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José Gil-Férez
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Abstract. Paraconsistent Weak Kleene logic (PWK) is the 3-valued logic with two des-

ignated values defined through the weak Kleene tables. This paper is a first attempt to

investigate PWK within the perspective and methods of abstract algebraic logic (AAL).

We give a Hilbert-style system for PWK and prove a normal form theorem. We exam-

ine some algebraic structures for PWK, called involutive bisemilattices, showing that they

are distributive as bisemilattices and that they form a variety, IBSL, generated by the

3-element algebra WK; we also prove that every involutive bisemilattice is representable

as the P�lonka sum over a direct system of Boolean algebras. We then study PWK from

the viewpoint of AAL. We show that IBSL is not the equivalent algebraic semantics of

any algebraisable logic and that PWK is neither protoalgebraic nor selfextensional, not

assertional, but it is truth-equational. We fully characterise the deductive filters of PWK

on members of IBSL and the reduced matrix models of PWK. Finally, we investigate

PWK with the methods of second-order AAL—we describe the class Alg(PWK) of PWK-

algebras, algebra reducts of basic full generalised matrix models of PWK, showing that

they coincide with the quasivariety generated by WK—which differs from IBSL—and

explicitly providing a quasiequational basis for it.

Keywords: Paraconsistent Weak Kleene Logic, Three-valued logics, Bisemilattices, P�lonka

sums, Abstract algebraic logic.

1. Introduction

In his Introduction to Metamathematics [26, § 64], S.C. Kleene distinguishes
between a “strong sense” and a “weak sense” of propositional connectives
when partially defined predicates are present. Each of these meanings is
made explicit via certain 3-valued truth tables, which have become widely
known as strong Kleene tables and weak Kleene tables, respectively. If the
elements of the base set are labelled as 0, 1/2, 1, the strong tables for con-
junction, disjunction and negation are displayed below:
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∧ 0 1/2 1

0 0 0 0
1/2 0 1/2 1/2

1 0 1/2 1

∨ 0 1/2 1

0 0 1/2 1
1/2 1/2 1/2 1

1 1 1 1

¬
1 0

1/2 1/2

0 1

The weak tables for the same connectives, on the other hand, are given by:

∧ 0 1/2 1

0 0 1/2 0
1/2 1/2 1/2 1/2

1 0 1/2 1

∨ 0 1/2 1

0 0 1/2 1
1/2 1/2 1/2 1/2

1 1 1/2 1

¬
1 0

1/2 1/2

0 1

Each set of tables naturally gives rise to two options for building a many-
valued logic, depending on whether we choose to consider only 1 as a desig-
nated value, or 1 together with the “middle” value 1/2. Thus, there are four
logics in the Kleene family:1

• Strong Kleene logic [26, § 64], given by the strong Kleene tables with 1
as a designated value;

• The Logic of Paradox, LP [33], given by the strong Kleene tables with
1, 1/2 as designated values;

• Bochvar’s logic [6], given by the weak Kleene tables with 1 as a desig-
nated value;

• Paraconsistent Weak Kleene logic, PWK [21,35], given by the weak
Kleene tables with 1, 1/2 as designated values.

The first three logics have all but gone unnoticed by mathematicians,
philosophers, and computer scientists. Strong Kleene logic has applications
in artificial intelligence as a model of partial information [1] and nonmono-
tonic reasoning [39], and in philosophy as a bedrock logic for Kripke’s theory
of truth and other related proposals [14]; the theory of Kleene algebras,
moreover, has stirred a considerable amount of interest in general algebra
[27]. LP has been fervently supported by Graham Priest in the context of a
dialetheic approach to the truth-theoretical and set-theoretical paradoxes,
and has enjoyed an enduring popularity that made it the object of intense

1Here we treat the expression “Kleene family” informally and we do not intend to be
exhaustive. There are other logics that could also be considered within the family of Kleene
logics, defined by using two or more of these matrices (see for instance [16]).
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study both on the proof-theoretical and on the semantical level [34]. And
even Bochvar’s logic, while not the biggest game in the 3-valued town, is
still touched on in several papers and books (see e.g. [4, Ch. 5]).

In terms of sheer impact, PWK is the “ugly duckling” in the family of
Kleene logics. Essentially introduced by Halldén [21] and, in a completely
independent way, by Prior [35], it is often passed over in silence in the
main reviews on finite-valued logics. Most of the extant literature concerns
the philosophical interpretation of the third value [3,7,13,21,40] and a dis-
cussion of the so-called contamination principle (any sentence containing
a subsentence evaluated at 1/2 is itself evaluated at 1/2), as well as proof
systems of various kinds [3,10,11,15]. An important study on PWK as a
consequence relation is [9], to be analysed later in this paper. It has also
been noticed early on that the negation and constant-free reduct of the 3-
element algebra WK, which is defined by the weak Kleene tables, is an
instance of a distributive bisemilattice, a notion on which there is a burgeon-
ing literature (see the references in Section 3.2 below)—actually, the variety
of distributive bisemilattices is generated by this reduct. Yet, despite this
intriguing connection to algebra, virtually no paper has viewed PWK in the
perspective of Algebraic Logic.2 A partial exception is [15], but a careful
assessment of the results in this paper is made difficult by issues with the
similarity type of the algebras and logics it considers, and by the authors’
failure to adopt the language and concepts of mainstream abstract algebraic
logic (AAL).

The aim of this paper is to give a contribution towards filling this gap,
so as to surmise that the ugly duckling might actually be a gorgeous swan.
In Section 2 we introduce PWK formally, give a Hilbert-style system for
it, and prove a normal form theorem. In Section 3 we provide our readers
with the necessary background on the important algebraic construction of
P�lonka sums and on bisemilattices. In Section 4 we examine some algebraic
structures for PWK, called involutive bisemilattices. Among other results,
we show that involutive bisemilattices are always distributive as bisemi-
lattices, that WK generates the variety IBSL of involutive bisemilattices,
and that every involutive bisemilattice is representable as the P�lonka sum
over a direct system of Boolean algebras; moreover, we axiomatise relative
to IBSL its nontrivial subvarieties, namely, Boolean algebras and lower-

2This makes a sharp contrast with LP, which has been thoroughly studied under this
aspect [36,38].



256 S. Bonzio et al.

bounded semilattices. Finally, in Section 5, we study PWK by recourse
to the toolbox of AAL. We show that IBSL is not the equivalent alge-
braic semantics of any algebraisable logic and that PWK is neither pro-
toalgebraic nor selfextensional, nor assertional, but it is truth-equational.
We fully characterise the deductive filters of PWK on members of IBSL
and the reduced matrix models of PWK. Finally, we investigate PWK
with the methods of second-order AAL—we describe the intrinsic variety
of PWK, V(PWK), and the classes Alg*(PWK) and Alg(PWK). We prove
that Alg*(PWK) � Alg(PWK) � V(PWK) = IBSL, Alg*(PWK) is not a
generalised quasivariety, while Alg(PWK) is the quasivariety generated by
WK, and explicitly provide a quasiequational basis for it.

2. Paraconsistent Weak Kleene Logic

We start by fixing some terms and notation. Given a similarity type ν, the
absolutely free algebra Fm of type ν over a countably infinite set X of gener-
ators will be called the formula algebra of type ν; its members will be equiv-
alently called ν-terms or ν-formulas (with ν suppressed when clear from
the context) and referred to by the symbols t, s, . . . or α, β, . . . Members
of X will be called (propositional) variables and referred to by the symbols
x, y, . . . or p, q, . . . Ordered pairs of ν-formulas are called ν-equations, and
will be written in the form α ≈ β instead of 〈α, β〉. A logic of type ν is a
pair L = 〈Fm,�L〉, where Fm is the formula algebra of type ν, and �L is a
substitution-invariant consequence relation over Fm.

2.1. Preliminaries

As we hinted in our introduction, Paraconsistent Weak Kleene logic can be
semantically defined as the logic PWK = 〈Fm1,�PWK〉, where:

• Fm1 is the formula algebra of type (2, 2, 1, 0, 0), namely, of the type
containing the connectives ∧,∨,¬, 0, 1;

• PWK is the matrix3 〈WK, {1, 1/2}〉, where WK is the algebra whose
universe is {1, 1/2, 0} and whose operations are given by the following
tables:

3The concepts of logical matrix and matrix consequence are defined in Section 5.1.
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∧ 0 1/2 1

0 0 1/2 0
1/2 1/2 1/2 1/2

1 0 1/2 1

∨ 0 1/2 1

0 0 1/2 1
1/2 1/2 1/2 1/2

1 1 1/2 1

¬
1 0

1/2 1/2

0 1

Thus, for every Γ ∪ {α} ⊆ Fm1,

Γ �PWK α ⇐⇒ for every valuation v on WK,

v[Γ] ⊆ {1/2, 1} implies v(α) ∈ {1/2, 1}.

Since PWK is a finite matrix, the logic PWK is finitary, i.e., Γ �PWK α if
and only if there is a finite subset Δ ⊆ Γ such that Δ �PWK α. Moreover, the
matrix 〈B2, {1}〉, where B2 is the 2-element Boolean algebra, is a submatrix
of PWK, and therefore PWK is included in classical propositional logic, CL.
In spite of the fact that PWK is actually weaker than CL, as we will see,
both logics have the same theorems. Indeed, if �PWK α, then there is a
valuation v on WK such that v(α) = 0. Without loss of generality, we can
assume that v sends the variables that are not in α to 0. By looking at the
tables, it is easy to see that for every variable p in α, v(p) 
= 1/2, whence v
is actually a valuation on B2 such that v(α) = 0. Thus, �CL α.

PWK has been thoroughly investigated by Ciuni and Carrara in [9], where
a characterisation theorem for PWK is proved.4

Theorem 1 ([9, Thm. 14]). For all Γ∪{α} ⊆ Fm1, we have that Γ �PWK α
if and only if there is a finite (possibly empty) subset Δ ⊆ Γ such that
var(Δ) ⊆ var(α) and Δ �CL α.

The preceding theorem has this immediate consequence:

Corollary 2. If α and β are two formulas of Fm1 such that var(α) =
var(β), then

α ��PWK β ⇐⇒ α ��CL β.

2.2. An Axiomatisation of PWK

Existing proof systems for PWK or for some of its linguistic variants include
sequent calculi [11] and tableaux systems [3,10,15]. In what follows, we
present a more traditional Hilbert system for this logic. More precisely, we
introduce a new logic HPWK by means of a Hilbert-style calculus and then

4For special cases of the next Theorem, see also [29] or [11, Thm. 8].
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show that HPWK exactly coincides with PWK. Throughout the rest of this
paper, α → β is used as shorthand for ¬α ∨ β.

Definition 3. HPWK is the logic 〈Fm1,�HPWK〉, where �HPWK is the
derivability relation of the deductive system with the following axioms and
inference rules:

A1. (α ∨ α) → α;

A2. α → (α ∨ β);

A3. (α ∨ β) → (β ∨ α);

A4. (α → β) → ((γ ∨ α) → (γ ∨ β));

A5. (α ∧ β) → ¬(¬α ∨ ¬β);

A6. ¬(¬α ∨ ¬β) → (α ∧ β);

A7. α → 1;

A8. 0 → α;

α α → β
[RMP] provided that var(α) ⊆ var(β).

β

Henceforth, we ambiguously use HPWK both for the logic we just defined
and for the Hilbert calculus that yields its consequence relation. Notice that
the only difference between HPWK and CL is the proviso that constrains
Modus Ponens (RMP means Restricted Modus Ponens).5 It is immediate to
check that PWK fails to satisfy Modus Ponens but satisfies this restricted
version. This is in contrast with LP, where not even RMP is valid, since
p, p → (p∧ q) �LP p∧ q. Because of this inferential restriction, HPWK turns
out to be weaker than CL. Nevertheless, we prove in the next proposition
that both logics have the same theorems.

Proposition 4. For any α ∈ Fm1, �HPWK α if and only if �CL α.

Proof. If �HPWK α, then there is a proof D of α that uses only the axioms
(A1)–(A8) and RMP. Since (A1)–(A8) are classical theorems, and RMP is
an instance of the usual Modus Ponens, D also counts as a proof of α in the
deductive system for CL given by (A1)–(A8) and Modus Ponens.

5Actually, there is nothing special about our choice of the axioms (A1)–(A8)—we could
have picked any other set of axioms that, together with Modus Ponens, yields a complete
Hilbert system for CL, with the caveat that the working language is ∧, ∨, ¬, 0, 1; see [22],
[23], or [24] concerning the importance of the language when choosing a certain set of
axioms for a particular logic.
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All we have to prove now is that we can transform any proof D =
〈α1, . . . , αn〉 of α in this deductive system for CL into another proof that
only uses RMP. We will proceed by induction on the length n of D. If n = 1,
then α = α1 is an axiom, and there is nothing to prove. Let us now assume
that n > 1, and that α = αn follows from αi and αj = αi → α by Modus
Ponens, with i, j < n. By the induction hypothesis, we have proofs of αi

and αj in HPWK. Let 〈β1, . . . , βm〉 be the result of concatenating these two
proofs, in such a way that βs = αi and βm = αj = αi → α = βs → α.
This is still a proof in HPWK. Consider a substitution σ fixing all the vari-
ables of α and sending all the variables of β1, . . . , βm that are not contained
among the variables of α to some particular variable of α (or to 0, if α
has no variable). Thus, 〈σ(β1), . . . , σ(βm)〉 is still a proof in HPWK. Now,
σ(βm) = σ(βs → α) = σ(βs) → σ(α) = σ(βs) → α, since σ fixes the
variables of α. Moreover, var(σ(βs)) ⊆ var(α), by our choice of σ. There-
fore, α follows by an application of RMP to σ(βs) and σ(βm), and thus
〈σ(β1), . . . , σ(βm), α〉 is a proof of α in HPWK.

One can readily see that PWK fails conjunction elimination in general
and, in particular, absorption, i.e., α∧ (α∨β) �PWK α. Nonetheless, we can
derive in HPWK certain linguistic restrictions of conjunction elimination
and a further weak form of Modus Ponens. All these features of the logic
have algebraic counterparts, as we will see in Section 4.

Proposition 5. The following rules are derivable in HPWK:

α ∧ β
[∧E1] if var(β) ⊆ var(α);

α

α β
[∧I] ;

α ∧ β

α ∧ β
[∧E2] if var(α) ⊆ var(β);

β

α ∧ (α → β)
[WMP] .

α ∧ β

Proof. If var(β) ⊆ var(α), then

α ∧ β

...[Prop. 4]
α ∧ β → α

[RMP]
α

This shows that ∧E1 is derivable, and the proof for ∧E2 is similar. For ∧I,
we have:



260 S. Bonzio et al.

β

α

...[Prop. 4]
α → (β → α ∧ β)

[RMP]
β → α ∧ β

[RMP]
α ∧ β

The derivability of WMP is a straightforward consequence of the fact that
(α ∧ (α → β)) → (α ∧ β) is a theorem of CL and var(α ∧ (α → β)) = var
(α ∧ β).

Notice that, in the presence of ∧I, WMP is indeed a weak form of Modus
Ponens. The consequent of WMP cannot be replaced by β, since this would
imply an unrestricted conjunction elimination. Actually, a kind of converse
to the previous proposition is available, whence the axioms (A1)–(A8) and
rules ∧I, WMP, ∧E2 provide an alternate axiomatisation of HPWK.

Proposition 6. The rule RMP is derivable in any deductive system includ-
ing the rules ∧I, WMP and ∧E2.

Proof. If var(α) ⊆ var(β), RMP is derivable as follows:

α α → β
[∧I]

α ∧ (α → β)
[WMP]

α ∧ β
[∧E2]

β

We are now ready to show that HPWK yields a Hilbert-style axiomati-
sation of PWK.

Theorem 7. HPWK = PWK.

Proof. It is easy to check, by direct inspection, that for every axiom α
of HPWK and for every valuation v on WK, v(α) ∈ {1, 1/2}. Moreover, if
var(α) ⊆ var(β) and v is a valuation such that v(β) = 0, then v(p) 
= 1/2 for
every p ∈ var(β), and hence for every p ∈ var(α). Therefore, v(α) ∈ {0, 1}.
Thus, if v(α) = 1, then v(α → β) = 0. This proves that the rule RMP is
sound with respect to �PWK. Therefore, Σ �HPWK α implies Σ �PWK α.

For the other direction, suppose that Σ �PWK α. By Theorem 1, there is
a finite subset Δ ⊆ Σ such that Δ �CL α and var(Δ) ⊆ var(α). If Δ = ∅,
then �HPWK α, by virtue of Proposition 4, whereby we get Σ �HPWK α.
Otherwise, let Δ = {α1, . . . , αn}. By the Deduction Theorem, �CL α1 →
(α2 → (· · · → (αn → α) · · · )). Thus, �HPWK α1 → (α2 → (· · · → (αn →
α) · · · )), by Proposition 4, and since var(α1, . . . , αn) ⊆ var(α), by several
applications of RMP we obtain {α1, . . . , αn} �HPWK α, so Σ �HPWK α.
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Hereafter, the label PWK will refer to the logic that is the object of
Theorem 7, irrespective of its syntactic or semantic characterisation, and
�PWK will be used as a symbol for its consequence relation.

To round off this section, we establish a normal form theorem for PWK.
As usual, a literal is either a variable or the negation of such, and a disjunc-
tive clause is a (finite) disjunction of literals. The Conjunctive Normal Form
(CNF) Theorem for CL ensures that every formula is interderivable with a
conjunction of disjunctive clauses. By using the deduction theorem for CL
and the rule RMP, we can prove that such a theorem holds for PWK as well.
But this result is of little avail, since in PWK conjunction does not simplify
and then we cannot replicate, the classical proof that leads from the CNF
theorem to the fact that every formula is interderivable with the set of the
disjunctive clauses of its conjunctive normal form. To make some headway,
we need to relax the notion of clause in such a way as to take good care of
the variables involved. An elementary contradiction is a formula of the form
p ∧ ¬p, where p is a variable. A clause is a finite disjunction of literals and
elementary contradictions.

Proposition 8. Every formula α with variables is interderivable in PWK
with a conjunction of clauses β1, . . . , βn such that, for every i, var(βi) =
var(α). Moreover, α is interderivable in PWK with the set of the clauses of
its conjunctive normal form, that is

α ��PWK {β1, . . . , βn}.

Proof. Let γ1 ∧ · · · ∧ γn be a conjunctive normal form of α in CL. Thus,
every γi is a finite disjunction of literals. The classical theorem also ensures
that the variables of the normal form are the same as the variables of α. For
every i, let βi = γi∨(pi1∧¬pi1)∨· · ·∨(pimi

∧¬pimi
), where {pi1, . . . , pimi

} is
the set of variables of α that are missing in γi. It is obvious that βi ��CL γi,
and therefore α ��CL β1∧· · ·∧βn. Thus, since var(α) = var(β1∧· · ·∧βn), by
Corollary 2 we have that α ��PWK β1 ∧ · · · ∧βn. Finally, since the variables
of every clause are always the same, several applications of ∧E1, ∧E2, and
∧I would give us that β1 ∧ · · · ∧ βn ��PWK {β1, . . . , βn}, and we are done
with our proof.

3. P�lonka Sums and Bisemilattices

3.1. P�lonka Sums

In the late 1960’s, J. P�lonka [30,32] devised a powerful construction whereby
one can represent algebras meeting particular requirements as sums of a
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certain kind of algebras with stronger properties, in such a way as to en-
able transfer of important information from the summands onto the sum. A
P�lonka sum of a system of algebras is, in a sense, a fibration indexed by a
join semilattice and whose fibres are the algebras of the system. Thus, one
can think of it as a new algebra within which the algebras of the system live
separately. Here, we briefly abridge the main ingredients of this method.

A direct system of algebras consists of a compatible family of homomor-
phism of algebras of the same type indexed by a join semilattice,6 that is, a
pair T = 〈(ϕij : i � j), I〉 such that:

1. I = 〈I,�〉 is a join semilattice;

2. ϕij : Ai → Aj is a homomorphism, for each i � j, satisfying that ϕii is
the identity in Ai and ϕjk ◦ ϕij = ϕik;

3. If i, j ∈ I are different, then Ai and Aj are disjoint.7

If T = 〈(ϕij : i � j), I〉 is a direct system of algebras of type ν, then the
P�lonka sum over T is the algebra T = 〈

⋃
I Ai, {gT : g ∈ ν}〉, where each gT

is defined as follows: for every n-ary g ∈ ν, and a1, . . . , an ∈ T , where n � 1
and ar ∈ Air , we set j = i1 ∨ · · · ∨ in and define

gT(a1, . . . , an) = gAj (ϕi1j(a1), . . . , ϕinj(an)).

In case ν contains constants, we need to assume that I is actually a semi-
lattice with a bottom element ⊥. In that case, for every constant g ∈ ν, we
define gT = gA⊥ .

Example 9. Let Ai = B2 (the 2-element Boolean algebra), and let Aj

and Ak be isomorphic copies of the 4-element Boolean algebra, with their
elements labelled as follows:

Aj =
8

6 3

2

Ak =
9

7 5

4

Let I be the partial order with three elements i < j < k, and T the directed
system over I in which the only nontrivial homomorphism is ϕjk : Aj → Ak,
given by ϕjk(3) = 4 (and therefore ϕjk(6) = 9). Hence the P�lonka sum T
over this direct system is given by the following diagram, where arrows

6Actually, direct systems are in general defined over posets with the property that any
two elements have an upper bound, but we are interested only in those that are indexed
by a join semilattice.

7This is just a technical requirement that simplifies the proofs, but not a true restriction.
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describe the behaviour of negation and the other lines describe the order
given by the operation ∨T:

9

8 7 5

1 4

6 3

2

0

It turns out that P�lonka sums are importantly related to the presence of
certain functions on the algebras that are to be represented. Let in fact A
be a ν-algebra. A function f : A2 → A is a partition function in A if the
following conditions are satisfied for all a, b, c, ai ∈ A and for all g ∈ ν of
arity n � 1, and every constant8 h ∈ ν:

P1. f(a, a) = a;

P2. f(a, f(b, c)) = f(a, f(c, b)) = f(f(a, b), c);

P3. f(g(a), b) = g(f(a1, b), . . . , f(an, b));

P4. f(b, g(a)) = f(b, g(f(b, a1), . . . , f(b, an)));

P5. g(a) = f(g(a), ai) for 1 � i � n;

P6. f(a, g(a, . . . , a)) = a;

P7. f(a, hA) = a.

If A is such that f is a partition function in A, the relation θ ⊆ A2

defined as follows:

a θ b ⇐⇒ f(a, b) = a and f(b, a) = b,

is an equivalence on A such that if (Ai : i ∈ I) is the family of the equivalence
classes in A/θ, then for every i ∈ I, Ai is the universe of an algebra of
the same type—called a P�lonka fibre of A—in which all the nonnullary
operations are defined as the restrictions of the corresponding ones of A,
and for every constant h ∈ ν, hAi = f(hA, b), where b ∈ Ai is an arbitrary

8The solution suggested by P�lonka in [30] of considering constants as unary operations
actually does not work, and a slight modification of the notion of a partition function is
needed in order to accommodate algebras with constants in their types. Indeed, adding
condition (P7) to P�lonka’s definition solves the problem.
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element. Upon defining, for i, j ∈ I, i � j if and only if there exist a ∈
Ai, b ∈ Aj such that f(b, a) = b, and ϕij(a) = f(a, b), where b is arbitrary
in the fibre Aj , I = 〈I,�〉 becomes a join semilattice, the pair

T = 〈(ϕij : i � j), I〉
a direct system, and the P�lonka sum over T is a representation of A. Thus,
if V is a variety of type ν, t is a binary term of the same type, A ∈ V and

V ′ = Mod(Eq(V) ∪ {t(x, y) ≈ x}),

whenever the term operation tA is a partition function in A, the above
construction yields a P�lonka sum representation of A, whose fibres belong
to V ′. Conversely, it can be checked that if A is isomorphic to the P�lonka
sum over a direct system of algebras from V ′, tA is a partition function in
A. In sum, we obtain:

Theorem 10 ([30, Thm. III]). Let V be a variety of type ν, let t be a binary
term of the same type, and let A ∈ V. Moreover, let

V ′ = Mod(Eq(V) ∪ {t(x, y) ≈ x}).

Then tA is a partition function in A if and only if A is isomorphic to the
P�lonka sum over a direct system of algebras from V ′.

Recall that an equation t ≈ s in a given type is regular if the terms t
and s have the same variables. We make a note of the following remarkable
property of P�lonka sums.

Lemma 11 ([30, Thm. I]). Let T be the P�lonka sum over a direct system
T = 〈(ϕij : i � j), I〉.
1. If a regular equation t ≈ s is satisfied in every algebra of the system, it

is also satisfied in T.

2. If an equation t ≈ s is satisfied in T, then it is satisfied in every algebra
of the system. Moreover, if I has at least two elements, then t ≈ s is a
regular equation.

3.2. Bisemilattices

Bisemilattices (also called quasi-lattices in the literature) were introduced
by J. P�lonka in [31] as a common generalisation of lattices and semilattices,
and also as the motivating example for his direct system construction of
the previous subsection. Over the years, they attracted the attention of
such algebraists as Balbes, Kalman, and Romanowska. Outstanding papers
about bisemilattices include [2,20,25,28].
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A bisemilattice is an algebra A = 〈A,∧,∨〉 of type (2, 2) such that the
reducts 〈A,∧〉 and 〈A,∨〉 are semilattices. It is called distributive in case
∧ distributes over ∨ and ∨ distributes over ∧. A bisemilattice, in other
words, falls short of being a lattice in that the absorption identities may fail.
It is readily seen that the negation and constant-free reduct WK0 of the
algebra WK is a distributive bisemilattice, and clearly every (distributive)
lattice is a (distributive) bisemilattice. Semilattices can be identified with
bisemilattices satisfying the identity x ∧ y ≈ x ∨ y, and of course they are
distributive.

The variety of bisemilattices will be denoted by BSL, while DBSL will
refer to the distributive subvariety of BSL. Hereafter, we will mainly focus
on DBSL, although some of the results that follow also hold for the larger
variety BSL.

Although full absorption fails to hold in DBSL, appropriate restrictions
of this principle are indeed satisfied:

Lemma 12. Every distributive bisemilattice satisfies the following identities:

x ∨ y ∨ (x ∧ y) ≈ x ∨ y;

x ∧ y ∧ (x ∨ y) ≈ x ∧ y;

x ∨ (x ∧ y) ∨ (y ∧ z) ≈ x ∨ (y ∧ z);

x ∧ (x ∨ y) ∧ (y ∨ z) ≈ x ∧ (y ∨ z).

Recall that a left normal band is an idempotent semigroup satisfying the
identity xyz ≈ xzy. Upon defining x � y = x ∨ (x ∧ y), every A ∈ DBSL
has a left normal band term reduct 〈A,�〉. Moreover, in every distributive
bisemilattice A = 〈A,∧,∨〉, the relations

a � b ⇐⇒ a ∨ b = b and a �′ b ⇐⇒ a ∧ b = a

are both semilattice orderings of A. These partial orders coincide if and only
if A is a distributive lattice, and are dual to each other if and only if A is
a semilattice.

The variety DBSL is generated by the 3-element algebra WK0. In fact:

Theorem 13. [25] The only nontrivial subdirectly irreducible distributive
bisemilattices are:

• WK0;

• the 2-element distributive lattice D2;

• the 2-element semilattice S2.

Since D2,S2 � WK0, then DBSL = V(WK0).
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Thus, the only nontrivial subvarieties of DBSL are the variety DL =
V(D2) of distributive lattices, axiomatised relative to DBSL by the equation
x � y ≈ x, and the variety SL = V(S2) of semilattices, axiomatised relative
to DBSL by the equation x ∧ y ≈ x ∨ y, or equivalently by x � y ≈ y � x.

If A is a distributive bisemilattice, g(a, b) = a � b is a partition function
in A, whence Theorem 10 applies and we have that:

Theorem 14 ([31, Thm. 3]). Any distributive bisemilattice is isomorphic to
the P�lonka sum over a direct system of distributive lattices.

Recalling the concept of regular identity from the previous subsection,
Theorem 14 and Lemma 11 readily imply that:

Theorem 15. DBSL is the variety satisfying exactly the regular (2, 2)-
identities satisfied by DL.

4. Involutive Bisemilattices

In this section, we attempt to identify a suitable candidate to play the role
of an algebraic counterpart of the logic PWK. The first obvious desideratum
that any such class of algebras has to meet is the presence, in its type, of an
operation symbol for negation. In [15] Finn and Grigolia, and independently
Brzozowski in [8], introduce, under the same name of De Morgan bisemilat-
tices, an expansion of DBSL by an involutive negation operation that obeys
the De Morgan laws. It turns out that this concept is too weak in several
respects for our needs, for it does not retain enough of the Boolean struc-
ture of WK. As a consequence, here we go for a stronger notion—called
involutive bisemilattice—that satisfies an additional constraint, namely I6,
an algebraic counterpart of weak Modus Ponens, WMP (see Proposition 5).

4.1. Definition and Basic Results

Definition 16. An involutive bisemilattice is an algebra B=〈B,∧,∨,¬, 0, 1〉
of type (2, 2, 1, 0, 0) satisfying:

I1. x ∨ x ≈ x;

I2. x ∨ y ≈ y ∨ x;

I3. x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z;

I4. ¬¬x ≈ x;

I5. x ∧ y ≈ ¬(¬x ∨ ¬y);

I6. x ∧ (¬x ∨ y) ≈ x ∧ y;
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I7. 0 ∨ x ≈ x;

I8. 1 ≈ ¬0.

Thus, the class of involutive bisemilattices is an equational class, which we
denote by IBSL.

One can readily see that every involutive bisemilattice has, in particular,
the structure of a join semilattice with zero, by virtue of axioms (I1)–(I3)
and (I7). More than that, the negation and constant-free reduct of an ar-
bitrary involutive bisemilattice is a bisemilattice, whence the label we have
chosen is not a misnomer. Notice that, by virtue of axioms (I5) and (I8),
the operations ∧ and 1 are completely determined by ∨, ¬, and 0.

Example 17. Every Boolean algebra, in particular the 2-element Boolean
algebra B2, is an involutive bisemilattice. Also, the 2-element semilattice
with zero, which we continue to call S2 with a slight abuse, endowed with
identity as its unary fundamental operation, is an involutive bisemilattice.
But our example of primary interest is the algebra WK. Upon considering
the partial order � induced by join in its bisemilattice reduct, it becomes a
3-element chain with 1/2 = ¬1/2 as its top element. We can represent these
algebras by means of the following diagrams (the dashes represent the order
induced by join, while the arrows represent the negation):

B2 =
1

0

S2 =
a

1 = 0

WK =

1/2

1

0

It is not difficult to check that every involutive bisemilattice has also the
structure of a meet semilattice with 1, and that the equations

x ∨ y ≈ ¬(¬x ∧ ¬y) (I9)

x ∨ y ≈ x ∨ (¬x ∧ y) (I10)

are satisfied. In fact, given B ∈ IBSL and a, b ∈ B,

a ∨ b = ¬¬(¬¬a ∨ ¬¬b) = ¬(¬a ∧ ¬b),

by virtue of (I4) and (I5), and

a ∨ (¬a ∧ b) = ¬(¬a ∧ ¬(¬a ∧ b)) = ¬(¬a ∧ ¬(¬¬¬a ∧ ¬¬b))

= ¬(¬a ∧ (¬¬a ∨ ¬b)) = ¬(¬a ∧ ¬b) = a ∨ b,

by virtue of (I4), (I6), and (I9). Notice that (I9) and (I10) are the result of
swapping ∨ and ∧ in axioms (I5) and (I6), respectively. Given any property
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(P ) of type (2, 2, 1, 0, 0), we call the property (P ′) that results from swapping
∨ and ∧, as well as 0 and 1, the dual of (P ). Hence, we can establish the
following duality principle:

Proposition 18. Given an involutive bisemilattice B = 〈B,∧,∨,¬, 0, 1〉,
the algebra B∂ = 〈B,∨,∧,¬, 1, 0〉 is also an involutive bisemilattice, and
moreover the map ¬ : B → B∂ is an isomorphism. Therefore, given any
property (P ) in the language {∧,∨,¬, 0, 1}, we have that (P ) is true in all
involutive bisemilattices if and only if its dual property (P ′) is also such.

Proposition 18 is a very useful tool, since it entitles us to spare ourselves
the trouble of proving half of the equations that are valid in all involutive
bisemilattices. We will use it without any further mention.

Proposition 19. In every involutive bisemilattice B the following equations
are satisfied:

1. x ∨ (x ∧ y) ≈ x ∨ (y ∧ ¬y);

2. (x ∧ ¬x) ∨ ¬(x ∧ ¬x) ≈ x ∨ ¬x;

3. x ∨ (x ∧ y) ≈ x ∧ (x ∨ y);

4. x ∨ (y ∧ z) ≈ x ∨ ((x ∨ y) ∧ z).

Proof. Let a, b, c ∈ B. Then:

(1) a ∨ (a ∧ b) = a ∨ (¬a ∧ a ∧ b) (I10)

= a ∨ (¬a ∧ (a ∨ ¬b) ∧ b) (I6)

= a ∨ (¬a ∧ ¬b ∧ b) (I6)

= a ∨ (¬b ∧ b) (I10)

= a ∨ (b ∧ ¬b)

(2) (a ∧ ¬a) ∨ ¬(a ∧ ¬a) = (a ∧ ¬a) ∨ ¬a ∨ a

= a ∨ (¬a ∧ a) ∨ ¬a

= a ∨ a ∨ ¬a (I10)

= a ∨ ¬a

(3) a ∨ (a ∧ b) = a ∨ (b ∧ ¬b) Prop. 19.(1)

= (a ∨ (b ∧ ¬b)) ∧ (a ∨ (b ∧ ¬b))

= (a ∨ (b ∧ ¬b)) ∧ (a ∨ (b ∧ ¬b) ∨ (b ∧ ¬b))

= (a ∨ (b ∧ ¬b)) ∧ ((b ∧ ¬b) ∨ ¬(b ∧ ¬b)) Prop.19.(1)

= (a ∨ (b ∧ ¬b)) ∧ (b ∨ ¬b) Prop.19.(2)
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= (b ∨ ¬b) ∧ (a ∨ ¬(b ∨ ¬b))

= a ∧ (b ∨ ¬b) (I6)

= a ∧ (a ∨ b) Prop.19.(1)

(4) a ∨ (b ∧ c) = a ∨ (¬a ∧ b ∧ c) (I10)

= a ∨ (¬a ∧ (a ∨ b) ∧ c) (I6)

= a ∨ ((a ∨ b) ∧ c) (I10)

Proposition 20. If B = 〈B,∧,∨,¬, 0, 1〉 is an involutive bisemilattice, then
〈B,∧,∨〉 is a distributive bisemilattice, that is, the equation

x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z)

and its dual are satisfied.

Proof. Let a, b, c ∈ B. Then:

a ∨ (b ∧ c) = a ∨ (b ∧ c) ∨ (b ∧ c)

= a ∨ (b ∧ (a ∨ c)) ∨ (b ∧ c) Prop.19.(4)

= a ∨ (b ∧ c) ∨ (b ∧ (a ∨ c))

= a ∨ (b ∧ c) ∨ (b ∧ (a ∨ (b ∧ c))) Prop.19.(4)

= (a ∨ (b ∧ c)) ∨ ((a ∨ (b ∧ c)) ∧ b)

= (a ∨ (b ∧ c)) ∧ ((a ∨ (b ∧ c)) ∨ b) Prop.19.(3)

= (a ∨ (b ∧ c)) ∧ (b ∨ a ∨ (b ∧ c))

= (a ∨ (b ∧ c)) ∧ (b ∨ a ∨ ((a ∨ b) ∧ c)) Prop.19.(4)

= (a ∨ (b ∧ c)) ∧ ((a ∨ b) ∨ ((a ∨ b) ∧ c))

= (a ∨ (b ∧ c)) ∧ (a ∨ b) ∧ (a ∨ b ∨ c) Prop.19.(3)

= (a ∨ ((a ∨ b) ∧ c)) ∧ (a ∨ b) ∧ (a ∨ b ∨ c) Prop.19.(4)

= (a ∨ c) ∧ (a ∨ b) ∧ (a ∨ b ∨ c) Prop.19.(4)

= (a ∨ c) ∧ (a ∨ b ∨ ((a ∨ b) ∧ c)) Prop.19.(3)

= (a ∨ c) ∧ (a ∨ b ∨ (a ∧ c)) Prop.19.(4)

= (a ∨ c) ∧ (a ∨ (a ∧ c) ∨ b),

and by Proposition 19.(3)–(4), (a∨ c)∧ (a∨ (a∧ c)∨ b) = (a∨ c)∧ ((a∧ (a∨
c)) ∨ b) = (a ∨ b) ∧ (a ∨ c).
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Every involutive bisemilattice is equipped with the two partial orderings
� and �′ from Subsection 3.2, for which 0 and 1 are a bottom and a top ele-
ment, respectively. In general, these two orderings are different, and therefore
involutive bisemilattices, in spite of their having distributive lattice reducts,
may well contain M3 or N5 as sublattices. In fact, any semilattice with zero
〈B,∨, 0〉 makes an instance of an involutive bisemilattice 〈B,∨,∨,¬, 0, 0〉,
in which negation is the identity,9 and hence both the pentagon and the
diamond, as semilattices, can be considered involutive bisemilattices.

Not surprisingly, the two orderings of an involutive bisemilattice are in-
tertwined, since ∧ is completely determined by ∨ and ¬.

Lemma 21. Let B be an involutive bisemilattice. Then, for every a, b ∈ B,

a � b ⇐⇒ ¬b �′ ¬a.

Proof. If a, b ∈ B, then using (I9) we have:

a � b ⇐⇒ a ∨ b = b ⇐⇒ ¬(¬a ∧ ¬b) = b ⇐⇒ ¬a ∧ ¬b

= ¬b ⇐⇒ ¬b �′ ¬a.

Corollary 22. In every semilattice, considered as an involutive bisemilat-
tice, the order �′ is the dual of the order �.

4.2. IBSL is Generated by WK

Our next goal is to prove that the class IBSL is the variety generated by the
involutive bisemilattice WK. We start by showing that, given an involutive
bisemilattice B, the involution does not interchange elements of the interval
[0, 1] = {a ∈ B : 0 � a � 1} with elements outwith this interval.

Proposition 23. Let B be an involutive bisemilattice. Then, for all a ∈ B,
it holds:

0 � a � 1 ⇐⇒ 0 � ¬a � 1.

Proof. Notice that we only have to prove one implication, because the
other follows from the properties of negation. If a � 1, then ¬a∧ 0 = 0, and
thus

¬a ∨ 1 = (¬a ∨ 1) ∧ 1 = (¬a ∨ 1) ∧ (0 ∨ 1) = (¬a ∧ 0) ∨ 1 = 0 ∨ 1 = 1.

That is, ¬a � 1.

9Hereafter, duplicate occurrences of ∨ and 0 in the type will be omitted whenever we
consider semilattices with zero as involutive bisemilattices.



On Paraconsistent Weak Kleene Logic... 271

Given an involutive bisemilattice B, we tweak a construction by Kalman
[25] and define on B a congruence Φ and a family of congruences Δa, for
every a ∈ B, that will prove useful in our demonstration that IBSL is the
variety generated by WK:

Φ = {〈a, b〉 ∈ B2 : a = b or a, b � 1}, (*)

Δa = {〈b, c〉 ∈ B2 : a ∨ b = a ∨ c and a ∨ ¬b = a ∨ ¬c}. (**)

Lemma 24. Given an involutive bisemilattice B, the relations Φ and Δa,
for every a ∈ B, are congruences.

Proof. It is easy to check that they are equivalence relations. We show
now that they are compatible with the operations ∨ and ¬, and therefore
also with ∧.
Φ is a congruence:

(∨) Let 〈a, b〉, 〈c, d〉 ∈ Φ. If a = b and c = d, then trivially a ∨ c = b ∨ d,
and therefore 〈a ∨ c, b ∨ d〉 ∈ Φ. Otherwise, suppose that a 
= b, whence
a � 1 and b � 1. Notice that a � a ∨ c, and therefore if a ∨ c � 1, we
would have that a � 1, a contradiction, whence a ∨ c � 1. Analogously,
we have that b ∨ d � 1. Thus, 〈a ∨ c, b ∨ d〉 ∈ Φ.

(¬) Let 〈a, b〉 ∈ Φ. If a = b, our conclusion readily follows. Otherwise, we
have a � 1 and b � 1, and hence by Proposition 23, ¬a � 1 and ¬b � 1,
whence 〈¬a,¬b〉 ∈ Φ.

Δa is a congruence:

(∨) Suppose that 〈b, c〉, 〈d, e〉 ∈ Δa. Thus, we have

a ∨ (b ∨ d) = (a ∨ b) ∨ (a ∨ d) = (a ∨ c) ∨ (a ∨ e) = a ∨ (c ∨ e).

Moreover, a ∨ ¬(b ∨ d) = a ∨ (¬b ∧ ¬d) = (a ∨ ¬b) ∧ (a ∨ ¬d) = (a ∨
¬c) ∧ (a ∨ ¬e) = a ∨ (¬c ∧ ¬e) = a ∨ ¬(c ∨ e). Thus, 〈b ∨ d, c ∨ e〉 ∈ Δa.

(¬) Considering 〈b, c〉 ∈ Δa, it readily follows from the definition of Δa and
axiom (I4) that 〈¬b,¬c〉 ∈ Δa.

Lemma 25. Given an involutive bisemilattice B, we have that Δa = Δ if
and only if a = 0.

Proof. (⇐) Notice that, if 〈b, c〉 ∈ Δ0 then b = 0 ∨ b = 0 ∨ c = c. Thus,
Δ0 = Δ. (⇒) Suppose that Δa = Δ. First observe that, for every b ∈ B,
trivially a∨ (a∨ b) = a∨ b. Furthermore, by (I10) we have a∨¬(a∨ b) = a∨
(¬a∧¬b) = a∨¬b. Thus, for every b ∈ B, we have that 〈a ∨ b, b〉 ∈ Δa = Δ,
and therefore a ∨ b = b. In particular, for b = 0 we have a = a ∨ 0 = 0.
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Lemma 26. Let B be an involutive bisemilattice. If a ∈ B, then

Δ¬a = {〈b, c〉 ∈ B2 : a ∧ b = a ∧ c and a ∧ ¬b = a ∧ ¬c}.

Proof. For every b, c ∈ B, we have that:

〈b, c〉 ∈ Δ¬a ⇐⇒ ¬a ∨ b = ¬a ∨ c and ¬a ∨ ¬b = ¬a ∨ ¬c

⇐⇒ ¬(¬a ∨ b) = ¬(¬a ∨ c) and ¬(¬a ∨ ¬b) = ¬(¬a ∨ ¬c)

⇐⇒ a ∧ ¬b = a ∧ ¬c and a ∧ b = a ∧ c.

Next, given an involutive bisemilattice B, and two arbitrary elements
a, b ∈ B, the following binary operation � on B is well-defined by Proposi-
tion 19.(3):

a � b = a ∧ (a ∨ b) = a ∨ (a ∧ b).

Lemma 27. Given an involutive bisemilattice B, it holds that:

Δa ∩ Δ¬a = {〈b, c〉 ∈ B2 : b � a = c � a and ¬b � a = ¬c � a}.

Proof. (⊆) Let 〈b, c〉 ∈ Δa ∩ Δ¬a. Then, in particular, a ∨ b = a ∨ c and
a ∧ b = a ∧ c. So,

b � a = b ∧ (b ∨ a) = b ∧ (c ∨ a) = (b ∧ c) ∨ (b ∧ a)

= (b ∧ c) ∨ (a ∧ c) = (b ∨ a) ∧ c = (a ∨ c) ∧ c = c � a.

Since Δa and Δ¬a are congruences, our assumption implies that 〈¬b,¬c〉 ∈
Δa ∩ Δ¬a, and therefore we also have that ¬b � a = ¬c � a. (⊇) First of all,
observe that for every a, b ∈ B, we have:

a ∧ (b � a) = a ∧ (b ∨ (b ∧ a)) = (a ∧ b) ∨ (a ∧ b ∧ a) = a ∧ b.

Therefore, if b � a = c � a, then a ∧ b = a ∧ (b � a) = a ∧ (c � a) = a ∧ c. If
moreover ¬b�a = ¬c�a, then we obtain that a∧¬b = a∧¬c, and therefore
〈b, c〉 ∈ Δ¬a. By a similar argument, using the fact that for every a, b ∈ B,
a ∨ (b � a) = a ∨ b, we obtain that if b � a = c� a and ¬b � a = ¬c� a, then
〈b, c〉 ∈ Δa.

Lemma 28. Let B be a subdirectly irreducible involutive bisemilattice. Then
[0, 1] = {0, 1}.

Proof. For the nontrivial inclusion, observe that if a � 1, then by Propo-
sition 23 we have that ¬a � 1, and hence a ∧ 0 = 0. Therefore, for every
b ∈ B, we have that

b � a = b ∧ (b ∨ a) = (b ∨ 0) ∧ (b ∨ a) = b ∨ (0 ∧ a) = b ∨ 0 = b.
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Hence, if 〈b, c〉 ∈ Δa ∩Δ¬a, by Lemma 27 we have that b = b�a = c�a = c.
Thus, Δa ∩Δ¬a = Δ. Being B subdirectly irreducible, we have that Δa = Δ
or Δ¬a = Δ. Thus, by Lemma 25, we obtain that a = 0 or ¬a = 0. That is,
a = 0 or a = 1, as was to be proven.

We can now state the main result of this subsection and its corollary,
namely, that the only subdirectly irreducible involutive bisemilattices are
WK, the 2-element Boolean algebra B2, and the 2-element semilattice with
zero S2, whereby it follows that IBSL is the variety generated by WK.

Theorem 29. The only nontrivial subdirectly irreducible bisemilattices are
WK, S2, and B2, up to isomorphism.

Proof. Let B be a nontrivial subdirectly irreducible involutive bisemilattice
and let C = B \ {0, 1}. If C = ∅ then B = {0, 1}, and since B is nontrivial,
then 0 
= 1. Hence, B = B2. If C 
= ∅, consider the congruence θ = Φ ∩⋂

a∈C Δa, with an eye to showing that θ = Δ. Suppose that 〈b, c〉 ∈ θ.
Then, in particular 〈b, c〉 ∈ Φ. If b ∈ {0, 1}, then b = c, by virtue of the
definition of Φ. Analogously if c ∈ {0, 1}. If on the other hand b, c ∈ C, then
〈b, c〉 ∈ Δb ∩ Δ¬b, and 〈b, c〉 ∈ Δc ∩ Δ¬c. Thus, by Lemma 27, we obtain
that c � c ∨ (c ∧ b) = c � b = b � b = b, and symmetrically b � c. That is,
in this case also b = c, whence θ = Δ. By Lemma 25, none of the Δa’s, for
a ∈ C, is Δ, and since B is subdirectly irreducible, then it should be Φ = Δ.
By Lemma 28, the set {a ∈ B : a � 1} is {0, 1}, and since we are assuming
that C 
= ∅, then necessarily we have that T = {a ∈ B : a 
� 1} is nonempty.
But the congruence Φ identifies all the elements of T and therefore T is a
singleton, since Φ = Δ. Thus, we only have two possibilities: 0 = 1, and
therefore B = S2, or 0 
= 1, in which case B = WK.

Corollary 30. IBSL is the variety generated by WK.

Proof. The result follows immediately from Theorem 29 and the fact that
B2 is a subalgebra of WK, and S2 is the quotient of WK by the congruence
Δ1, which is the smallest congruence identifying 0 and 1.

Corollary 31. The only nontrivial proper subvarieties of IBSL are the
disjoint varieties BA of Boolean algebras and SL of semilattices with zero.

4.3. The Structure of Involutive Bisemilattices

Our next goal is to describe in some detail the structure theory of involutive
bisemilattices. In particular, we will axiomatise the subvarieties BA and SL
relative to IBSL. Moreover, we will provide a representation of involutive
bisemilattices as P�lonka sums of Boolean algebras.
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We gather from the proof of Lemma 28 that, given an involutive bisemi-
lattice B and a ∈ B, if a � 1 then for every b, we have that b ∧ (b ∨ a) = b
and also that a ∧ 0 = 0, and therefore a ∧ ¬a = a ∧ (¬a ∨ 0) = a ∧ 0 = 0.
That is to say, for the elements of the segment [0, 1], the absorption law is
satisfied and ¬a is a complement of a. Consequently, the segment [0, 1] is a
Boolean subuniverse of B. We will however establish a more general result.
In order to get it, we have to fix some notation.

Definition 32. Given an involutive bisemilattice B, we say that an element
c ∈ B is Boolean if c ∈ [0, 1]. We say that c is positive if 1 � c, and denote
the set of positive elements of B by P (B). Moreover, we say that c is fix if
¬c = c.

As we will see, every fix element is positive, while there are elements that
are neither Boolean nor positive. For a start, we develop a little further the
arithmetic of involutive bisemilattices.

Proposition 33. In every involutive bisemilattice B the following equations
are satisfied:

1. x ∨ ¬x ∨ y ≈ y ∨ ¬y ∨ x;

2. x ∨ ¬x ≈ 1 ∨ x;

3. 1 ∨ x ≈ 1 ∨ ¬x.

Proof. Let a, b ∈ B. By two applications of (I9), we obtain:

a ∨ ¬a ∨ b = a ∨ (¬a ∧ ¬b) ∨ b = a ∨ ¬b ∨ b = b ∨ ¬b ∨ a.

By taking y = 0 in (1), we obtain x ∨ ¬x = x ∨ ¬x ∨ 0 = 0 ∨ ¬0 ∨ x = 1 ∨ x.
(3) is a consequence of the symmetry of (2).

Remark 34. Notice that by Proposition 33.(2),

Δ1 = {〈b, c〉 : b ∨ ¬b = c ∨ ¬c} = {〈b, c〉 : b ∧ ¬b = c ∧ ¬c}.

We make a note of this fact for later use.

Proposition 33 grants characterisations for the positive elements and the
fix elements of any involutive bisemilattice B: an element is positive if and
only if it is greater than its negate, and therefore an element c is fix if and
only if c,¬c ∈ P (B). In particular, all fix elements are positive.

Corollary 35. For every involutive bisemilattice B and every a ∈ B, we
have that:

1. the element a ∨ ¬a is positive;



On Paraconsistent Weak Kleene Logic... 275

2. a is positive if and only if ¬a � a;

3. a is fix if and only if a and ¬a are positive.

Proof. In virtue of Proposition 33.(2), we have that a ∨ ¬a = 1 ∨ a, which
is obviously positive. For the same reason,

1 � a ⇐⇒ 1 ∨ a = a ⇐⇒ a ∨ ¬a = a ⇐⇒ ¬a � a.

(3) is an immediate consequence of (2).

Remark 36. Notice that it follows from the second part of the previous
corollary that the set of positive elements of an involutive bisemilattice B
is equationally definable:

P (B) = {c ∈ B : c ∨ ¬c = c}.

Next, let us widen our focus from the segment [0, 1] to an arbitrary seg-
ment of the form [¬c, c] = {x ∈ B : ¬c � x � c} for some positive element
c in an involutive bisemilattice B. It turns out that all such segments are
universes of Boolean algebras, and that they partition B.

Lemma 37. Let B be an involutive bisemilattice. For every a ∈ B, there
exists a unique positive element ca ∈ B such that a ∈ [¬ca, ca]. Moreover,
ca = a ∨ ¬a.

Proof. Let a ∈ B and consider ca = a ∨ ¬a. First, we prove that ¬ca �
a � ca. Obviously, a � a ∨ ¬a. For the other inequality, notice that

a ∨ ¬ca = a ∨ ¬(a ∨ ¬a) = a ∨ (¬a ∧ a) = a ∨ a = a,

by virtue of (I9). Consider now a positive c ∈ B such that ¬c � a � c.
Then,

¬ca = ¬(a ∨ ¬a) = ¬a ∧ a = ¬a ∧ (a ∨ ¬c) = ¬a ∧ ¬c = ¬(a ∨ c) = ¬c,

whence it follows that c = ca.

Lemma 38. Let B be an involutive bisemilattice and c ∈ B a positive ele-
ment. Then, we have that:

1. For every a ∈ B, c ∨ a = c ∨ ¬a.

2. If a � c and ¬c � b, then b � a = b.

Proof. In virtue of Proposition 33.(3), we have that for every a ∈ B,
c ∨ a = (c ∨ 1) ∨ a = c ∨ (1 ∨ a) = c ∨ (1 ∨ ¬a) = (c ∨ 1) ∨ ¬a = c ∨ ¬a, since
1 � c. For (2), suppose that c is positive, a � c and ¬c � b. It follows that
b � a = b ∧ (b ∨ a) = (b ∨ ¬c) ∧ (b ∨ a) = b ∨ (¬c ∧ a) = b ∨ ¬(c ∨ ¬a) =
b ∨ ¬(c ∨ a) = b ∨ ¬c = b.
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Proposition 39. Let B be an involutive bisemilattice. For every positive
c ∈ B, the segment [¬c, c] is the universe of a Boolean algebra C under the
restrictions of the nonnullary operations of B, and with 0C = ¬c, 1C = c.

Proof. Let c be as in the statement. Notice that, for every a ∈ B, c¬a =
¬a ∨ ¬¬a = a ∨ ¬a = ca. Hence, by Lemma 37, if a ∈ [¬c, c], then c =
ca = c¬a, and therefore ¬a ∈ [¬c¬a, c¬a] = [¬c, c]. That is to say, [¬c, c] is
closed under negation, and since it is obviously closed under ∨, it is closed
under ∧ as well. Since ¬c and c are the bottom and the top of [¬c, c],
respectively, C is a bounded involutive bisemilattice, whence all we have to
prove is that the absorption laws are satisfied and that for every a ∈ [¬c, c],
¬a is its complement in C. If we are given a, b ∈ [¬c, c], then a � c and
¬c � b, and thus by virtue of Lemma 38, b ∨ (b ∧ a) = b � a = b. Therefore
the absorption laws are satisfied and the two orderings � and �′ coincide.
Finally, by Lemma 37, we have that if a ∈ [¬c, c], then c = ca = a ∨ ¬a,
and hence ¬c = ¬ca = ¬(a ∨ ¬a) = a ∧ ¬a, which proves that ¬a is the
complement of a.

It follows from Lemma 37 and Proposition 39 that every involutive bisemi-
lattice can be viewed as a union of Boolean blocks. The next Proposition
provides criteria to determine when a given B ∈ IBSL is made up by a
unique block, that is, when it is a Boolean algebra itself.

Proposition 40. Let B an involutive bisemilattice. The following state-
ments are equivalent:

1. B is a Boolean algebra.

2. 1 is the maximum of B with respect to the ordering �.

3. B satisfies x ∨ ¬x ≈ 1.

Proof. If B is a Boolean algebra, then obviously it satisfies x � 1. For the
other implication, just notice that (2) is equivalent to B = [0, 1], but [0, 1]
is the universe of a Boolean algebra by virtue of Proposition 39. The second
and the third statement are equivalent by virtue of Proposition 33.(2).

Let us list some additional properties of fix elements and positive el-
ements, in order to get a better grasp of the structure of an involutive
bisemilattice. In the next lemma we show that the set of fix elements of an
involutive bisemilattice is closed upwards, with respect to the ordering �.

Lemma 41. Let B be an involutive bisemilattice. Then, we have:

1. If c is a fix element, then for every a ∈ B, c ∧ a = c ∨ a.
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2. If c is a fix element and c � a, then a is also a fix element.

Proof. For (1), suppose that c is a fix element of B, and pick an arbitrary
a ∈ B. Then,

c ∨ a = c ∨ (¬c ∧ a) = c ∨ (c ∧ a) = c ∧ (c ∨ a) = c ∧ (¬c ∨ a) = c ∧ a.

Regarding (2), if c is fix, then for every a ∈ B

c�a ⇐⇒ c∨a=a ⇐⇒ c ∧ a=a ⇐⇒ ¬c∨¬a=¬a ⇐⇒ ¬c � ¬a ⇐⇒ c � ¬a.

Hence, if c � a, then c � ¬a, and since c is fix then, in particular, it is
positive by virtue of Corollary 35. Therefore, both a and ¬a are positive,
and again by Corollary 35, a is a fix element.

We enumerate below a number of characterisations of SL as a subvariety
of IBSL.

Proposition 42. Let B an involutive bisemilattice. The following state-
ments are equivalent:

1. B satisfies x ∧ y ≈ x ∨ y.

2. B satisfies ¬x ≈ x.

3. B satisfies 1 ≈ 0.

4. B satisfies x � y ≈ x ∧ y.

Proof. (1) ⇒ (2) If B satisfies x ∧ y ≈ x ∨ y, then for every a, b ∈ B
we have a ∨ (¬a ∨ b) = a ∨ (¬a ∧ b) = a ∨ b. In particular a ∨ ¬a =
a ∨ ¬a ∨ a = a ∨ a = a, that is ¬a � a. Since this is true for all a ∈ B,
then we also have that a = ¬¬a � ¬a, whence a = ¬a.

(2) ⇒ (3) This is trivial.

(3) ⇒ (4) If 1 = 0, then for every a, b ∈ B, we have that a � b =
a ∨ (a ∧ b) = (a ∧ 1) ∨ (a ∧ b) = a ∧ (1 ∨ b) = a ∧ (0 ∨ b) = a ∧ b.

(4) ⇒ (1) Suppose that B satisfies x� y ≈ x∧ y, and pick a ∈ B. Then,
a = a∨0 = a∨(¬a∧0) = a∨(¬a�0) = a∨(¬a∧(¬a∨0)) = a∨¬a. That
is, a is positive. Since a is arbitrary, we also have that ¬a is positive, and
hence every element of B is fix. Thus, for every a, b ∈ B, a ∧ b = a ∨ b,
by virtue of Lemma 41.

Corollary 43. Let B be an involutive bisemilattice, and let Δ1 be the
congruence defined in (∗∗). The quotient algebra B/Δ1 is isomorphic to the
semilattice 〈P (B),∨, 1〉 of the positive elements of B.
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Proof. First we notice that, by virtue of Proposition 42, B/Δ1 is a semilat-
tice with bottom element 0/Δ1, because 〈1, 0〉 ∈ Δ1, and therefore ¬(0/Δ1)
= ¬0/Δ1 = 1/Δ1 = 0/Δ1. Remark further that, if a and b are positive
elements such that a/Δ1 = b/Δ1, then a = 1 ∨ a = 1 ∨ b = b. That is,
the projection B → B/Δ1 gives a bijection between the positive elements
of B and the elements of B/Δ1, respecting ∨ and sending 1 to the bottom
element 0/Δ1 of B/Δ1. That is to say, the map π : 〈P (B),∨, 1〉 → B/Δ1

defined by π(a) = a/Δ1 is an isomorphism.

Although we could produce a direct proof of the next result, we choose
to put to good use the preceding corollary as an example of its usefulness.

Lemma 44. Let B be an involutive bisemilattice. Then we have that:

1. If a and b are positive, then also a ∧ b = a ∨ b is positive.

2. If 1 � a � b, then ¬a � ¬b.

Proof. For (1), select a, b ∈ P (B) and, given any c ∈ B, denote by [c] the
equivalence class c/Δ1. Then, [a∧b] = [a]∧[b] = [a]∨[b] = [a∨b], since B/Δ1

is a semilattice. Thus, a∧b = (1∨a)∧(1∨b) = 1∨(a∧b) = 1∨(a∨b) = a∨b.
As for (2), if a and b are positive then

a � b ⇐⇒ a ∨ b = b ⇐⇒ a ∧ b = b ⇐⇒ ¬a ∨ ¬b = ¬b ⇐⇒ ¬a � ¬b.

We now present the main result of this section, according to which every
P�lonka sum over a direct system of Boolean algebras, indexed by a semilat-
tice with zero, is an involutive bisemilattice, and every involutive bisemilat-
tice admits a representation as a P�lonka sum of Boolean algebras.10

Theorem 45.

1. If T = 〈(ϕij : i � j), I〉 is a direct system of Boolean algebras, then the
P�lonka sum T over T is an involutive bisemilattice.

2. If B is an involutive bisemilattice, then B is isomorphic to the P�lonka
sum over the direct system T = 〈(ϕcd : c � d), 〈P (B),�〉〉, where the
homomorphism ϕcd : [¬c, c] → [¬d, d] is given by ϕcd(a) = ¬d ∨ a.

Proof. (1) This is a direct consequence of Lemma 11 and the axiomatisa-
tion of involutive bisemillatices. Indeed, all the equations in Definition 16

10For a more refined representation of a class of algebras that includes IBSL in terms
of involutorial P�lonka sums of algebras satisfying a generalised version of the absorption
law, see [12].
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are regular equations satisfied in every Boolean algebra, and therefore they
are satisfied in T as well. That is, T is an involutive bisemilattice.

(2) Let B be an involutive bisemilattice. We know that f(a, b) = a � b is
a partition function on its bisemilattice reduct; hence, in order to show that
it is a partition function on B, it suffices to verify that for all a, b ∈ B the
following conditions are satisfied:

¬a � b = ¬(a � b); ¬a � a = ¬a; a � 0 = a;

b � ¬a = b � ¬(b � a); a � ¬a = a; a � 1 = a.

For the first one, notice that, by Proposition 19.(1), ¬a�b = ¬a∨(¬a∧b) =
¬a ∨ (b ∧ ¬b) = ¬a ∨ (¬a ∧ ¬b) = ¬(a ∧ (a ∨ b)) = ¬(a � b). The rest are
immediate to do resorting to Definition 16 and Proposition 20. Therefore,
by Theorem 10, B is representable as the P�lonka sum over a direct system
of involutive bisemilattices satisfying x�y ≈ x, and thus such that for all a,

1 = 1 � a = 1 ∨ (1 ∧ a) = 1 ∨ a.

These P�lonka fibres are Boolean by Proposition 40. By Remark 34, we have
that

Δ1 = {〈b, c〉 : b ∨ ¬b = c ∨ ¬c} = {〈b, c〉 : b ∧ ¬b = c ∧ ¬c}.

Furthermore, Δ1 = {〈b, c〉 : b � c = b and c � b = c}. In fact, by Lemmas 37
and 38, if b ∧ ¬b � b, c � b ∨ ¬b, then b � c = b and c � b = c; conversely,
if b � c = b and c � b = c, then by Proposition 19.(1) b ∨ (c ∧ ¬c) = b and
c ∨ (b ∧ ¬b) = c. So b ∈ [c ∧ ¬c, c ∨ ¬c] and c ∈ [b ∧ ¬b, b ∨ ¬b], whence our
conclusion follows by Lemma 37. So, the proof of Theorem 10 implies that
the semilattice of indices in our direct system can be taken to be B/Δ1,
which is isomorphic to the semilattice 〈P (B),∨, 1〉 of the positive elements
of B by Corollary 43, and by Lemma 37 each fibre has the form [¬c, c], for
c a positive element. Finally, the proof of Theorem 10 implies further that
ϕcd(a) = a � d, and by Proposition 19.(1) and Corollary 35.(2),

a � d = a ∨ (a ∧ d) = a ∨ (d ∧ ¬d) = ¬d ∨ a.

Corollary 46. IBSL is the variety satisfying exactly the regular (2, 2, 1,
0, 0)-identities satisfied by BA.

Proof. This is an immediate consequence of Theorem 45 and Lemma 11.

For example, there are two different ways of equationally expressing the
fact that 1 is the top element of a Boolean algebra: x∧ 1 ≈ x and x∨ 1 ≈ 1.
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The former identity is regular, and therefore is satisfied by every involutive
bisemilattice, while the latter is not, and therefore it fails in every involutive
bisemilattice with more than one Boolean fibre, that is, in every involutive
bisemilattice that is not a Boolean algebra.

Recall from Corollary 31 that the only nontrivial subvarieties of IBSL are
BA = V(B2), SL = V(S2), and IBSL itself. This means that any involutive
bisemilattice B falls under one of the following three cases, in terms of its
P�lonka sum representation:

• B has only one Boolean fibre. In that case, B is a Boolean algebra.

• All the Boolean fibres of B are trivial. In this case, B satisfies x ∨ y ≈
x ∧ y, and hence it is a semilattice.

• B has at least two nontrivial Boolean fibres. If so, consider B/Φ, where
Φ is the congruence defined in (∗). Notice that [0, 1] cannot be trivial,
for suppose otherwise: then 0 = 1 and hence all the Boolean fibres
would be also trivial. Recall that Φ identifies all the elements that are
not in [0, 1], and therefore B/Φ turns out to be the P�lonka sum of
a nontrivial Boolean algebra and a trivial Boolean algebra. Therefore,
WK is isomorphic to a subalgebra of B/Φ, and hence the only subvariety
of IBSL containing B is IBSL itself.

5. Algebraic Study of PWK

5.1. Abstract Algebraic Logic

We recap now some notions from AAL that will be used in the rest of this
section. Standard references for the material that follows include [5,17,19].

Given Fm of type ν, a formula-equation transformer is a map τ : Fm →
P(Fm2) such that, given a variable p ∈ X, τ(p) is a set of ν-equations in
the single variable p, and for every α ∈ Fm, τ(α) is the result of uniformly
replacing, in each member of τ(p), the variable p by the formula α; an
equation-formula transformer is a map ρ : Fm2 → P(Fm) such that for
any basic equation p ≈ q ∈ X2, ρ(p, q) is a set of ν-formulas in the variables
p, q, and for every equation α ≈ β, the set ρ(α, β) is the result of uniformly
replacing, in each member of ρ(p, q), the variables p, q by the formulas α, β,
respectively. Given any function f : A → B, and any subset D ⊆ A, we
denote by f [D] the set {f(d) : d ∈ D}, and thus, for every set of formulas
Γ, τ [Γ] =

⋃
{τ(γ) : γ ∈ Γ}.

If K is a class of algebras of type ν, and L is a logic of the same type,
K is called an algebraic semantics for L if there exists a formula-equation
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transformer τ s.t., for all Γ ∪ {α} ⊆ Fm,

Γ �L α ⇐⇒ τ [Γ] �K τ(α).

K is said to be equivalent to L if there exists an equation-formula transformer
ρ that inverts τ , meaning that for all α ≈ β ∈ Fm2,

α ≈ β ��K τ [ρ(α, β)].

A logic L is said to be algebraisable if and only if it has an equivalent
algebraic semantics K. By virtue of [5, Cor. 2.11], given any such K, the
largest equivalent algebraic semantics for L may be identified with the qua-
sivariety Q generated by K; we use the expression equivalent quasivariety
semantics to refer to this class. If Q is a variety, we call it an equivalent
variety semantics for L.

One of the classical results of AAL is the Isomorphism Theorem for al-
gebraisable logics, which we will use later on. In order to state this theorem
we need to introduce some extra terminology. Let ν be a similarity type. A
ν-matrix (or simply a matrix, when ν is understood) is a pair M = 〈A, F 〉,
where A is an algebra of type ν and F is a subset of A. The algebra A and
the set F are called the algebraic reduct and the filter of M, respectively. For
any matrix M = 〈A, F 〉 and Γ ∪ {α} ⊆ Fm, let �M be the relation defined
by

Γ �M α ⇐⇒ for every valuation v on A, v[Γ] ⊆ F implies v(α) ∈ F.

If M is a class of matrices, then Γ �M α if Γ �M α, for every M ∈ M . If L
is a logic of type ν and A an algebra of the same type, a subset F of A is
called an L-filter, or just a deductive filter when L is understood, if Γ �L α
implies Γ �〈A,F 〉 α, for all Γ ∪ {α} ⊆ Fm. The elements in F are said to
be designated. The set of all L-filters of an algebra A is denoted by F iL A.
If F is an L-filter, then the matrix 〈A, F 〉 is called a matrix model of L.
Given an algebra A and a set F ⊆ A, it is not difficult to see that there is
a largest congruence θ = ΩAF on A such that F is a union of θ-cosets. We
call it the Leibniz congruence of F , and the natural map ΩA

L that assigns
to every L-filter F its corresponding Leibniz congruence ΩAF is called the
Leibniz operator on A. The K-relative congruences of an algebra A are those
congruences θ such that A/θ ∈ K. The set of K-relative congruences of A is
denoted by CoK A. Both F iL A and CoK A are lattice-ordered by inclusion.

Theorem 47. (Isomorphism Theorem). If L is an algebraisable logic with
equivalent algebraic semantics K and A is an arbitrary algebra of the same
type, then F iL A and CoK A are isomorphic lattices. Moreover, the isomor-
phism is given by the Leibniz operator ΩA

L .
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Not every logic is algebraisable, but for certain logics there is still a
class of algebras that can be associated to them in a sensible way. These
logics are ordered in a hierarchy according to the strength of the relation-
ship between them and their attendant classes of algebras. This hierarchy
is called the Leibniz hierarchy, for the rank assigned to a logic therein can
be characterised by properties of the Leibniz operator. A logic L is called
protoalgebraic if the Leibniz operator is monotone on the set of L-filters,
i.e. if for all A and for all L-filters F,G ⊆ A such that F ⊆ G, we have
that ΩAF ⊆ ΩAG. Protoalgebraic logics are one of the two lowest known
levels of the Leibniz hierarchy; the other one is truth-equational logics, in-
troduced in [37]. A matrix M = 〈A, F 〉 is said to be reduced if ΩAF is the
identity relation on A. The class of reduced models of a logic L is denoted
by Mod*(L). A logic L is truth-equational if the filters of the reduced mod-
els of L are defined by a set of equations. The characterisation that places
truth-equational logics as part of the Leibniz hierarchy is the following: a
logic is truth-equational if and only if its Leibniz operator is completely
order-reflecting. Truth-equational logics have algebraic semantics, but they
are not necessarily protoalgebraic. A particular and very common case of
truth-equational logics are assertional logics, which are logics with an alge-
braic semantics given by a transformer of the form τ(x) = {x ≈ �}, being
� a constant term.

For an algebraisable logic L, its equivalent quasivariety semantics is given
by the class of the algebra reducts of its reduced matrix models:

Alg*(L) = {A : there is a reduced model 〈A, F 〉 of L}.

For this reason it is fair to say that the “algebraic counterpart” of a pro-
toalgebraic logic L is the class Alg*(L). Notice that the notion of a reduced
model of a logic takes into account only one filter at a time, and for nonpro-
toalgebraic logics this is not usually enough, since their Leibniz operators
generally fail to be monotone. For these logics, the theory of full models [18]
turns out to be more adequate.

A g-matrix 11 is a pair 〈A, C〉 such that C is a closure system on A, that is,
a set of subsets of A containing A as an element and closed under arbitrary
intersections. The idiosyncratic example of a g-matrix is 〈Fm, T h(L)〉, where

11An equivalent way of defining a g-matrix is as a pair 〈A, C〉 such that C is a closure
operator on A, i.e., a map P(A) → P(A) such that for every X ⊆ A, X ⊆ CX, CCX =
CX, and if X ⊆ Y ⊆ A, then CX ⊆ CY . Thus, a g-model of a logic L would be a g-matrix
〈A, C〉 such that for every entailment Σ 
L α and every valuation v on A, v(α) ∈ Cv[Σ];
and the Tarski congruence of a g-matrix 〈A, C〉 would be the largest congruence θ of A
that is compatible with C, in the sense that 〈a, b〉 ∈ θ implies C{a} = C{b}.
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T h(L) is the set of all theories of L, that is, all the sets Σ ⊆ Fm such that
for every formula α, we have that Σ �L α implies α ∈ Σ. A congruence of a
g-matrix 〈A, C〉 is a congruence θ ∈ CoA that is compatible with C, meaning
that if 〈a, b〉 ∈ θ, then for all T ∈ C, a ∈ T if and only if b ∈ T . The Tarski
congruence of a g-matrix 〈A, C〉 is the largest congruence of the g-matrix,
denoted by

∼
Ω AC. In the particular case that A = Fm and C = F iL Fm, the

Tarski congruence is simply denoted by
∼
Ω L. A g-matrix 〈A, C〉 is reduced if

and only if
∼
Ω AC = Δ. It is easy to see that, given an algebra A and a subset

F ⊆ A, the set {F,A} is a closure system on A, that
∼
Ω A{F,A} = ΩAF ,

and therefore 〈A, F 〉 is reduced if and only if 〈A, {A,F}〉 is reduced. Thus,
g-matrices are a generalisation of ordinary matrices. We can also generalise
the concept of a model as follows. A g-model of a logic L is a g-matrix 〈A, C〉
such that for every T ∈ C, 〈A, T 〉 is a model of L. Thus, a g-matrix 〈A, C〉
is a g-model of L if and only if C ⊆ F iL A. A g-model is a basic full g-model
of L if C = F iL A. A characterisation of the Tarski congruence of a g-matrix
〈A, C〉 in terms of Leibniz congruences is the following:

∼
Ω AC =

⋂

T∈C
ΩAT.

Thus, for a protoalgebraic logic L,
∼
Ω A F iL A = ΩAF , where F is the

smallest L-filter of A, since the Leibniz operator is monotone. Hence, in this
case the class of all algebra reducts of reduced basic full g-models coincides
with Alg*(L), but in general these two classes are different. For an arbitrary
logic L, its “algebraic counterpart” can be identified with the class

Alg(L) = {A : the g-matrix 〈A,F iL A〉 is reduced},

which is called the class of L-algebras. If there is a variety that can be
“naturally” associated to a logic L, this is its intrinsic variety V(L) =
V(Fm/

∼
Ω L), although this does not have to coincide with either Alg(L) or

Alg*(L). In general, Alg*(L) ⊆ Alg(L), and both classes generate the same
variety, namely V(Alg*(L)) = V(Alg(L)) = V(L), and the same quasivariety
(see [18, Thm. 2.23, Cor. 2.24] or [17, § 5.4]).

On a different tack, another set of properties of interest concerns the
algebraic behaviour of interderivability, seen as a relation on the formula
algebra Fm. A logic L is selfextensional if and only if the interderivability
relation ��L is a congruence on Fm. L is Fregean if for every Γ ⊆ Fm,
the relation ≡Γ defined by α ≡Γ β if and only if Γ, α ��L Γ, β is a congru-
ence on Fm. Obviously, if a logic is Fregean, in particular it is selfexten-
sional.
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5.2. PWK in the Leibniz and in the Frege Hierarchies

It is not inappropriate to wonder whether the variety IBSL is the actual
algebraic counterpart of the logic PWK. Such a guess stands to reason, for
PWK is the logic defined by the matrix PWK with WK as an underlying
algebra, and IBSL is the variety generated by WK. More to the point,
we could ask whether PWK is algebraisable and, if so, whether IBSL is
its equivalent variety semantics. This question will be presently answered in
the negative—indeed, IBSL is not the equivalent algebraic semantics of any
algebraisable logic. And furthermore, PWK is not algebraisable, since it is
not even protoalgebraic. Further down the line, we will observe that PWK
is not selfextensional either, and therefore it is non-Fregean. However, let us
start with the first of the results we have just announced.

Theorem 48. IBSL is not the equivalent algebraic semantics of any alge-
braisable logic L.

Proof. Consider the involutive bisemilattice C4 given by the diagram be-
low, where on the right-hand side we depict its congruence lattice:

C4 =

3

2

1

0

∇

θ3 : |0, 1|2, 3| θ4 : |0, 1, 2|3|

θ1 : |0|1|2, 3| θ2 : |0, 1|2|3|

Δ

Notice that the Leibniz congruence ΩC4{2} is θ2. Furthermore, it can readily
be checked by inspection that {2} is the only subset F ⊆ C4 such that
ΩC4F = θ2. If IBSL were the equivalent algebraic semantics of a logic L,
then by Theorem 47, ΩC4 would yield an isomorphism between F iL C4 and
CoIBSL C4 = CoC4, since C4 ∈ IBSL and IBSL is a variety. Thus, {2}
would necessarily be an L-filter. Furthermore, since Δ � θ2 = ΩC4{2}, we
have that ∅, which is the only proper subset of {2}, would be an L-filter,
and hence L would be purely implicational and thus theoremless. The only
protoalgebraic logic with no theorems is the almost inconsistent one [18,
p. 60], which is not algebraisable. Thus, there is no logic L with IBSL as
its equivalent algebraic semantics.
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Theorem 49. PWK is not protoalgebraic.

Proof. Suppose ex absurdo that PWK is protoalgebraic. Then, by the
intrinsic characterisation of protoalgebraic logics (see e.g. [17, Thm. 6.7]),
there would be a set Δ(p, q) of formulas in the variables p, q such that

1. �PWK Δ(p, p),

2. p, Δ(p, q) �PWK q.

If any of the formulas of Δ(p, q) only depends on the variable p, or the
variable q, then by virtue of (1) this formula is a theorem and therefore
superfluous in Δ(p, q). Thus, we can assume w.l.g. that all the formulas of
Δ(p, q) essentially depend on both variables. Now, consider a valuation v to
the algebra WK such that v(p) = 1/2 and v(q) = 0. Then, v[{p}∪Δ(p, q)] =
{1/2}, while v(q) = 0, contradicting (2). Summing up, such a Δ(p, q) cannot
exist, and therefore PWK is not protoalgebraic.

Theorem 50. PWK is not selfextensional, and therefore it is non-Fregean.

Proof. All we have to show is that the interderivability relation ��PWK is
not a congruence of the formula algebra Fm1. In order to do that, notice
that ¬p ∨ p ��PWK ¬q ∨ q, since all instances of the excluded middle are
classical theorems, and therefore theorems of PWK. However, the valuation
v to WK that sends q to 0 and all the remaining variables to 1/2 is such
that v(¬(¬p∨p)) = 1/2 and v(¬(¬q ∨ q)) = 0, and therefore ¬(¬p∨p) �PWK

¬(¬q ∨ q).

Despite the foregoing result, a certain refinement of the interderivability
relation in PWK is a congruence of the formula algebra Fm1. In fact, let
Θ = {〈α, β〉 ∈ Fm2

1 : var(α) = var(β)}; then Θ ∩ ��PWK is a congruence of
Fm1.

5.3. Deductive Filters and Matrix Models

Although PWK is not a protoalgebraic logic, it still makes sense to char-
acterise the class Alg*(PWK) of the algebra reducts of reduced models of
PWK. In order to do so, we need to provide a workable description of the
Leibniz congruence of a PWK-filter of an arbitrary algebra of the appropri-
ate similarity type. In the following proposition, we establish such a char-
acterisation, very much in the same spirit as the one in [16] for Belnap’s
Four-Valued Logic.

Proposition 51. Let A be an algebra of type (2, 2, 1, 0, 0) and F ⊆ A a
PWK-filter. Then, for every a, b ∈ A, 〈a, b〉 ∈ ΩAF if and only if for every
c ∈ A,
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a ∨ c ∈ F ⇐⇒ b ∨ c ∈ F and ¬a ∨ c ∈ F ⇐⇒ ¬b ∨ c ∈ F. (Leib)

Proof. If F is a PWK-filter of an algebra A and 〈a, b〉 ∈ ΩAF , then
for every formula α(p, q) containing the variable p and any possibly other
variables q = q1, . . . , qk, for every a, b ∈ A, and every set of parameters
c = c1, . . . , ck in A, we have that αA(a, c) ∈ F if and only if αA(b, c) ∈ F .
In particular, for the formulas p ∨ q and ¬p ∨ q, we obtain the implications
of (Leib).

Now, suppose that 〈a, b〉 /∈ ΩAF . W.l.g. we can assume that there is
a formula α(p, q) and certain parameters c in A such that αA(a, c) ∈ F
and αA(b, c) /∈ F . Let β1 ∧ · · · ∧ βn be the conjunctive normal form of α
given by Proposition 8. It follows that α ��PWK {β1, . . . , βn}, and therefore
αA(a, c) ∈ F if and only if for every i, βA

i (a, c) ∈ F , and analogously for
b. Therefore, there is a clause, say β1(p, q), such that βA

1 (a, c) ∈ F and
βA

1 (b, c) /∈ F . Obviously, the variable p necessarily appears in β1. If the
remaining variables in β1 are among q = q1, . . . , qk, β1(p, q) coincides with
some of the following, up to equivalence:

(i) p; (ii) ¬p; (iii) p ∨ ¬p;

(iv) p ∨ γ(q); (v) ¬p ∨ γ(q); (vi) p ∨ ¬p ∨ γ(q).

However, the cases (iii) and (vi) can be ruled out, since these formulas
are always evaluated to positive elements, and therefore in both cases we
would have that β1(b, c) ∈ F . In cases (i) or (ii), one or the other of the
implications in (Leib) would fail by considering c = 0. The same would
happen in cases (iv) or (v), by considering c = γ(c). Thus we have seen that
if 〈a, b〉 /∈ ΩAF , then one or the other of the implications of (Leib) fails for
some c, as was to be shown.

Thanks to this characterisation of the Leibniz congruence, we can restrict
our search of members of Alg*(PWK) to involutive bisemilattices.

Theorem 52. Alg*(PWK) ⊆ IBSL.

Proof. Let 〈A, F 〉 be a reduced matrix model of PWK and let α ≈ β be
one of the equations in Definition 16. We need to prove that A � α ≈ β.
Observe that, in every case, we have α ��CL β, and thus α ∨ q ��CL β ∨ q
and ¬α ∨ q ��CL ¬β ∨ q, where q is a fresh variable not in var(α) = var(β).
Hence, α∨q ��PWK β∨q and ¬α∨q ��PWK ¬β∨q by virtue of Corollary 2,
because var(α ∨ q) = var(β ∨ q) and var(¬α ∨ q) = var(¬β ∨ q). Let v be
a valuation to A, and let c be an arbitrary element of A. Consider the
valuation u such that u(p) = v(p) for every variable p 
= q, and u(q) = c.
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Hence,

v(α) ∨ c = u(α) ∨ u(q) = u(α ∨ q) ∈ F ⇐⇒ v(β) ∨ c = u(β) ∨ u(q)

= u(β ∨ q) ∈ F,

and similarly ¬v(α) ∨ c ∈ F ⇐⇒ ¬v(β) ∨ c ∈ F . Therefore, by virtue of
Proposition 51, we obtain that 〈v(α), v(β)〉 ∈ ΩAF = Δ, since the matrix
is reduced, and hence v(α) = v(β). Since the valuation v was arbitrary, we
have A � α ≈ β. Thus, A ∈ IBSL.

Corollary 53. The intrinsic variety of PWK is V(PWK) = IBSL.

Proof. This is an immediate consequence of Theorem 52, Corollary 30,
and the fact that WK ∈ Alg*(PWK), since these imply that

V(PWK) = V(Alg*(PWK)) ⊆ IBSL = V(WK) ⊆ V(Alg*(PWK)).

We will prove that the inclusion of Theorem 52 is actually proper. But
before that, we need a firmer grasp of the PWK-filters of involutive bisemi-
lattices, which the next Proposition will help us to build.

Proposition 54. Let B be an involutive bisemilattice. F ⊆ B is a PWK-
filter of B if and only if:

F1. P (B) ⊆ F ;

F2. a ∈ F, a � b ⇒ b ∈ F ;

F3. a, b ∈ F ⇒ a ∧ b ∈ F .

Proof. Suppose that F is a PWK-filter of an involutive bisemilattice B.
Let moreover c ∈ P (B) and let v be a valuation s.t. v(p) = c. Since p ∨ ¬p
is a theorem of PWK, c = c ∨ ¬c = v(x ∨ ¬x) ∈ F . Suppose now that
a � b and a ∈ F . Since p �CL p ∨ q, by virtue of Theorem 1, it follows
that p �PWK p ∨ q. Thus, considering a valuation v such that v(p) = a and
v(q) = b, since v(p) = a ∈ F , then also b = a ∨ b = v(p ∨ q) ∈ F . Assume
finally that a, b ∈ F . By the rule ∧I we have that p, q �PWK p ∧ q. Thus, for
a valuation v sending p to a and q to b, we would have a ∧ b = v(p ∧ q) ∈ F .

Conversely, suppose that F contains P (B), is closed upwards, and is
closed under ∧. It can be readily checked that for every valuation v, v(α) ∈
P (B) ⊆ F for any axiom α in Definition 3. Thus, it will suffice to prove that
F is also closed w.r.t. the rule RMP. Suppose that we have two formulas α
and β such that v(α) ∈ F and v(α → β) ∈ F , and moreover var(α) ⊆ var(β),
with an eye to showing that v(β) ∈ F . Our assumption entails that

v(α) ∧ v(β) = v(α) ∧ (¬v(α) ∨ v(β)) = v(α) ∧ v(α → β) ∈ F.
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Now, since var(α) ⊆ var(β), we have that the equation (α∧β)∨β ≈ β, which
is obviously valid in every Boolean algebra qua instance of the absorption
law, is regular, and therefore valid in every involutive bisemilattice, by virtue
of Corollary 46. So

(v(α) ∧ v(β)) ∨ v(β) = v(β).

Thus, v(α)∧v(β) � v(β), and since v(α)∧v(β) ∈ F and F is closed upwards,
we also obtain v(β) ∈ F , as was to be proved.

Remark 55. In any involutive bisemilattice B, the set P (B) is the smallest
PWK-filter.

We also can provide a characterisation of the PWK-filters of an involutive
bisemilattice in terms of its P�lonka sum representation.

Proposition 56. Let B be the involutive bisemilattice that is the P�lonka
sum of the direct system of Boolean algebras 〈(ϕcd : c � d), P (B)〉. For every
F ⊆ B and for every c ∈ P (B), let Ac = [¬c, c] and Fc = F ∩Ac. Then, the
following statements are equivalent:

1. F is a PWK-filter of B.

2. For every c ∈ P (B), Fc is a Boolean filter of Ac, and F is closed up-
wards.

3. For every c ∈ P (B), Fc is a Boolean filter of Ac, and for every c � d,
ϕcd[Fc] ⊆ Fd.

Then, every PWK-filter corresponds to a family of Boolean filters (Fc :
c ∈ P (B)), one of each Ac, such that ϕcd[Fc] ⊆ Fd, provided that c � d.

Proof.

(1) ⇒ (2) Since the nonnullary operations of every Ac are the restric-
tions of the corresponding operations of B, and F is closed upwards,
closed under ∧, and contains all positive elements, then each Fc is a
Boolean filter of Ac.

(2) ⇒ (3) Suppose that a ∈ Ac and c � d. Then, ϕcd(a) = ϕcd(a) ∨Ad

ϕcd(a) = a ∨B ϕcd(a), and therefore a � ϕcd(a). If we take a ∈ Fc ⊆ F ,
then ϕcd(a) ∈ F ∩ Ad, since F is closed upwards, which proves that
ϕcd[Fc] ⊆ Fd.

(3) ⇒ (1) Suppose that Fc is a Boolean filter for every c ∈ P (B) and
that ϕcd[Fc] ⊆ Fd, whenever c � d. The positive elements of B are
exactly the top elements of the algebras Ac of the direct system, and
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therefore F =
⋃

c∈P (B) Fc contains them all. Furthermore, suppose that
a � b, and a ∈ Ac and b ∈ Ad, and set x = c ∨ d. By definition, b =
a ∨B b = ϕcx(a) ∨Ax ϕdx(b) ∈ Ax, and hence b ∈ Ad ∩ Ax. But since the
algebras of the system are pairwise disjoint, we obtain that x = d. Now,
if a ∈ Fc, then ϕcd(a) ∈ Fd, and hence b = ϕcd(a) ∨Ad b ∈ Fd ⊆ F , since
Fd is closed upwards. This proves that F is closed upwards. Finally, if
a ∈ Fc, b ∈ Fd, and x = c∨d, then a∧B b = ϕcx(a)∧Ax ϕdx(b) ∈ Fx ⊆ F .
This is because both ϕcx(a) and ϕdx(b) belong to Fx, by our hypotheses,
and Fx is a Boolean filter, and hence closed under ∧.

Lemma 57. Let B be an involutive bisemilattice, Ac any of its Boolean
fibres, F a PWK-filter, and Fc = F ∩ Ac. Then, A2

c ∩ ΩBF = ΩAcFc.

Proof. In order to prove that A2
c ∩ΩBF ⊆ ΩAcFc, suppose that a, b ∈ Ac

are such that 〈a, b〉 ∈ ΩBF . Hence, for every x ∈ B, a ∨ x ∈ F if and only
if b ∨ x ∈ F , according to Proposition 51. By taking x = ¬a, we obtain that
b ∨ ¬a ∈ F , since a ∨ ¬a ∈ F . Analogously, we can see that a ∨ ¬b ∈ F .
Now, b ∨ ¬a, a ∨ ¬b ∈ Ac, whence b ∨ ¬a, a ∨ ¬b ∈ Fc. This implies that
〈a, b〉 ∈ ΩAcFc, since Fc is a filter of the Boolean algebra Ac.

For the other inclusion, consider 〈a, b〉 ∈ ΩAcFc. We will prove that
〈a, b〉 ∈ ΩBF by recourse to Proposition 51. Pick then an arbitrary element
x ∈ B. Since Fc is a filter of the Boolean algebra Ac, we have that b∨¬a, a∨
¬b ∈ Fc ⊆ F , and therefore also b ∨ ¬a ∨ x, a ∨ ¬b ∨ x ∈ F . If we suppose
that a ∨ x ∈ F , then

(a ∧ b) ∨ x = (a ∧ (¬a ∨ b)) ∨ x = (a ∨ x) ∧ (¬a ∨ b ∨ x) ∈ F,

and since a, b ∈ Ac, we have a∧b � b, and hence (a∧b)∨x � b∨x, whence we
obtain that b ∨ x ∈ F . By symmetry, if b ∨ x ∈ F , then a ∨ x ∈ F . Similarly,
if ¬a ∨ x ∈ F , then (¬a ∧ ¬b) ∨ x ∈ F, and again, since ¬a,¬b ∈ Ac, then
¬a∧¬b � ¬b, whence (¬a∧¬b)∨x � ¬b∨x, and therefore ¬b∨x ∈ F . The
other implication follows by symmetry.

Lemma 58. If 〈B, F 〉 is a reduced model of PWK, then B is an involutive
bisemilattice and F is the set P (B) of positive elements of B.

Proof. If 〈B, F 〉 is a reduced model of PWK, then by Theorem 52, B
is an involutive bisemilattice and F is a PWK-filter, which implies that
P (B) ⊆ F . Putting once more to good use Proposition 51, let us now prove
that, whenever a ∈ F , 〈a, ca〉 ∈ ΩBF , where ca = a ∨ ¬a. Since a ∈ F by
hypothesis and ca ∈ P (B) ⊆ F , we have that for every c ∈ B, a∨c, ca∨c ∈ F ,
whence the first implication of (Leib) is trivial. For the second implication,
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notice that ¬ca � ¬a, whereby for every c ∈ B, ¬ca ∨ c ∈ F implies ¬a∨ c ∈
F . Let us suppose now that for a certain c ∈ B, ¬a ∨ c ∈ F . Hence,

¬ca ∨ c = (¬a ∧ a) ∨ c = (¬a ∨ c) ∧ (a ∨ c) ∈ F,

since the former conjunct is in F by hypothesis, and the latter is in F because
a ∈ F . Thus, for all a ∈ F , 〈a, ca〉 ∈ ΩBF = Δ, since 〈B, F 〉 is reduced,
and therefore a = ca ∈ P (B), as we wanted to prove.

We can now finally state the result we have been after.

Theorem 59. B ∈ Alg*(PWK) if and only if B is an involutive bisemilattice
and for every a < b positive elements, there is c ∈ B such that

1 � ¬b ∨ c but 1 
� ¬a ∨ c.

Moreover, 〈B, F 〉 ∈ Mod*(PWK) if and only if B is an involutive bisemi-
lattice satisfying the above condition and F = P (B).

Proof. Suppose that B ∈ Alg*(PWK). Therefore, there is a PWK-filter
F such that 〈B, F 〉 is a reduced model of PWK, whence Lemma 58 implies
that B is an involutive bisemilattice and F = P (B). Suppose now for the
sake of argument that 〈a, b〉 ∈ ΩBP (B), with a 
= b. Hence, a and b belong
to different fibres, for if a, b ∈ [¬c, c], then by Lemma 57 〈a, b〉 ∈ [¬c, c]2 ∩
ΩBP (B) = Ω [¬c,c]{c} = Δ[¬c,c], and we would get a = b, a contradiction.
Now, since a and b belong to different fibres, then a ∨ 1 and b ∨ 1 will be
also different, although they will be congruent modulo ΩBP (B). So, we can
assume that a and b are positive. Moreover, either a ∨ b 
= a or a ∨ b 
= b—
assume w.l.g. the former. Then, a = a ∨ a and a ∨ b will be positive and
congruent modulo ΩBP (B). So, we can further assume that 1 � a < b.

By Proposition 51, for every c ∈ B, a∨c ∈ P (B) if and only if b∨c ∈ P (B),
which is trivial because a and b are positive; and also for every c ∈ B,
¬a ∨ c ∈ P (B) if and only if ¬b ∨ c ∈ P (B). Since a � b, and a, b ∈ P (B),
then ¬a � ¬b, and therefore ¬a ∨ c ∈ P (B) implies ¬b ∨ c ∈ P (B). Thus,
the only nontrivial implication is that for all c ∈ B, if ¬b ∨ c ∈ P (B), then
¬a ∨ c ∈ P (B).

Therefore, we have seen that 〈B, F 〉 is a reduced model of PWK if and
only if B is an involutive bisemilattice, F = P (B), and for every positive
elements a < b there is c such that ¬b ∨ c ∈ P (B) but ¬a ∨ c /∈ P (B), as we
wanted to show.

Example 60. The class Alg*(PWK) is not closed under quotients or sub-
algebras, and therefore it is not even a generalised quasivariety. Indeed,
consider the involutive bisemilattice B given by the following diagram:
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c

1 ¬c

a ¬a

0

This corresponds to a P�lonka sum of a 4-element Boolean algebra and a
2-element Boolean algebra, with a homomorphism from the former to the
latter. Therefore, by the characterisation we have just given, 〈B, P (B)〉 is
a reduced model of PWK. However, its subalgebra A with universe A =
{0, 1,¬c, c}, representable as a P�lonka sum of two 2-element Boolean al-
gebras with an isomorphism between them, is not in Alg*(PWK), since
〈A, {1, c}〉 is not reduced, and {1, c} = P (A). Observe further that B/Δ1

∼=
S2, where Δ1 is the congruence defined by (∗∗), and S2 is obviously not in
Alg*(PWK), since it has two fix elements.

Observe that the precedent example shows an algebra B ∈ Alg*(PWK)
such that the set P (B) has two elements. Furthermore, 〈B, P (B)〉 is a re-
duced model of PWK by virtue of Theorem 59. Thus, we conclude that
PWK cannot be assertional. Nevertheless, we can prove that PWK is truth-
equational, a result that finishes the classification of PWK within the Leibniz
hierarchy.

Theorem 61. PWK is truth-equational.

Proof. This is an immediate consequence of Theorem 59 and the fact that
the set of positive elements of an involutive bisemilattice is equationally
definable, as we mentioned in Remark 36.

5.4. The Generalised Matrix Semantics of PWK

Given that PWK is not protoalgebraic, it comes as no surprise that the class
Alg*(PWK) is a little unwieldy (recall that it is not even a generalised qua-
sivariety, as we saw in Example 60). In light of our introductory remarks, we
can expect to be better off with Alg(PWK), which, as argued above, has to
be considered as the proper algebraic counterpart of the nonprotoalgebraic
logic PWK. We now prove that these two classes are different from each
other and from the variety IBSL.

Theorem 62. Alg*(PWK) � Alg(PWK) � IBSL.

Proof. The general theory of AAL dictates that Alg*(PWK) ⊆ Alg(PWK),
and the varieties they generate are the same, namely the intrinsic variety
of PWK, which we saw in Corollary 53 coincides with IBSL. Therefore
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Alg*(PWK) ⊆ Alg(PWK) ⊆ IBSL. Now, the involutive bisemilattice S2

has only one filter, which is S2 itself, and therefore
∼
Ω S2 F iPWK S2 = ΩS2S2 = ∇,

which is not the identity. Hence, S2 /∈ Alg(PWK). Finally, consider the
involutive bisemilattice B given by the following diagram, corresponding to
the P�lonka sum of a 2-element Boolean algebra and a 4-element Boolean
algebra, with an embedding from the former to the latter:

c

1 a ¬a

¬c

0

〈B, P (B)〉 is not reduced, since ΩBP (B) is the congruence that identifies
1 and c, 0 and ¬c, and nothing else. Thus, B /∈ Alg*(PWK). On the other
hand, the set F = {1,¬c, a,¬a, c} is a PWK-filter of S and ΩBF is the con-
gruence identifying all the elements ¬c, a,¬a, c, and nothing else. The Tarski
congruence

∼
Ω B F iPWK B is included in the intersection of these two con-

gruences, which is the identity. Therefore, 〈B,F iPWK B〉 is reduced, whence
B ∈ Alg(PWK).

As we mentioned before, if a logic L is protoalgebraic, then Alg*(PWK) =
Alg(PWK). Thus, Theorem 62 yields a proof that PWK is not protoalgebraic
different than that in Theorem 49. Another consequence of this theorem is
that Alg*(PWK) is not a quasivariety, since, as already recalled, for any
logic L, Alg*(L) and Alg(L) generate the same quasivariety, and were it
the case that Alg*(PWK) is a quasivariety, we would get Alg*(PWK) =
Alg(PWK). Finally, we also observe that Alg(PWK) cannot be a variety,
since it contains WK but it fails to contain S2. Also, by Corollary 31, the
only proper subvarieties of IBSL are Boolean algebras and semilattices, and
Alg(PWK) is clearly neither.

To end this section, we show that Alg(PWK) is not a far cry from IBSL.
Indeed, notice that in any involutive bisemilattice with fix elements, all of
them are situated near the top, so to speak, since the set they form is closed
upwards (see Lemma 41). Moreover, as truth values, all of them are indistin-
guishable. Thus, it is only natural that the Tarski congruence identifies all
the fix elements, and therefore an involutive bisemilattice with more than
one fix element cannot be the algebra reduct of a basic full model of PWK.
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More than that, the above—which can be expressed by a quasiequation—
gives us a characterisation of the class Alg(PWK), and hence Alg(PWK)
turns out to be a quasivariety which is not a variety. This is a very unusual
situation, as there are few natural examples in the literature of a logic L
such that Alg(L) is a quasivariety and not a variety.

Theorem 63. Alg(PWK) is the quasivariety of involutive bisemilattices sat-
isfying the quasiequation

¬x ≈ x & ¬y ≈ y ⇒ x ≈ y.

Proof. If B is an involutive bisemilattice with some fix element, then

θ = {〈a, b〉 : a = b or a and b are fix}
is a congruence that identifies exactly the fix elements of B and nothing else.
Since all the PWK-filters of B contain all the fix elements, θ is compatible
with all of them, and therefore θ ⊆ ∼

Ω B F iPWK B. Thus, if there is more
than one fix element in B, the g-matrix 〈B,F iPWK B〉 is not reduced, whence
B /∈ Alg(PWK).

For the other implication, let us assume that B has at most one fix
element. This means that B is a P�lonka sum of nontrivial Boolean al-
gebras (with the possible exception of one fibre). We want to prove that
∼
Ω =

∼
Ω B F iPWK B is the identity. With an eye to finding a contradiction,

let us assume that there are a, b ∈ B, such that a 
= b and 〈a, b〉 ∈ ∼
Ω .

Mimicking the argument in Theorem 59, it can be established that a, b
belong to different fibres and that we can assume, without loss of gener-
ality, that 1 � a < b. Consider, for every positive element c ∈ P (B),
the set Fc defined as Fc = [¬c, c] if b � c, and Fc = {c} otherwise.
Given two positive elements c � d, we only have two possibilities: either
b � d, and then ϕcd[Fc] ⊆ [¬d, d] = Fd, or b 
� d, and hence b 
� c and
ϕcd[Fc] = ϕcd[{c}] = {d} ⊆ Fd. Thus, by virtue of Proposition 56, F =

⋃
Fc

is a PWK-filter of B.
Consider the relation θ = {〈e, f〉 ∈ B2 : e = f or ¬b � e, f}. It is

not difficult to prove that θ is a congruence of B compatible with F , and
therefore, θ ⊆ ΩBF . Notice that 〈b,¬b〉 ∈ θ ⊆ ΩBF , so 〈a, b〉 ∈ ∼

Ω ⊆ ΩBF

implies that 〈a,¬a〉 ∈ ΩBF . Since we assumed that a was positive and
b 
� a, then we have that Fa = {a}. Thus, 〈a,¬a〉 ∈ ΩBF and a ∈ F imply
that ¬a ∈ F ∩ [¬a, a] = Fa = {a}, and therefore ¬a = a. That is, a is fix,
which implies that b is also fix, because a � b. Yet, a 
= b, contradicting the
assumption that B has at most one fix element.

Theorem 64. Alg(PWK) is the quasivariety generated by WK.
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Proof. We have seen that Alg(PWK) is a quasivariety, and since WK ∈
Alg*(PWK) ⊆ Alg(PWK), all we have to prove is that every nontrivial
involutive bisemilattice with at most one fix element is embeddable into
a power of WK. First, for any given Boolean algebra A, we define the
involutive bisemilattice Â to be the P�lonka sum of the 2-element family
containing A and the trivial algebra 0, with the trivial homomorphism A →
0. Intuitively, we obtain Â by just adding to A one fix element on top of
all the other elements of A. For uniformity and to avoid confusion, we can
call this new element ω. Now, given a direct system of Boolean algebras T =
〈(ϕij : i � j), I〉, we will prove that the P�lonka sum T over T is embeddable
into the product

∏
I Âi. Indeed, consider the function η : T →

∏
I Âi defined

as follows: for every i ∈ I, and every a ∈ Ai, η(a) = (η(a)j : j ∈ I), where
for every j ∈ I,

η(a)j =

{
ϕij(a) if i � j,

ω otherwise.
(†)

The function η is injective, because if a, b ∈ Ai, then η(a) = η(b) implies
a = ϕii(a) = η(a)i = η(b)i = ϕii(b) = b; and if a ∈ Ai and b ∈ Aj , with
i 
= j, then either i 
� j or j 
� i, and therefore η(a)j = ω 
= b = η(b)j or
η(b)i = ω 
= a = η(a)i. Moreover, η(0)j = 0Aj , for every j ∈ I, and hence
η(0) is the bottom of

∏
I Âi. Furthermore, it is easy to see that for every

i ∈ I, a ∈ Ai, and j ∈ I, we have that η(¬a)j = ¬η(a)j , since if i � j, then
η(¬a)j = ϕij(¬a) = ¬ϕij(a) = ¬η(a)j , and otherwise η(¬a)j = ω = ¬ω =
¬η(a)j . Finally, given i, j ∈ I, a ∈ Ai, b ∈ Aj , and k = i ∨ j, we have that
for every l ∈ I, if k � l,

η(a ∨T b)l = η(ϕik(a) ∨Ak ϕjk(b))l = ϕkl(ϕik(a) ∨Ak ϕjk(b))

= ϕkl(ϕik(a)) ∨Al ϕkl(ϕjk(b)) = ϕil(a) ∨Al ϕjl(b)

= ϕil(a) ∨Âl ϕjl(b) = η(a)l ∨Âl η(b)l.

On the other hand, if k 
� l, then i 
� l or j 
� l, or both. Let us assume i 
� l
and j � l. We would have:

η(a ∨T b)l = η(ϕik(a) ∨Ak ϕjk(b))l = ω = ω ∨Âl ϕjl(b) = η(a)l ∨Âl η(b)l.

The other two cases are analogous. We have proved that η : T →
∏

I Âi is
an embedding. In case T does not have any fix element, the Boolean algebra
Ai is nontrivial, for every i ∈ I. If T has exactly one fix element, and it is
not the trivial algebra, then one can readily see that there is m ∈ I such
that Am = 0, I has more than one element, and for every i ∈ I, i 
= m,
Ai 
= 0, and hence i < m. Thus, we can prove that the function η : T →
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∏
I\{m} Âi defined by (†) is again an embedding. Hence, we have proved

that every nontrivial involutive bisemilattice with at most one fix element
can be embedded in a product of “extended” Boolean algebras of the form
Â, where A is nontrivial. Now, if A and B are Boolean algebras such that
A is embeddable into B, then it is not difficult to see that Â is embeddable
into B̂. So, since every nontrivial Boolean algebra A is embeddable into a
power Bκ

2 , with κ > 0, every nontrivial involutive bisemilattice with at most
one fix element can be embedded into a product of “extended” nontrivial
powers of B2. All that remains to prove is that for every κ > 0, the algebra
B̂κ

2 is embeddable into a power of WK. The required embedding is given
by ρ : B̂κ

2 → WKκ, where for every a ∈ B̂κ
2 ,

ρ(a) =

{
a if a 
= ω,

1/2 otherwise,

where 1/2 is the sequence constantly equal to 1/2.
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