/φ) ∪ {c/φ ∪ c/ψ} ∪ (M/ψ \ c/ψ)), where c is the common element of L and M in L∔M .

Remark 5.2. Let L be a lattice with 1 and M be a lattice with 0. Then, by a result in [15]:

• the mapping φ∔ψ 7→ φ×ψ is a bounded lattice isomorphism between Con(L∔M) and Con(L×M) and
thus a Boolean isomorphism between B(Con(L∔M)) and B(Con(L×M)), so Con(L∔M) = {φ∔ψ | φ ∈
Con(L), ψ ∈ Con(M)} ∼= Con(L × M) ∼= Con(L) × Con(M) and B(Con(L ∔ M)) = {φ ∔ ψ | φ ∈
B(Con(L)), ψ ∈ B(Con(M))} ∼= B(Con(L×M)) ∼= B(Con(L)× Con(M)) ∼= B(Con(L))× B(Con(M));

• (L∔M)/(∆L ∔∇M ) ∼= L and (L ∔M)/(∇L ∔∆M ) ∼=M .

However, FC(L ∔M) is not necessarily isomorphic to FC(L ×M) ∼= FC(L)× FC(M), and FC(L ∔M) and
{φ ∔ ψ | φ ∈ FC(L), ψ ∈ FC(M)} are not necessarily equal, as shown by the example of the bounded lattice
Z = P ∔ L2

2 in Remark 5.10 below.

Corollary 5.3. Let L be a lattice with 1, M a lattice with 0 and K a bounded lattice. If L ∔M has FCLP,
then L and M have FCLP. If L ∔ K ∔M has FCLP, then L, K and M have FCLP. The converses of these
implications do not hold. The same goes for CBLP instead of FCLP.
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Proof. The statements on CBLP are known from [15]. The statement on FCLP for L∔M follows from Remark
5.2 and Proposition 3.9. The one on L ∔ K ∔ M follows from the previous one and the associativity of ∔.
Example 5.11 below contradicts the converse implications, because X = L2

2 ∔ D in this example does not have
FCLP, despite the fact that, according to Example 5.9, both L2

2 and D have FCLP.

Remark 5.4. The converses of the implications in Corollary 5.3 do not hold in bounded distributive lattices
either. Indeed, by Example 5.9, L2 and L2

2 have FCLP, but, by Remark 4.8, L2 ∔ L2
2 does not have FCLP.

Example 5.5. Let us draw the Hasse diagrams of the chains L2 and L3, the Boolean algebras L2
2 and L3

2, the
bounded distributive lattice L2 × L3 and the bounded non–distributive lattices D and P :
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L2 × L3
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Let us also consider the following bounded non–distributive lattices:
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❅
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❅

�
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r r r

r

r

a b

x

c

0

1

S = D ∔ L2

a b

x

y

c

0

1
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❅
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❅
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r r r

r
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R = D ∔ L3
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a b c
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1

x

z

T = L2 ∔D ∔ L2
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❅
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❅

❅
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�

r

r

r

r

r ra
b

d
c

0

1

E

Now let us determine all the congruences, as well as the Boolean and the factor congruences of the lattices
above. The first five of these are finite distributive lattices, so all their congruences are Boolean; out of these
lattices, the ones which are not Boolean algebras, namely L3 and L2 ×L3, have Boolean congruences which are
not factor congruences; as for the two finite non–distributive lattices, D has only the two congruences which are
present in any algebra, and which are factor congruences, while P has five congruences, three of which are not
Boolean. See in Example 5.5 below finite non–distributive lattices with Boolean congruences that are not factor
congruences.

For any n ∈ N, Ln2 is a finite Boolean algebra, thus FC(Ln2 ) = B(Con(Ln2 )) = Con(Ln2 )
∼= Ln2 . Hence FC(L2) =

B(Con(L2)) = Con(L2) = {∆L2
,∇L2

} and FC(L2
2) = B(Con(L2

2)) = Con(L2
2) = {∆L2

2

, eq({0, u}, {v, 1}),
eq({0, v}, {u, 1}),∇L2

2

}, where the last equality is straightforward. Let us denote by φ = eq({0, u}, {v, 1}) and by

θ = eq({0, v}, {u, 1}) = ¬φ. In order to determine the congruences of L3
2, we can simply calculate the congruence

of L3
2 associated to each of its eight filters/ideals, which are all principal; we obtain: FC(L3

2) = B(Con(L3
2)) =

Con(L3
2) = {∆L3

2

, eq({0, c}, {a, y}, {b, z}, {x, 1}), eq({0, b}, {a, x}, {c, z}, {y, 1}), eq({0, a}, {b, x}, {c, y}, {z, 1}),
eq({0, b, c, z}, {a, x, y, 1}), eq({0, a, c, y}, {b, x, z, 1}), eq({0, a, b, x}, {c, y, z, 1}),∇L3

2

}.

It is immediate that Con(L3) = {∆L3
, eq({0,m}, {1}), eq({0}, {m, 1}),∇L3

} ∼= L2
2, so it is a Boolean algebra,

thus B(Con(L3)) = Con(L3). If we denote by ϕ = eq({0,m}, {1}) and by ψ = eq({0}, {m, 1}) = ¬ϕ, then we
notice that, for instance, (0, 1) ∈ ψ ◦ ϕ and (0, 1) /∈ ϕ ◦ ψ, thus ψ ◦ ϕ 6= ϕ ◦ ψ, hence ϕ, ψ /∈ FC(L3), therefore
FC(L3) = {∆L3

,∇L3
} ∼= L2.

�❅
❅�
r

φ ψr r

r

∆L3

∇L3

Con(L3) = B(Con(L3))

r

r

∆L3

∇L3

FC(L3)
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By Remark 2.3, it follows that Con(L2 × L3) = {θ1 × θ2 | θ1 ∈ Con(L2), θ2 ∈ Con(L3)} = {∆L2×L3
=

∆L2
×∆L3

,∆L2
×ϕ,∆L2

×ψ,∆L2
×∇L3

,∇L2
×∆L3

,∇L2
×ϕ,∇L2

×ψ,∇L2×L3
= ∇L2

×∇L3
} ∼= L3

2, because,
if we denote by λ0 = ∆L2

×ϕ, λ1 = ∆L2
×ψ, λ = ∆L2

×∇L3
, µ = ∇L2

×∆L3
, µ0 = ∇L2

×ϕ, and µ1 = ∇L2
×ψ,

then we notice that the lattice structure of Con(L2 × L3) is the following:
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❅ ❅

❅
�

�

❅
❅

�
�

r

rr r

r rr

r

∆L2×L3
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λ0

µ0

µ

λ

λ1

µ1

Con(L2 × L3) = B(Con(L2 × L3))

�
�

❅
❅

❅
❅

�
�

r

r r

r

∆L2×L3

∇L2×L3

λ µ

FC(L2 × L3)

Hence B(Con(L2 × L3)) = Con(L2 × L3) ∼= L3
2. It is easy to see that: λ0 = eq({0, q}, {p, r}, {s}, {1}),

λ1 = eq({0}, {p}, {q, s}, {r, 1}), λ = eq({0, q, s}, {p, r, 1}), µ = eq({0, p}, {q, r}, {s, 1}), µ0 = eq({0, p, q, r}, {s, 1})
and µ1 = eq({0, p}, {q, r, s, 1}). By Lemma 2.8, FC(L2 × L3) = {θ1 × θ2 | θ1 ∈ FC(L2), θ2 ∈ FC(L3)} =
{∆L2

×∆L3
,∆L2

×∇L3
,∇L2

×∆L3
,∇L2

×∇L3
} = {∆L2×L3

, λ, µ,∇L2×L3
} ∼= L2

2.
It is immediate that Con(D) = {∆D,∇D}, thus FC(D) = B(Con(D)) = Con(D) = {∆D,∇D} ∼= L2.
It is easy to notice that Con(P) = {∆P , α, β, γ,∇P}, where α = eq({0, y, z}, {x, 1}), β = eq({0, x}, {y, z, 1})

and γ = eq({0}, {x}, {y, z}, {1}), and thus the lattice structure of Con(P) is the following:

�❅
❅�

∆P

∇P

r

γ

α β
r

r r

r

Con(P)

r

r

∆P

∇P

B(Con(P)) = FC(P)

Hence B(Con(P)) = {∆P ,∇P}, and thus FC(P) = B(Con(P)) = {∆P ,∇P} ∼= L2.
The following calculations are straightforward, where we are determining the congruences by using Remarks

5.2 and 5.1 (the latter for obtaining Con(E)), and the structure of Con(D), obtained in Example 5.5.
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Con(S) = {∆S, σ1, σ2,∇S}, where σ1 = eq({0}, {a}, {b}, {c}, {x, 1}) and σ2 = eq({0, a, b, c, x}, {1}), hence
B(Con(S)) = Con(S) ∼= L2

2, in which σ2 = ¬σ1. Since (1, b) ∈ σ2 ◦ σ1, but (1, b) /∈ σ1 ◦ σ2, it follows that
σ1 ◦ σ2 6= σ2 ◦ σ1, thus σ1, σ2 /∈ FC(S), so FC(S) = {∆S ,∇S} ∼= L2.

Con(R) = {∆R, ρ1, ρ2, ρ3, ρ4, ρ5, ρ6,∇R}, where ρ1 = eq({0, a, b, c, x}, {y, 1}), ρ2 = eq({0, a, b, c, x, y}, {1}),
ρ3 = eq({0, a, b, c, x}, {y}, {1}), ρ4 = eq({0}, {a}, {b}, {c}}, {x, y, 1}), ρ5 = eq({0}, {a}, {b}, {c}}, {x}, {y, 1}) and
ρ6 = eq({0}, {a}, {b}, {c}}, {x, y}, {1}) and with the lattice structure represented above, hence B(Con(R)) =
Con(R) ∼= L3

2, in which ¬ ρ1 = ρ6, ¬ ρ2 = ρ5 and ¬ ρ3 = ρ4. Now let us notice that (y, b) ∈ ρ1 ◦ ρ6, but
(y, b) /∈ ρ6 ◦ρ1, (1, b) ∈ ρ2 ◦ρ5, but (1, b) /∈ ρ5 ◦ρ2, and (1, b) ∈ ρ3 ◦ρ4, but (1, b) /∈ ρ4 ◦ρ3, hence ρ1 ◦ρ6 6= ρ6 ◦ρ1,
ρ2 ◦ ρ5 6= ρ5 ◦ ρ2 and ρ3 ◦ ρ4 6= ρ4 ◦ ρ3, therefore FC(R) = {∆R,∇R} ∼= L2.

Con(T ) = {∆T , τ1, τ2, τ3, τ4, τ5, τ6,∇T }, where τ1 = eq({0, z, a, b, c, x}, {1}), τ2 = eq({0}, {z, a, b, c, x, 1}),
τ3 = eq({0}, {z, a, b, c, x}, {1}), τ4 = eq({0, z}, {a}, {b}, {c}}, {x, 1}), τ5 = eq({0, z}, {a}, {b}, {c}}, {x}, {1}) and
τ6 = eq({0}, {z}, {a}, {b}, {c}}, {x, 1}) and with the Hasse diagram above, hence B(Con(T )) = Con(T ) ∼= L3

2,
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in which ¬ τ1 = τ6, ¬ τ2 = τ5 and ¬ τ3 = τ4. Now we may notice that (1, 0) ∈ τ1 ◦ τ6, but (1, 0) /∈ τ6 ◦ τ1,
(1, 0) ∈ τ5 ◦ τ2, but (1, 0) /∈ τ2 ◦ τ5, and (1, b) ∈ τ3 ◦ τ4, but (1, b) /∈ τ4 ◦ τ3, hence τ1 ◦ τ6 6= τ6 ◦ τ1, τ2 ◦ τ5 6= τ5 ◦ τ2
and τ3 ◦ τ4 6= τ4 ◦ τ3, therefore FC(T ) = {∆T ,∇T } ∼= L2.

Con(E) = {∆E , ε,∇E} ∼= L3, where ε = eq({0}, {a}, {b, d}, {c}, {1}), hence B(Con(E)) = {∆E ,∇E} ∼= L2,
thus FC(E) = B(Con(E)) = {∆E ,∇E} ∼= L2.

The examples above, together with Remark 2.3 and Lemma 2.8, provide us with many more meaningful
examples: for instance, the finite non–distributive lattice R2 has Boolean congruences that are not factor con-
gruences, and FC(R2) ) {∆R2 ,∇R2}, because, by the above, Con(R2) = B(Con(R2)) ∼= L6

2 and FC(R2) ∼= L2
2;

an example of a finite distributive lattice with these properties is L2 × L3 (see Example 5.5). Another finite
non–distributive lattice with these properties, but which has, furthermore, congruences which are not Boolean
is, for instance, T × E, which has Con(T × E) ∼= L3

2 × L3, B(Con(T × E)) ∼= L4
2 and FC(T × E) ∼= L2

2.

Remark 5.6. Let A and B be congruence–distributive algebras. Then:

(i) Con(A) ∼= Con(B) ⇒ B(Con(A)) ∼= B(Con(B));

(ii) B(Con(A)) ∼= B(Con(B)) ; FC(A) ∼= FC(B);

(iii) Con(A) ∼= Con(B) ; FC(A) ∼= FC(B);

(iv) Con(A) = B(Con(A)) ∼= Con(B) = B(Con(B)) ; FC(A) ∼= FC(B).

Indeed, the first statement is trivial, while Example 5.5 provides us with many counter–examples for the
other implications; for instance, Con(L3

2) = B(Con(L3
2))

∼= Con(L2 × L3) = B(Con(L2 × L3)) ∼= Con(R) =
B(Con(R)) ∼= L3

2, while FC(L3
2)

∼= L3
2, FC(L2 × L3) ∼= L2

2 and FC(R) ∼= L2.

Throughout the rest of this section, A shall be a congruence–distributive algebra and θ ∈ Con(A), unless
mentioned otherwise. The properties on CBLP in the following remarks are known from [15], but we are including
them in these results for the sake of completeness. We shall only prove the statements on FCLP; note that those
on CBLP are easily derivable in the same manner as the ones on FCLP.

Remark 5.7. • ∆A and ∇A have CBLP and FCLP. Indeed, p∆A
: A → A/∆A is an isomorphism, hence,

according to Remark 2.6, FC(A/∆A) = {p∆A
(α) | α ∈ FC(A)} = {α/∆A | α ∈ FC(A)}, and, for all

α ∈ FC(A), FC(∆A)(α) = u∆A
(α) = (α ∨∆A)/∆A = α/∆A, thus FC(∆A) is surjective, that is ∆A has

FCLP. Con(A/∇A) = B(Con(A/∇A)) = FC(A/∇A) = {∇A/∇A} = {∆(A/∇A)} = {∇(A/∇A)} ∼= L1, thus
FC(∇A) : FC(A) → FC(A/∇A) is clearly surjective, that is ∇A has FCLP.

• By the previous statement, if Con(A) = {∆A,∇A}, then A has CBLP and FCLP. Consequently, the trivial
algebra has CBLP and FCLP.

• If FC(A/θ) = {∆A/θ,∇A/θ} (∼= L1 or ∼= L2), then θ has FCLP, because in this case the Boolean morphism
FC(θ) : FC(A) → FC(A/θ) is clearly surjective. This is a generalization of the case θ = ∇A.

• If B(Con(A/θ)) = {∆A/θ,∇A/θ}, then θ has CBLP and FCLP, because in this case the Boolean morphism
B(uθ) is clearly surjective, and we also have FC(A/θ) = {∆A/θ,∇A/θ}, so we can apply the previous
statement.

• If FC(A) = {∆A,∇A}, then: θ has FCLP iff FC(A/θ) = {∆A/θ,∇A/θ}, because FC(θ)({∆A,∇A}) =
{(∆A ∨ θ)/θ, (∇A ∨ θ)/θ} = {θ/θ,∇A/θ} = {∆A/θ,∇A/θ} ⊆ FC(A/θ).

• If B(Con(A)) = {∆A,∇A}, then we also have FC(A) = {∆A,∇A}, so, just as above: θ has CBLP iff
B(Con(A/θ)) = {∆A/θ,∇A/θ}, and θ has FCLP iff FC(A/θ) = {∆A/θ,∇A/θ}, so, if θ has CBLP, then θ
has FCLP.

Remark 5.8. • If B(Con(A)) = FC(A) and θ has CBLP, then: θ has FCLP and B(Con(A/θ)) = FC(A/θ).
Indeed, if B(Con(A)) = FC(A), then FC(θ) = uθ |FC(A)= uθ |B(Con(A))= B(uθ), and FC(A/θ) ⊆

B(Con(A/θ)), thus, if θ has CBLP, so that B(uθ) is surjective, then B(Con(A/θ)) = B(uθ)(B(Con(A))) =
FC(θ)(FC(A)) ⊆ FC(A/θ) ⊆ B(Con(A/θ)), hence FC(θ)(FC(A)) = FC(A/θ), that is FC(θ) is surjective,
which means that θ has FCLP.
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• If B(Con(A)) = FC(A) and B(Con(A/θ)) = FC(A/θ), then: θ has CBLP iff θ has FCLP. Indeed, if
B(Con(A)) = FC(A), then, as above, B(uθ) = FC(θ), hence B(uθ)(B(Con(A))) = FC(θ)(FC(A)), so,
if, moreover, B(Con(A/θ)) = FC(A/θ), then we have the following equivalence: B(uθ)(B(Con(A))) =
B(Con(A/θ)) iff FC(θ)(FC(A)) = FC(A/θ), which means that: B(uθ) is surjective iff FC(θ) is surjective,
that is: θ has CBLP iff θ has FCLP.

• If B(Con(A)) = FC(A) and A has CBLP, then: A has FCLP and B(Con(A/φ)) = FC(A/φ) for all
φ ∈ Con(A). This follows from the first statement in this remark.

• If B(Con(A/φ)) = FC(A/φ) for all φ ∈ Con(A), then: A has CBLP iff A has FCLP. This follows from the
second statement in this remark and the fact that A/∆A

∼= A, hence, by Remark 2.6, B(Con(A/∆A)) =
FC(A/∆A) iff B(Con(A)) = FC(A).

• If B(Con(A)) = Con(A), then A has CBLP and, for all φ ∈ Con(A), B(Con(A/φ)) = Con(A/φ). This is
known from [15], but also follows easily from the fact that, in this case, for all φ ∈ Con(A), B(uθ) = uθ,
which is surjective, according to Remark 2.2.

• If FC(A) = Con(A), then A has CBLP and FCLP and, for all φ ∈ Con(A), FC(A/φ) = B(Con(A/φ)) =
Con(A/φ). Indeed, if FC(A) = Con(A), then, since FC(A) ⊆ B(Con(A)) ⊆ Con(A), it follows that
FC(A) = B(Con(A)) = Con(A), hence, by the previous statement and the first statement in this remark,
A has CBLP, therefore A has FCLP, and, for all φ ∈ Con(A), FC(A/φ) = B(Con(A/φ)) = Con(A/φ).

• If [θ) ⊆ B(Con(A)), then each φ ∈ [θ) has CBLP and fulfills B(Con(A/φ)) = Con(A/φ). This is known
from [15], but can also be derived just as the part on FCLP in the next statement.

• If [θ) ⊆ FC(A), then each φ ∈ [θ) has CBLP and FCLP and fulfills FC(A/φ) = B(Con(A/φ)) = Con(A/φ).
Indeed, if [θ) ⊆ FC(A) ⊆ B(Con(A)) and φ ∈ [θ), then, by the previous statement, φ has CBLP and
B(Con(A/φ)) = Con(A/φ). Furthermore, we have the following: for each γ ∈ FC(A/φ) ⊆ Con(A/φ),
there exists an α ∈ [φ) ⊆ [θ) ⊆ FC(A) such that γ = α/φ = (α ∨ φ)/φ = uφ(α) = FC(φ)(α), thus FC(φ)
is surjective, that is φ has FCLP and, furthermore, FC(A/φ) ⊆ Con(A/φ) ⊆ FC(φ)(FC(A)) = FC(A/φ),
hence FC(A/φ) = Con(A/φ), thus FC(A/φ) = B(Con(A/φ)) = Con(A/φ).

Example 5.9. Let us determine, for the lattices in Example 5.5, as well as each of their congruences, whether
they have CBLP or FCLP. We shall use the calculations in Example 5.5 and the first statement in Remark 5.7.

L2, L3, L
2
2, L

3
2 and L2 × L3 are bounded distributive lattices, hence they have CBLP by Lemma 3.12. L2,

L2
2 and L3

2 are Boolean algebras, hence they have FCLP by Proposition 3.13.
L3/φ ∼= L3/ψ ∼= L2, which has FC(L2) = B(Con(L2)) = Con(L2) ∼= L2, thus, by Remark 2.6: FC(L3/φ) =

B(Con(L3/φ)) = Con(L3/φ) ∼= FC(L3/ψ) = B(Con(L3/ψ)) = Con(L3/ψ) ∼= L2, therefore FC(L3/φ) =
{∆L3/φ,∇L3/φ} and FC(L3/ψ) = {∆L3/ψ,∇L3/ψ}, hence φ and ψ have FCLP by Remark 5.7. Therefore
L3 has FCLP. So L2 and L3 have FCLP, hence L2 × L3 has FCLP by Proposition 3.10.

Con(D) = {∆D,∇D}, thus D has CBLP and FCLP by Remark 5.7. P/α ∼= P/β ∼= L2, hence, just as above,
it follows that α and β have CBLP and FCLP. P/α ∼= L2

2, thus, by Remark 2.6, FC(P/γ) = B(Con(P/γ)) =
Con(P/γ) ∼= L2

2, therefore B(uγ) : B(Con(P)) ∼= L2 → B(Con(P/γ)) ∼= L2
2 and FC(γ) : FC(P) ∼= L2 →

FC(P/γ) ∼= L2
2, hence neither of these Boolean morphisms is surjective, thus γ has neither CBLP, nor FCLP.

Therefore P has neither CBLP, nor FCLP. The fact that D has CBLP, while P does not have CBLP was known
from [15], but we have shown it here, as well, for the sake of completeness.

B(Con(S)) = Con(S), B(Con(R)) = Con(R) and B(Con(T )) = Con(T ), thus S, R and T have CBLP by
Remark 5.8. S/σ1 ∼= D, which has FC(D) = {∆D,∇D}, thus, by Remark 2.6, it follows that FC(S/σ1) =
{∆S/σ1

,∇S/σ1
}, therefore σ1 has FCLP by Remark 5.7. S/σ2 ∼= L2, thus, as above, it follows that σ2 has

FCLP. Therefore S has FCLP, as well. R/ρ1 ∼= R/ρ2 ∼= L2, thus, as above, ρ1 and ρ2 have FCLP. R/ρ3 ∼= L3,
thus, by Remark 2.6, FC(R/ρ3) ∼= FC(L3) ∼= L2, so FC(R/ρ3) = {∆R/ρ3 ,∇R/ρ3}, hence ρ3 has FCLP by
Remark 5.7. R/ρ4 ∼= D, hence, as above, it follows that ρ4 has FCLP. R/ρ5 ∼= R/ρ6 ∼= S, thus, by Remark 2.6,
FC(R/ρ5) ∼= FC(R/ρ6) ∼= FC(S) ∼= L2, so FC(R/ρ5) = {∆R/ρ5 ,∇R/ρ5} and FC(R/ρ6) = {∆R/ρ6 ,∇R/ρ6}, hence
ρ5 and ρ6 have FCLP, by Remark 5.7. Therefore R has FCLP, too. T/τ1 ∼= T/τ2 ∼= L2, T/τ3 ∼= L3, T/τ4 ∼= D
and T/τ5 ∼= S, hence, as above, it follows that τ1, τ2, τ3, τ4 and τ5 have FCLP. T/τ6 is isomorphic to the dual
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of S, hence, by Remark 2.6, FC(T/τ6) ∼= FC(S) ∼= L2, so FC(T/τ6) = {∆T/τ6 ,∇T/τ6}, thus τ6 has FCLP by
Remark 5.7. Therefore T has FCLP, too.

E/ε ∼= D, which has FC(D) = B(Con(D)) = Con(D) = {∆D,∇D}, thus, by Remark 2.6, it follows that
FC(E/ε) = B(Con(E/ε)) = Con(E/ε) = {∆E/ε,∇E/ε}, therefore ε has CBLP and FCLP by Remark 5.7.
Hence E has CBLP and FCLP.

Remark 5.10. • From Corollary 5.3 and Example 5.9, it follows that no ordinal sum of lattices in which
P appears has CBLP or FCLP. This produces both finite and infinite examples of non–modular bounded
lattices which have neither CBLP, nor FCLP. Notice, however, that, according to Example 5.9, the non–
modular bounded lattice E has both CBLP and FCLP.

• See also Example 5.11 below, featuring a modular bounded lattice without FCLP. Concerning the issue
of how to seek for modular bounded lattices without CBLP, note that, by Remark 5.2, the fact that
B(Con(D)) = Con(D), proven in Example 5.5, and Remark 2.6, if n ∈ N∗, L1, . . . , Ln are finite lattices
which are either distributive or isomorphic to D, so that B(Con(Li) = Con(Li) for all i ∈ 1, n, and if
L ∼= L1 ∔ . . .∔ Ln and M ∼= L1 × . . .× Ln, then B(Con(L) = Con(L) and B(Con(M) = Con(M), thus L
and M have CBLP by Remark 5.8 (see also [15]). This holds for infinite ordinal sums and infinite direct
products, as well.

Example 5.11. Now let us see that the implication in Corollary 4.7 does not hold in bounded non–distributive
lattices either. Let us consider the following bounded modular non–distributive lattice: X = L2
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Example 5.5 and Remark 5.2 show that Con(X) = B(Con(X)) = {∆X , ξ1, ξ2, ξ3, ξ4, ξ5, ξ6,∇X} ∼= L3
2,

where ξ1 = eq({0, q}, {p, r, s, t, u, 1}), ξ2 = eq({0, p}, {q, r, s, t, u, 1}), ξ3 = eq({0, p, q, r}, {s}, {t}, {u}, {1}),
ξ4 = eq({0}, {p}, {q}, {r, s, t, u, 1}), ξ5 = eq({0, q}, {p, r}, {s}, {t}, {u}, {1}) and ξ6 = eq({0, p}, {q, r}, {s}, {t},
{u}, {1}). Thus X has CBLP by Remark 5.8. In the Boolean algebra B(Con(X)), ¬ ξ1 = ξ6, ¬ ξ2 = ξ5 and
¬ ξ3 = ξ4. Now, if we notice that (1, 0) ∈ ξ6 ◦ ξ1, ξ5 ◦ ξ2, ξ3 ◦ ξ4 and (1, 0) /∈ ξ1 ◦ ξ6, ξ2 ◦ ξ5, ξ4 ◦ ξ3, and thus
ξ6 ◦ ξ1 6= ξ1 ◦ ξ6, ξ5 ◦ ξ2 6= ξ2 ◦ ξ5 and ξ3 ◦ ξ4 6= ξ4 ◦ ξ3, then we conclude that FC(X) = {∆X ,∇X} ∼= L2. Now
it suffices to observe that X/ξ4 ∼= L2

2, which is a finite Boolean algebra, hence it has FC(L2
2) = B(Con(L2

2)) =
Con(L2

2)
∼= L2

2, therefore we have: FC(ξ4) : FC(X) ∼= L2 → FC(X/ξ4) ∼= L2
2, thus FC(ξ4) is not surjective, that

is ξ4 does not have FCLP, hence X does not have FCLP.

Example 5.12. Now let us see an example of a lattice with FCLP and without CBLP. Let H be the following
non–modular bounded lattice:
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It is easy to obtain, by using Remark 5.1 and the calculations in Example 5.5, that Con(H) = {∆H , χ1, χ2, χ3,
∇H}, with the lattice structure represented above, where χ1 = eq({0, a, b, c, y, z}, {x, 1}), χ2 = eq({0}, {a}, {b},
{c, x}, {y, z, 1}) and χ3 = eq({0}, {a}, {b}, {c}, {x}, {y, z}, {1}). Thus FC(H) = B(Con(H)) = {∆H ,∇H} ∼= L2.
H/χ1

∼= L2 and H/χ2
∼= D, so, just as in Example 5.9, χ1 and χ2 have CBLP and FCLP.

H/χ3 has the Hasse diagram above. Remark 5.1 and Example 5.5 make it easy to obtain that Con(H/χ3) =
B(Con(H/χ3)) = {∆H/χ3

, ν, π,∇H/χ3
} ∼= L2

2, with ν = eq({0/χ3, a/χ3, b/χ3, c/χ3, y/χ3}, {x/χ3, 1/χ3}) and
π = eq({0/χ3}, {a/χ3}, {b/χ3}, {c/χ3, x/χ3}, {y/χ3, 1/χ3}), so with π = ¬ ν. Since (0/χ3, 1/χ3) ∈ π ◦ ν, but
(0/χ3, 1/χ3) /∈ ν ◦ π, it follows that π ◦ ν 6= ν ◦ π, hence FC(H/χ3) = {∆H/χ3

,∇H/χ3
} ∼= L2, so χ3 has FCLP

by Remark 5.7. But B(uH/χ3
) : B(Con(H)) ∼= L2 → B(Con(H/χ3)) ∼= L2

2, thus B(uH/χ3
) is not surjective, that

is χ3 does not have CBLP. Therefore H has FCLP, but it does not have CBLP.

Corollary 5.13. FCLP does not imply CBLP.

Proof. By Example 5.12.

Proposition 5.14. (i) If A has FCLP, then its subalgebras do not necessarily have FCLP. The same goes
for CBLP instead of FCLP.

(ii) The fact that all proper subalgebras of A have FCLP does not imply that A has FCLP.

(iii) The fact that all proper quotient algebras of A have FCLP does not imply that A has FCLP.

Proof. (i) By Example 5.9, E has CBLP and FCLP, although it has sublattices isomorphic to P , which has
neither CBLP, nor FCLP. The fact on CBLP was known from [15].
(ii), (iii) Let L = L2 ∔ L2

2. As pointed out in Remark 4.8, L does not have FCLP. Every proper subalgebra and
every proper quotient algebra of L is isomorphic to one of the Boolean algebras L2 and L2

2, which have FCLP
by Proposition 3.13. For (iii) we can provide a non–distributive example, too: the lattice X in Example 5.11
does not have FCLP, but each of its proper quotient algebras is isomorphic to L2, L

2
2, D or the dual of S from

Example 5.5, and all these lattices have FCLP, by Example 5.9 and the fact that FCLP is self–dual.

Proposition 5.15. (i) Any maximal congruence of A has FCLP and CBLP.

(ii) Any prime congruence of A has FCLP and CBLP.

Proof. The statements on CBLP are known from [15], but also follow from the next arguments.
(i) Let θ ∈ Max(A). Then [θ) = {θ,∇A}, thus Con(A/θ) = {θ/θ,∇A/θ} = {∆A/θ,∇A/θ} since sθ is a bounded
lattice isomorphism, hence FC(A/θ) = B(Con(A/θ)) = {∆A/θ,∇A/θ}, therefore θ has CBLP and FCLP by
Remark 5.7.
(ii) Let θ ∈ Spec(A), α ∈ B([θ)) and β = ¬θα ∈ B([θ)), so that α∩β = θ and α∨β = ∇A. Thus α∩β ⊆ θ hence
α ⊆ θ and β ⊆ θ since θ ∈ Spec(A). But α, β ∈ B([θ)), that is θ ⊆ α and θ ⊆ β. Therefore α = θ or β = θ.
If α = θ, then β = ¬θθ = ∇A; if β = θ, then α = ¬θθ = ∇A. Hence B([θ)) = {θ,∇A}, thus B(Con(A/θ)) =
{θ/θ,∇A/θ} = {∆A/θ,∇A/θ} since B(sθ) is a Boolean isomorphism, so FC(A/θ) = {∆A/θ,∇A/θ}, therefore θ
has CBLP and FCLP by Remark 5.7.

Proposition 5.16. If A is local and its maximal congruence includes all its proper congruences, then A has
FCLP and CBLP.

Proof. The result on CBLP is known from [15]. Assume that Max(A) = {µ} and Con(A) = (µ] ∪ {∇A}. We
shall prove that A is FC–normal. Let φ, ψ ∈ Con(A) such that φ ◦ ψ = ∇A. Assume by absurdum that φ 6= ∇A

and ψ 6= ∇A. Then φ ⊆ µ and ψ ⊆ µ, thus, by the transitivity of µ, ∇A = φ ◦ψ ⊆ µ ◦µ ⊆ µ ( ∇A, so we have a
contradiction. Hence φ = ∇A or ψ = ∇A. We may assume that φ = ∇A, without loss of generality. Let α = ∇A.
Then α ∈ FC(A) and the following hold: φ ∨ α = ∇A ∨∆A = ∇A and ψ ∨ ¬α = ψ ∨ ¬∆A = ψ ∨ ∇A = ∇A.
Therefore A is FC–normal, by Remark 3.19. Hence A has FCLP, by Proposition 3.20.

Corollary 5.17. If A is local and ∇A is finitely generated, then A has FCLP and CBLP.

Proof. The result on CBLP is known from [15], but also follows from the next argument. It is well known ([4])
and straightforward that, if ∇A is finitely generated, then any proper congruence of A is included in a maximal
congruence of A. Now apply Proposition 5.16.
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Corollary 5.18. If A is local and finite, then A has FCLP and CBLP.

Proof. If A is finite, then ∇A = A2 is finite and thus finitely generated. Now apply Corollary 5.17.
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[29] C. Mureşan, Characterization of the Reticulation of a Residuated Lattice, Journal of Multiple–valued Logic
and Soft Computing 16, No. 3–5 (2010), Special Issue: Multiple–valued Logic and Its Algebras, 427–447.
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