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Abstract. In this paper we present an axiomatic characterization for brutal contractions.

Then we consider the particular case of the brutal contractions that are based on a bounded

ensconcement and also the class of severe withdrawals which are based on bounded epis-

temic entrenchment relations that are defined by means of bounded ensconcements (using

the procedure proposed by Mary-Anne Williams). We present axiomatic characterizations

for each one of those classes of functions and investigate the interrelation among them.
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1. Introduction

The central goal underlying the research area of logic of theory change (for
an overview see [3]) is the study of the changes which can occur in the belief
state of a rational agent when he receives new information.

The most well known model of theory change was proposed by Alchourrón,
Gärdenfors, and Makinson in [1] and is, nowadays, known as the AGM
model. Assuming that the belief state of an agent is modelled by a belief set
(i.e. a logically closed set of sentences), this framework essentially provides a
definition for contractions—i.e. functions that receive a sentence (represent-
ing the new information received by the agent), and return a belief set which
is a subset of the original one that does not contain the received sentence.
In the mentioned paper, the class of partial meet contractions was intro-
duced and axiomatically characterized. Subsequently several constructive
models have been presented for the class of contraction functions proposed
in the AGM framework (such as the system of spheres-based contractions
[8], safe/kernel contractions [2,9,14], and the epistemic entrenchment-based
contractions [6,7]). Also several adaptations and variations of those con-
structive models have been presented and studied in the literature as it is
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the case, for example, of severe withdrawals (or mild contractions or Rott’s
contractions) [12,15] which results of simplifying the definition of epistemic
entrenchment-based contractions.

Although the AGM model has quickly acquired the status of standard
model of theory change, several researchers (for an overview see [3]) have
pointed out its inadequacy in several contexts and proposed several exten-
sions and generalizations to that framework. One of the most relevant of
the proposed extensions of the AGM model of contraction is to use sets
of sentences not (necessarily) closed under logical consequence—which are
designated belief bases—rather than belief sets to represent belief states.

Hence, several of the existing models (of AGM contractions) were gener-
alized to the case when belief states are represented by belief bases instead of
belief sets. Among those we emphasize the ensconcement-based contractions
and the brutal contractions (of belief bases) proposed in [17], which can be
seen as adaptations to the case of belief bases of the epistemic entrenchment-
based contractions and of the severe withdrawals, respectively. In fact, the de-
finitions of those operations are both based on the concept of ensconcement,
which is an adaptation of the concept of epistemic entrenchment relation to
the case of belief bases. In the mentioned paper Mary-Anne Williams has
also presented a method for constructing an epistemic entrenchment from
an ensconcement relation.

In the present paper we will study the interrelation among brutal contrac-
tions (of belief bases) and severe withdrawals (of belief sets). More precisely,
we will present an axiomatic characterization of the class of brutal contrac-
tions. After that we devote special attention to the class of brutal contrac-
tions which are based on bounded ensconcements—the so-called bounded
brutal contractions and also to the class of the so-called ensconcement-based
severe withdrawals, which is formed by the severe withdrawals that are based
on an epistemic entrenchment relation defined from a bounded ensconcement
using Mary-Anne William’s method. We shall provide axiomatic character-
izations to each one of those classes of functions and study the interrelation
among them.

This paper is organized as follows: In Section 2 we provide the nota-
tion and background needed for the rest of the paper. In Section 3 we
present axiomatic characterizations for the classes of brutal contractions and
bounded brutal contractions. In Section 4 we show how to define a bounded
brutal contraction from an ensconcement-based severe withdrawal and vice-
versa. Furthermore we present an axiomatic characterization for the class
of ensconcement-based severe withdrawals. Finally, in Section 5, we briefly
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summarize the main contributions of the paper. In the Appendix we provide
proofs for all the original results presented.

2. Background

2.1. Formal Preliminaries

We will assume a language L that is closed under truth-functional oper-
ations and a consequence operator Cn for L. Cn satisfies the standard
Tarskian properties, namely inclusion (A ⊆ Cn(A)), monotony (if A ⊆ B,
then Cn(A) ⊆ Cn(B)), and iteration (Cn(A) = Cn(Cn(A))). It is supra-
classical and compact, and satisfies deduction (if β ∈ Cn(A ∪ {α}), then
(α → β) ∈ Cn(A)). A � α will be used as an alternative notation for
α ∈ Cn(A), � α for α ∈ Cn(∅) and Cn(α) for Cn({α}). Upper-case letters
denote subsets of L. Lower-case Greek letters denote elements of L. ⊥ stands
for an arbitrary contradiction.

A well-ranked preorder on a set X is a preorder such that every nonempty
subset of X has a minimal element, and similarly an inversely well-ranked
preorder on a set X is a preorder such that every nonempty subset of X
has a maximal element. A total preorder on X is bounded if and only if it is
both well-ranked and inversely well-ranked.1

2.2. Epistemic Entrenchment and Severe Withdrawals

We start by recalling, in the following definition, the concept of epistemic
entrenchment relation.

Definition 1 ([6,7]). An ordering of epistemic entrenchment with respect
to a belief set K is a binary relation ≤ on L which satisfies the following
properties:
(EE1) For all α, β, δ ∈ L, if α ≤ β and β ≤ δ then α ≤ δ. (Transitivity)
(EE2) For all α, β ∈ L, if α � β then α ≤ β. (Dominance)
(EE3) For all α, β ∈ L, α ≤ α ∧ β or β ≤ α ∧ β. (Conjunctiveness)
(EE4) When K ��⊥, α �∈ K iff α ≤ β for all β ∈ L. (Minimality)
(EE5) If β ≤ α for all β ∈ L, then � α. (Maximality)

We shall denote the strict part and the symmetric part of ≤ by < and
=≤, respectively.

1In [17] a preorder in these conditions is designated by finite, however we think the
denomination bounded is more adequate.
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Now we proceed to the presentation of the definition of the severe with-
drawals (also known as mild contractions or Rott’s contractions) which was
introduced by Rott in [12].

Definition 2 ([12]). Let K be a belief set and ≤ be an epistemic entrench-
ment relation with respect to K. The ≤-based severe withdrawal on K is
the operation ÷≤ defined, for any α ∈ L, by:

K ÷≤ α =
{{β ∈ K : α < β}, if �� α

K, if � α.
(R≤)

An operation ÷ on K is a severe withdrawal if and only if there is an epis-
temic entrenchment relation ≤ with respect to K such that, for all sentences
α ∈ L, K ÷ α = K ÷≤ α.

Severe withdrawals were axiomatically characterized independently by
Rott and Pagnucco in [15] and by Fermé and Rodriguez in [5].

Observation 3 ([15]). Let K be a belief set and ÷ be a contraction function
on K. Then ÷ is a severe withdrawal if and only if it satisfies the following
postulates:
(÷1) K ÷ α = Cn(K ÷ α)
(÷2) K ÷ α ⊆ K
(÷3) If α �∈ K or � α, then K ⊆ K ÷ α
(÷4) If �� α, then α �∈ K ÷ α
(÷6) If Cn(α) = Cn(β), then K ÷ α = K ÷ β
(÷9) If α �∈ K ÷ β, then K ÷ β ⊆ K ÷ α

We note also that in [15, Proof of Lemma 1 (i)] it is shown that, in the
presence of (÷1) to (÷4), the postulate (÷9) is equivalent to the following
two postulates (taken together):

(÷7a) If �� α, then K ÷ α ⊆ K ÷ (α ∧ β)
(÷8) If α �∈ K ÷ (α ∧ β), then K ÷ (α ∧ β) ⊆ K ÷ α

Hence, in [15], it is also presented an alternative axiomatization of severe
withdrawals consisting of the postulates (÷1) to (÷4), (÷6), (÷7a) and (÷8).

However, at this point it is worth mentioning that, as attested by the
following observation, postulate (÷6) is redundant in both of the above
recalled axiomatic characterizations.

Observation 4. Let K be a belief set and ÷ an operator that satisfies (÷1)
to (÷4) and (÷9). Then ÷ satisfies (÷6).
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2.3. Ensconcement and Brutal Contractions

We start by recalling the definition of ensconcement and some related con-
cepts, which was originally proposed by Mary-Anne Williams [16–18].

Definition 5 ([17]). An ensconcement is a pair (A,�) where A is a belief
base and � is a transitive and connected relation on A that satisfies the
following three conditions:2

(�1) If β ∈ A \ Cn(∅), then {α ∈ A : β ≺ α} �� β
(�2) If �� α and � β, then α ≺ β, for all α, β ∈ A
(�3) If � α and � β, then α � β, for all α, β ∈ A

If � is well-ranked/inversely well-ranked, then (A,�) is a well-ranked/
inversely well-ranked ensconcement. If � is both well-ranked and inversely
well-ranked then (A,�) is a bounded ensconcement.

Williams has also introduced the concepts of cut and proper cut, which
we recall in the following definition.

Definition 6 ([17]). Let (A,�) be an ensconcement.

• For all α ∈ Cn(A) the cut of α, denoted cut�(α) is the following subset
of A:

cut�(α) = {β ∈ A : {γ ∈ A : β ≺ γ} �� α}.

• For all α ∈ L the proper cut of α, denoted cut≺(α) is the subset of A
defined by:

cut≺(α) = {β ∈ A : {γ ∈ A : β � γ} �� α}.

The following observation states that when α is an explicit belief, its
proper cut consists of the set of sentences which are strictly more ensconced
than α.

Observation 7 ([17]). If α ∈ A, cut≺(α) = {β ∈ A : α ≺ β}.
We notice that, when α �∈ A the proper cut cut≺(α) can be seen as the

set formed by the sentences of A which may be considered to be strictly
better than α.

The following observation exposes some other properties of cuts and
proper cuts.

2α ≺ β means α � β and β �� α. α =� β means α � β and β � α.
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Observation 8. Let (A,�) be a bounded ensconcement and α, β ∈ Cn(A).

(a) Let �� β. If cut≺(α) ⊆ cut≺(β), then cut�(α) ⊆ cut�(β).

(b) If � β and �� α, then cut�(β) ⊂ cut�(α).

Williams [17] has shown how an epistemic entrenchment can be defined
from an ensconcement:

Observation 9 ([17]). Let (A,�) be an ensconcement and let ≤� be the
binary relation on L defined by: α ≤� β if and only if either

i) α �∈ Cn(A), or ii) α, β ∈ Cn(A) and cut�(β) ⊆ cut�(α). Then:

(a) ≤� is an epistemic entrenchment related to Cn(A).

(b) � is well-ranked (inversely well-ranked, bounded) if and only if ≤� is
well-ranked (inversely well-ranked, bounded).

Finally, we recall the definition of the brutal contraction which was in-
troduced in [17] and is essentially based on the above presented notion of
proper cut.

Definition 10 ([17]). Let (A,�) be an ensconcement. The �-based brutal
contraction on A is the operation −� such that:

A −� α =
{

cut≺(α), if �� α
A, if � α

An operation − on A is a brutal contraction if and only if there is an
ensconcement (A,�) such that for all sentences α: A − α = A −� α.

3. Axiomatic Characterization of Brutal Contraction Functions

In this section we present an axiomatic characterization for the class of brutal
contractions. Furthermore we also provide a representation theorem regard-
ing the subclass of that class of functions formed by the brutal contractions
that are based on a bounded ensconcement.

In the following theorem we present an axiomatic characterization of
brutal contraction functions.

Theorem 11. (Axiomatic characterization of brutal contraction functions)
Let A be a belief base. An operator − on A is a brutal contraction if and
only if it satisfies the following postulates:

(Success) If �� α, then A − α �� α
(Inclusion) A − α ⊆ A
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(Vacuity) If A �� α, then A ⊆ A − α
(Failure) If � α, then A − α = A
(Relative Closure) A ∩ Cn(A − α) ⊆ A − α
(Strong Inclusion) If A − β �� α, then A − β ⊆ A − α
(Uniform Behaviour) If β ∈ A, A � α and A − α = A − β, then α ∈
Cn(A − β ∪ {γ ∈ A : A − β = A − γ})

The first five postulates listed above are well known in the literature of
belief change. Strong Inclusion, is presented in [5,15] as meaning that if α is
not deducible from the set that results of contracting A by β then anything
given up in removing α from A should also be given up when removing β
from A. Uniform Behaviour asserts that if a sentence α that is deducible
from A is such that the result of its contraction from A coincides with the
result of contracting A by a sentence which is (explicitly) present in A then
α should be deducible from the union of the set of all the sentences fulfilling
that property with the set that results of contracting A by α. We note that
this postulate is trivial when α ∈ A.

At this point it is worth to compare the above representation theorem
with the axiomatic characterization for the severe withdrawals which results
of combining Observations 3 and 4. We note that the postulates of relative
closure, inclusion, failure and vacuity (together), success and strong inclusion
can be seen as the analogues in the belief bases setting of the postulates
(÷1), (÷2), (÷3), (÷4) and (÷9). Thus, the main difference among the two
axiomatizations is the presence of the postulate of uniform behaviour in the
characterization of brutal contractions. In this regard we recall that uniform
behaviour holds trivially when α ∈ A. Therefore, this postulate can be seen
as the property that captures the behaviour of brutal contractions by implicit
sentences (a kind of contraction that does not occur in the belief sets setting
since, in that context all beliefs are explicit).

The following observation lists some other properties that are satisfied
by a brutal contraction function.

Observation 12. Let A be a belief base and − be an operator on A that
satisfies success, inclusion, vacuity, failure, relative closure and strong in-
clusion. Then − satisfies:

(a) If α ∈ A \ A − β, then A − β ⊆ A − α.

(b) If �� α, then A − α ⊆ A − (α ∧ β). (7a)

(c) If A − (α ∧ β) �� α, then A − (α ∧ β) ⊆ A − α. (Conjunctive Inclusion)

(d) If �� α, �� β and A − α � β, then A − β ⊆ A − α.
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(e) If �� α and α ∈ A − β, then A − α ⊂ A − β.

(f ) If A − α ⊂ A − β, then A − β � α.

(g) A − α ⊆ A − β or A − β ⊆ A − α. (Linearity)

(h) If �� α, �� β then A − β �� α or A − α �� β. (Expulsiveness)

(i) If � α ↔ β, then A − α = A − β. (Extensionality)

A brief comment concerning a couple of arguably undesirable proper-
ties of the above list is in order. Expulsiveness was first presented in [11,
p. 102] as a highly implausible property of belief contraction, since accord-
ing to it two unrelated sentences influence the result of the contraction by
each other. Other one of the above listed postulates that also suffers from
this same excessive strength is linearity, which was originally presented in
[5,15]. Nevertheless, Rott and Pagnucco [13,15] argue that the concept of
severe withdrawal (a contraction function that satisfies the two mentioned
postulates) is still interesting and well-motivated.

3.1. Bounded Brutal Contraction Functions

In this subsection we introduce the bounded brutal contractions and obtain
an axiomatic characterization for that class of functions.

Definition 13. Let A be a belief base. An operation − is a bounded brutal
contraction on A if and only if it is a brutal contraction based on a bounded
ensconcement.

We introduce the following postulates:
(Upper Bound) For every non-empty set X ⊆ A of nontautological formu-
lae, there exists α ∈ X such that A − β ⊆ A − α for all β ∈ X
(Lower Bound) For every non-empty set X ⊆ A of nontautological formu-
lae, there exists α ∈ X such that A − α ⊆ A − β for all β ∈ X
(Clustering) If β ∈ A, then there exists α ∈ A ∪ Cn(∅) such that A − α =
A − β ∪ {γ ∈ A : A − β = A − γ}

Upper Bound (respectively Lower Bound) states that every non-empty
set of nontautological formulae of A contains an element which is such that
the result of contracting A by that sentence is a superset (respectively a
subset) of any set which results of contracting A by one of the remaining
sentences of that set. Clustering asserts that for any sentence β in A there
exists some sentence α in A ∪ Cn(∅) such that the result of the contraction
of α from A is the set consisting of the union of the result of contracting
A by β with the set formed by all the sentences of A which are such that
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the result of contracting it from A coincides with the result of contracting
A by β.

The two following observations present some interrelations among the
above proposed postulates and some of the postulates included in the ax-
iomatic characterization that was obtained for the class of brutal contraction.

Observation 14. Let A be a belief base and − be an operator on A that sat-
isfies success, inclusion, failure, relative closure, strong inclusion and lower
bound. Then − satisfies clustering.

Observation 15. Let A be a belief base and − an operator on A that satisfies
failure, success, strong inclusion and clustering. Then − satisfies uniform
behaviour.

We are now in a position to present an axiomatic characterization for the
class of bounded brutal contractions.

Theorem 16. (Axiomatic characterization of bounded brutal contraction
functions) Let A be a belief base. An operator − on A is a bounded brutal
contraction on A if and only if it satisfies success, inclusion, vacuity, failure,
relative closure, strong inclusion, lower bound and upper bound.

The following observation asserts that for any non-tautological sentence
α which is deducible from A it holds that the result of contracting A by α
coincides with the result of the contraction of A by some sentence explicitly
included in A.

Observation 17. Let A be a belief base and − be an operator on A that
satisfies success, inclusion, failure, relative closure, strong inclusion and
lower bound. Then for all α ∈ Cn(A) \ Cn(∅) there exists β ∈ A such
that A − α = A − β.

4. Relation Between Bounded Brutal Contraction and
Ensconcement-based Severe Withdrawal

In this section we will define and axiomatically characterize a particular kind
of severe withdrawals which we will show to be the contraction functions
that correspond to the bounded brutal contractions in the context of belief
set contractions.

We start by noticing that, given a bounded ensconcement (A,�), we can
combine Observation 9 and Definition 2 in order to obtain the contraction
function on the belief set Cn(A) that is formally introduced in the following
definition.



340 M. Garapa et al.

Definition 18. Let (A,�) be a bounded ensconcement. An operation ÷ on
Cn(A) is an ensconcement-based withdrawal related to (A,�) if and only
if Cn(A) ÷ α = Cn(A) ÷≤� α, where ≤� is the epistemic entrenchment
with respect to Cn(A) presented in Observation 9 and ÷≤� is the ≤�-based
severe withdrawal on Cn(A) defined by (R≤).

Comparing the above definition with Definitions 10 and 13 it becomes
clear that there is a strong interrelation among the ensconcement-based se-
vere withdrawals and the (bounded) brutal contractions. That interrelation
is explicitly presented in the two following theorems:

Theorem 19. Let (A,�) be a bounded ensconcement, − be the �-based
brutal contraction, and ÷≤� be the ensconcement-based severe withdrawal
related to (A,�), then A − α = (Cn(A) ÷≤� α) ∩ A.

Theorem 20. Let (A,�) be a bounded ensconcement, − be the �-based
brutal contraction, and ÷≤� be the ensconcement-based severe withdrawal
related to (A,�), then Cn(A) ÷≤� α = Cn(A − α).

Given a bounded ensconcement (A,�), these two theorems expose how
the �-based brutal contraction on A can be defined from the ensconcement-
based withdrawal related to (A,�) and, vice-versa, how the latter can be
defined by means of the former.

4.1. Axiomatic Characterization of Ensconcement-Based Severe
Withdrawals

In this subsection we will present an axiomatic characterization for the class
of ensconcement-based severe withdrawals. To do that we must start by in-
troducing the following postulate:

(Base-reduction) If Cn(A) ÷ α � β, then (Cn(A) ÷ α) ∩ A � β

This postulate essentially states that the result of contracting the belief
set Cn(A) by any sentence α coincides with the logical closure of some
subset of A. Indeed, it is not hard to see that base-reduction is equivalent to:
∀α∃A′ ⊆ A : Cn(A′) = Cn(A) ÷ α (which is quite similar to the postulate
finitude proposed by Hansson in [10]).

The following observation relates a contraction by an implicit sentence
with a contraction by an explicit sentence.

Observation 21. Let ÷ be an operator on Cn(A) that satisfies (÷1), (÷2),
(÷4), (÷9), base-reduction and lower bound, then for all α ∈ Cn(A)\Cn(∅)
there exists β ∈ A such that Cn(A) ÷ α = Cn(A) ÷ β.
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We are now in a position to present the following axiomatic characteri-
zation for the ensconcement-based severe withdrawals.

Theorem 22. (Axiomatic characterization of ensconcement-based with-
drawals) Let A be a belief base. An operator ÷ on Cn(A) satisfies (÷1) to
(÷4), (÷9), base-reduction, upper bound and lower bound if and only if there
exists a bounded ensconcement (A,�) such that ÷ is an ensconcement-based
withdrawal related to (A,�).

Theorems 19 and 20 expose how a base contraction function can be de-
fined from a belief set contraction function and, vice-versa. Combining those
two results with the axiomatic characterizations presented in Theorems 16
and 22 we can obtain the following results which highlight the correspon-
dence among sets of postulates for base contraction and sets of postulates
for belief set contraction.

Corollary 23. An operator − on A satisfies success, inclusion, vacuity,
failure, relative closure, strong inclusion, upper bound and lower bound if
and only if there exists an operator ÷ on Cn(A) that satisfies (÷1) to (÷4),
(÷9), base-reduction, upper bound and lower bound such that: A − α =
Cn(A ÷ α) ∩ A.

Corollary 24. An operator ÷ on Cn(A) satisfies (÷1) to (÷4), (÷9), base-
reduction, upper bound and lower bound if and only if there exists an operator
− on A that satisfies success, inclusion, vacuity, failure, relative closure,
strong inclusion, upper bound and lower bound such that: Cn(A) ÷ α =
Cn(A − α).

The two following observations consist of a slight refinement of the right
to left part of Corollary 24. These results specify more precisely which prop-
erties of the belief base contraction are needed in order to assure that the
belief set contraction obtained from it as exposed in Theorem 20 satisfies
certain postulates.

Observation 25. Let A be a belief base and − be an operator on A that
satisfies success, inclusion, vacuity, failure, relative closure and strong in-
clusion. If ÷ is an operator on Cn(A) defined by Cn(A) ÷ α = Cn(A − α)
then ÷ satisfies (÷1) to (÷4), (÷9) and base-reduction.

Observation 26. Let A be a belief base and − be an operator on A that sat-
isfies success, inclusion, failure, relative closure, upper bound, lower bound
and strong inclusion. If ÷ is an operator on Cn(A) defined by Cn(A)÷α =
Cn(A − α) then ÷ satisfies upper bound and lower bound.
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5. Conclusion

We have presented two axiomatic characterizations for brutal contractions
one for brutal contractions based on a general ensconcement relation and
another one for the particular case of brutal contractions that are based on
bounded ensconcements. We have also introduced and axiomatically charac-
terized the class of ensconcement-based severe withdrawals which is formed
by the severe withdrawals that are based on epistemic entrenchment relations
which are obtained from an ensconcement relation using the construction
proposed by Mary-Anne Williams. Some results were presented concerning
the interrelation among the classes of bounded brutal contractions and of
ensconcement-based severe withdrawals. Finally we presented some results
relating base contraction postulates and belief set contraction postulates by
means of explicit definitions of belief set contractions from base contractions
and vice-versa.
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Appendix: Proofs

Lemma 1 ([4, Lemma 11]).

(a) If � α, then cut≺(α) = ∅.
(b) If �� α, cut≺(α) �� α.

(c) If A �� α, cut≺(α) = A.

(d) If β � α, then cut≺(α) ⊆ cut≺(β).

(e) If � α ↔ β, then cut≺(α) = cut≺(β).

(f ) If α � β, then cut≺(β) ⊆ cut≺(α).

(g) If α ≺ β, then cut≺(α) � β and cut≺(β) �� α.

(h) If α ≺ β, then cut≺(α ∧ β) = cut≺(α).
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(i) If β =� α, then cut≺(α ∧ β) = cut≺(α) = cut≺(β).

(j) If cut≺(α) � β, then cut≺(α ∧ β) = cut≺(α).

(k) If cut≺(α) �� β, then cut≺(α ∧ β) = cut≺(β).

Lemma 2. If α, β ∈ A, then α =� β if and only if cut≺(α) = cut≺(β).

Proof. If � α, then from (� 2) it follows that � β. Hence, the proof follows
from (� 3) and Lemma 1 (a). Assume now that �� α and consequently that
�� β. From left to right it follows from Lemma 1 (i). For the other direction:
Let α, β ∈ A, if α ≺ β, then by Lemma 1 (g) cut≺(α) � β and so cut≺(β) � β
which contradicts Lemma 1 (b). Due to the symmetry of the case we may
conclude that β �≺ α. Since α �≺ β, β �≺ α, and � is connected, we can
conclude that α � β and β � α.

Lemma 3 ([15, Lemma 2]). Let K be a belief set. If ÷ is a severe withdrawal
on K, then ÷ satisfies the following postulates:
(Linearity) Either K ÷ α ⊆ K ÷ β or K ÷ β ⊆ K ÷ α.
(Expulsiveness) If �� α and �� β, then either α �∈ K ÷ β or β �∈ K ÷ α.

Lemma 4 ([15, Observation 19(ii)]). Let K be a belief set. If ÷ is a severe
withdrawal on K, then ÷ can be represented as an entrenchement-based
withdrawal where the relation ≤ on which ÷ is based is obtained by (Def ≤
from ÷) α ≤ β if and only if α �∈ K ÷ β or � β and ≤ satisfies (EE1) to
(EE5).

Lemma 5. Let (A,�) be an ensconcement and β ∈ Cn(A). If α ∈ cut�(β),
γ ∈ A and α � γ, then γ ∈ cut�(β).

Proof. Let (A,�) be an ensconcement α ∈ cut�(β), γ ∈ A and α � γ.
From α ∈ cut�(β) it follows that {δ ∈ A : α ≺ δ} �� β. Hence, since α � γ,
it follows that {δ ∈ A : γ ≺ δ} �� β. Therefore γ ∈ cut�(β).

Lemma 6. Let (A,�) be a bounded ensconcement and cut�(α) �= ∅. Then
there exists β ∈ cut�(α) such that cut�(β) = cut�(α).

Proof. Let (A,�) be a bounded ensconcement and cut�(α) �= ∅. Then,
there exists β ∈ cut�(α) such that β � γ for all γ ∈ cut�(α). Therefore
cut�(β) ⊆ cut�(α). If cut�(β) ⊂ cut�(α), then there exists ψ ∈ cut�(α) \
cut�(β). Hence ψ ≺ β and ψ ∈ cut�(α). Contradiction. Therefore cut�(β) =
cut�(α).

Lemma 7. Let (A,�) be a bounded ensconcement and α ∈ Cn(A). Then
cut�(α) � α.
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Proof. Let (A,�) be a bounded ensconcement and α ∈ Cn(A). We will
prove by cases:
Case 1) cut�(α) = A. Trivial.
Case 2) cut�(α) = ∅. (A,�) is a bounded ensconcement, hence there exists
β ∈ A such that γ � β for all γ ∈ A. β �∈ cut�(α). Thus, {γ ∈ A : β ≺ γ} �
α. Hence ∅ � α.
Case 3) cut�(α) �= A and cut�(α) �= ∅. A \ cut�(α) �= ∅. From cut�(α) �= ∅
it follows, from Lemma 6, that there exists β ∈ cut�(α) such that cut�(β) =
cut�(α), where (as seen in the proof of Lemma 6) β � γ for all γ ∈ cut�(α).
Let δ ∈ A \ cut�(α) be such that γ � δ for all γ ∈ A \ cut�(α). From
δ �∈ cut�(α) it follows that X = {γ ∈ A : δ ≺ γ} � α. Let θ ∈ X.
Then θ ∈ A and δ ≺ θ. Then θ �∈ A \ cut�(α), from which follows that
θ ∈ cut�(α). Hence β � θ, from which follows that X ⊆ {γ ∈ A : β � γ}
and, since X � α, it follows that {γ ∈ A : β � γ} � α. It remains to prove
that {γ ∈ A : β � γ} ⊆ cut�(α), that follows trivially from Lemma 5.

Lemma 8. Let (A,�) be a bounded ensconcement and α, β ∈ Cn(A), then:

(a) If �� α, δ �∈ cut≺(α) and γ � δ for all γ ∈ A \ cut≺(α), then cut�(α) =
{θ ∈ A : δ � θ}.

(b) If cut≺(α) ⊂ cut≺(β), then cut�(α) ⊂ cut�(β).

(c) If cut≺(α) �= ∅ and cut�(α) ⊂ cut�(β), then cut≺(α) ⊂ cut≺(β).

Proof.
(a): Let �� α, δ �∈ cut≺(α) and γ � δ for all γ ∈ A \ cut≺(α), we will prove
that cut�(α) = {θ ∈ A : δ � θ} by double inclusion.
(⊆) Let β ∈ cut�(α). Assume by reductio that β ≺ δ. Hence, {θ ∈ A :
β ≺ θ} �� α. It follows that {θ ∈ A : δ � θ} �� α. Therefore δ ∈ cut≺(α).
Contradiction. Hence, δ � β and so cut�(α) ⊆ {θ ∈ A : δ � θ}.
(⊇) We will prove first that δ ∈ cut�(α). Assume by reductio that δ �∈
cut�(α). Hence {θ ∈ A : δ ≺ θ} � α. Let X = {θ ∈ A : δ ≺ θ}. It follows,
from �� α that X �= ∅. Hence, since � is a bounded ensconcement, there
exists a minimal element ψ of X. It follows that {θ ∈ A : ψ � θ} � α. Hence
ψ �∈ cut≺(α), from which follows that ψ � δ. Contradiction, since ψ ∈ X.
Therefore δ ∈ cut�(α), from which follows that {θ ∈ A : δ � θ} ⊆ cut�(α).
(b): Let cut≺(α) ⊂ cut≺(β). There are only two cases to consider:
Case 1) � α and �� β. Hence, cut�(α) = ∅ and, since cut≺(α) ⊂ cut≺(β),
cut≺(β) �= ∅. Therefore cut�(β) �= ∅. Hence cut�(α) ⊂ cut�(β).
Case 2) �� α and �� β. A \ cut≺(α) �= ∅, since cut≺(α) ⊂ cut≺(β) ⊆ A. Then,
since the ensconcement is bounded, there exists δ ∈ A \ cut≺(α) such that
γ � δ for all γ ∈ A \ cut≺(α). Then, by (a), cut�(α) = {θ ∈ A : δ � θ}.
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A\cut≺(β) �= ∅ (because β ∈ Cn(A)). Then there exists δ′ ∈ A\cut≺(β) such
that γ � δ′ for all γ ∈ A\cut≺(β). Then, by (a), cut�(β) = {θ ∈ A : δ′ � θ}.
Let ε ∈ cut≺(β)\ cut≺(α). Hence ε ∈ A\ cut≺(α) and ε �∈ A\ cut≺(β). From
which follows that ε � δ and δ′ ≺ ε. Hence δ′ ≺ δ. Hence cut�(α) ⊂ cut�(β).
(c): Let cut≺(α) �= ∅ and cut�(α) ⊂ cut�(β) and assume by reductio that
cut≺(α) �⊆ cut≺(β). Hence there exists γ ∈ A such that γ ∈ cut≺(α) and γ �∈
cut≺(β). From definition of proper cut it follows that {ψ ∈ A : γ � ψ} �� α
and {ψ ∈ A : γ � ψ} � β. On the other hand, since cut�(α) ⊂ cut�(β) there
exists δ ∈ A such that δ ∈ cut�(β) and δ �∈ cut�(α). Hence, by definition
of cut, it follows that {ψ ∈ A : δ ≺ ψ} �� β and {ψ ∈ A : δ ≺ ψ} � α.
From {ψ ∈ A : γ � ψ} �� α and {ψ ∈ A : δ ≺ ψ} � α it follows that
δ ≺ γ. Hence, from {ψ ∈ A : γ � ψ} � β it follows that {ψ ∈ A : δ ≺
ψ} � β. Contradiction. Hence cut≺(α) ⊆ cut≺(β). It remains to show that
cut≺(α) �= cut≺(β). From cut≺(α) �= ∅ it follows that cut�(α) �= ∅ and
cut�(β) �= ∅. Let δ be a minimal member of cut�(α) and δ′ be a minimal
element of cut�(β). According to Lemma 5 cut�(α) = {γ ∈ A : δ � γ}
and cut�(β) = {γ ∈ A : δ′ � γ}. Hence, since cut�(α) ⊂ cut�(β), δ′ ≺
δ. Assume by reductio that δ ∈ cut≺(α). Then {γ ∈ A : δ � γ} �� α.
Contradiction (by Lemma 7). Assume by reductio that δ �∈ cut≺(β). Hence
{γ ∈ A : δ � γ} � β. Therefore, {γ ∈ A : δ′ ≺ γ} � β. Contradiction, since
δ′ ∈ cut�(β).

Proof of Observation 4. Let K be a belief set and ÷ an operator that
satisfies (÷1) to (÷4) and (÷9). Assume that Cn(α) = Cn(β). We intent
to prove that K − α = K − β. Assume first that � α ∧ β. Hence � α and
� β. Therefore, by (÷2) and (÷3), it follows that K − α = K − β = K.
Assume now that �� α ∧ β. From Cn(α) = Cn(β) it follows that �� α and
�� β furthermore it follows that β ∈ Cn(α) and α ∈ Cn(β). From (÷4) and
(÷1) it follows that K − α �� α and K − β �� β. Therefore β �∈ K − α and
α �∈ K − β. Hence, by (÷9), it follows that K ÷ α = K ÷ β.

Proof of Observation 8.
(a) Let �� β and cut≺(α) ⊆ cut≺(β) We will prove by cases:
Case 1) cut≺(α) ⊂ cut≺(β). It follows trivially by Lemma 8 (b).
Case 2) cut≺(α) = cut≺(β).
Case 2.1) cut≺(α) �= ∅. Assume by reductio that cut�(α) �⊆ cut�(β). Hence
cut�(β) ⊂ cut�(α). It follows, from Lemma 8 (c) that cut≺(β) ⊂ cut≺(α).
Contradiction.
Case 2.2) cut≺(α) = ∅. If cut�(α) = ∅ trivial. Assume now that cut�(α) �= ∅.
Since � is inversely well-ranked, there exists γ ∈ A such that ψ � γ for all
ψ ∈ A. Let θ ∈ cut�(α). Hence θ =� γ, otherwise γ ∈ cut≺(α). Therefore
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{ψ ∈ A : θ ≺ ψ} = ∅. Hence, since �� β, θ ∈ cut�(β).
(b) Let � β and �� α. By definition of cut it follows that cut�(β) = ∅.
Since � is inversely well-ranked, there exists γ ∈ A such that ψ � γ for all
ψ ∈ A. Hence, {ψ ∈ A : γ ≺ ψ} = ∅. Therefore, since �� α, it follows that
γ ∈ cut�(α). Hence, cut�(β) ⊂ cut�(α).

Proof of Theorem 11. Throughout this proof we will often use Obser-
vation 12. However, this is not an issue because the result that is proven
here is not used in the proof of Observation 12 that is presented immediately
after this one.
From Brutal Contraction to Postulates:
Success Let �� α and assume by reductio that A − α � α. Then it follows
from the definition of − that cut≺(α) � α. Contradiction by Lemma 1 (b).
Inclusion and Failure follow trivially.
Vacuity follows trivially from Lemma 1 (c).
Relative Closure If � α, trivial from failure. Let �� α and assume by reductio
that β ∈ A,A − α � β and β �∈ A − α. It follows from the definition of
− that cut≺(α) � β and β �∈ cut≺(α). From β �∈ cut≺(α) it follows that
{γ ∈ A : β � γ} � α. If � β, then it follows from (�2) that � α. Contradic-
tion.
Assume that �� β. Since cut≺(α) � β it follows that cut≺(α) �= ∅. Let
δ ∈ cut≺(α).
δ, β ∈ A and � is a connected relation, then δ � β or β ≺ δ.
If δ � β, then {γ ∈ A : β � γ} ⊆ {γ ∈ A : δ � γ}. Contradiction, since
{γ ∈ A : β � γ} � α and δ ∈ cut≺(α).
If β ≺ δ, and since δ is an arbitrary element of cut≺(α), then for all
γ ∈ cut≺(α), we have that β ≺ γ. Contradiction, since cut≺(α) � β contra-
dicts (�1).

Strong Inclusion Let � β, then by failure it follows that A − β = A. Hence
A �� α and, by vacuity and inclusion, it follows that A − α = A. Therefore
A − β ⊆ A − α.
Assume now that �� β. Let A − β �� α, it follows by the definition of −
that cut≺(β) �� α. By Lemma 1 (k) it follows that cut≺(α ∧ β) = cut≺(α).
By Lemma 1 (d) cut≺(β) ⊆ cut≺(α ∧ β), then cut≺(β) ⊆ cut≺(α). Thus
A − β ⊆ A − α (by − definition).

Uniform Behaviour If � β follows trivially from failure. Let �� β, A � α, β ∈
A, A − α = A − β and assume by reductio that α �∈ Cn(A − β ∪ {γ ∈ A :
A − β = A − γ}).
Since �� β and β ∈ A, by success it follows that A − β �= A. Hence, for all
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δ, if A − δ = A − β it follows that A − δ �= A and, by failure, �� δ. Then it
follows from the hypothesis and the definition of − that cut≺(α) = cut≺(β)
and cut≺(β) ∪ {γ ∈ A : cut≺(γ) = cut≺(β)} �� α. From Observation 7 and
Lemma 2 it follows that {γ ∈ A : β ≺ γ} ∪ {γ ∈ A : γ =� β} �� α. Hence,
{γ ∈ A : β � γ} �� α, and so β ∈ cut≺(α) = cut≺(β). Contradiction (Lemma
1 (b)).

From Postulates to Brutal Contraction:
Let − be an operator on A that satisfies success, inclusion, vacuity, failure,
relative closure, strong inclusion and uniform behaviour. In order to prove
that − is a brutal contraction we must prove that there exists a transitive,
connected relation � that satisfies (� 1) - (� 3) and such that

A − α =
{

cut≺(α) if �� α
A otherwise , where cut is defined in terms of � .

Let � be defined for α, β ∈ A as follows:

α � β iff either (A − β ⊆ A − α and �� α) or � β.

(� 1) Let γ ∈ A \ Cn(∅), we must show that H = {α ∈ A : γ ≺ α} �� γ. Let
α ∈ A and γ ≺ α, then, according to our construction, there are two possible
cases to consider (the other two cases are excluded by failure, success and
inclusion):
Case 1) A−α ⊆ A−γ,A−γ �⊆ A−α and �� γ. Since α ∈ A and A−γ �⊆ A−α
then, by Observation 12 (a), it follows that α ∈ A − γ.
Case 2) � α and �� γ. By relative closure, it follows that α ∈ A − γ.
Hence H ⊆ A − γ. Therefore, by success, it follows that H �� γ.
(� 2) Let α, β ∈ A such that �� α and � β. We need to prove that α � β
and β �� α. Both follow from the definition of �.
(� 3) Follows trivially from the definition of �.
(� is connected) By the definition of �, it follows that α �� β if and only if
(A − β �⊆ A − α or � α) and �� β. We will prove by cases:
Case 1) � α and �� β. It follows from (� 2) that β � α.
Case 2) A − β �⊆ A − α and �� β. From linearity (Observation 12 (g)), it
follows that A − α ⊆ A − β. Hence, by the definition of �, it follows that
β � α.
(� is transitive) Let α, β, γ ∈ A and assume that α � β and β � γ. If � γ,
then, by (� 2) and (� 3), it follows that α � γ. Assume now that �� γ.
Then, by (� 2) it follows that �� α and �� β. From α � β and β � γ and the
definition of � it follows that A − β ⊆ A − α and A − γ ⊆ A − β. Therefore,
since ⊆ is transitive A − γ ⊆ A − α, and it follows from the definition of �
(since �� α) that α � γ.
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It remains to prove that:

A − α =
{

cut≺(α) if �� α
A otherwise

We will prove by cases:
1. � α. Follows trivially by failure.
2. �� α
2.1. A �� α. It follows from vacuity, inclusion and Lemma 1 (c) that cut≺(α) =
A = A − α.
2.2. A � α.
2.2.1. α ∈ A. We will prove that A − α = cut≺(α) by double inclusion.
(⊇) Let β ∈ cut≺(α) and assume by reductio that β �∈ A−α. From β �∈ A−α
it follows, by Observation 12 (a), that A − α ⊆ A − β. On the other hand,
since β ∈ cut≺(α), it follows from Observation 7 that α ≺ β. According to
the definition of � there are four cases to consider:
Case 1) A − β ⊆ A − α,A − α �⊆ A − β and �� α. Contradiction, since
A − α ⊆ A − β.
Case 2) A − β ⊆ A − α, �� α and � β. Hence, since A − α ⊆ A − β, it follows
that A − α = A − β. Contradiction, since by failure A − β = A and, by
success and inclusion, A − α ⊂ A.
Case 3) A − α �⊆ A − β, �� α and � β. Contradiction.
Case 4) � β and �� α. Then, by relative closure, it follows that β ∈ A − α.
Contradiction.
It follows that cut≺(α) ⊆ A − α.
(⊆) Let β ∈ A − α and assume by reductio that β �∈ cut≺(α). We will prove
by cases:
Case 1) � β. Then, by (� 2), α ≺ β. Therefore, from Observation 7, it
follows that β ∈ cut≺(α). Contradiction.
Case 2) �� β. Since β �∈ cut≺(α), by Observation 7, it follows that α �≺ β.
Therefore, since � is a connected relation, it follows that β � α. According
to the definition of � this means that:
i) A−α ⊆ A−β and �� β or ii) � α. In the latter we obtain a contradiction.
In the former we also obtain a contradiction, since β ∈ A−α and by success
β �∈ A − β.
Therefore cut≺(α) = A − α.
2.2.2. α �∈ A. We will prove that A − α = cut≺(α) by double inclusion.
(⊇) Let β ∈ cut≺(α) and assume by reductio that β �∈ A−α. If � β then, by
relative closure, it follows that β ∈ A − α. Contradiction. Assume now that
�� β. From β �∈ A−α it follows, from Observation 12 (a), that A−α ⊆ A−β.
We will consider two cases:
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Case 1) A−α ⊂ A−β. Hence, by Observation 12 (f), A−β � α. Therefore,
since β ∈ A, from the case 2.2.1. it follows that cut≺(β) � α. Hence, from
Observation 7, {γ ∈ A : β ≺ γ} � α. Contradiction, since β ∈ cut≺(α).
Case 2) A−α = A−β. From β ∈ cut≺(α) it follows that {γ ∈ A : β � γ} �� α.
Hence, by Observation 7, it follows that cut≺(β) ∪ {γ ∈ A : β =� γ} �� α.
Hence, by Lemma 2, it follows that cut≺(β)∪{γ ∈ A : cut≺(β) = cut≺(γ)} ��
α. Therefore, from case 2.2.1., it follows that (A − β) ∪ {γ ∈ A : A − β =
A−γ} �� α. Contradiction, from uniform behaviour. It follows that cut≺(α) ⊆
A − α.
(⊆) Let β ∈ A − α and assume by reductio that β �∈ cut≺(α) (note that it
follows from inclusion that β ∈ A). We will consider two cases:
Case 1) � β. Then, by (� 2), it follows that, if γ ∈ A and β � γ, then
� γ. Therefore {γ ∈ A : β � γ} ⊆ Cn(∅). Hence, since �� α, it follows that
{γ ∈ A : β � γ} �� α. Therefore β ∈ cut≺(α). Contradiction.
Case 2) �� β. From β �∈ cut≺(α) it follows that {γ ∈ A : β � γ} � α. Then
according to the definition of �, ({γ ∈ A : A−γ ⊆ A−β}∪{γ ∈ A :� γ}) � α.
Hence, by Observation 12 (e), it follows that {γ ∈ A : A−γ ⊂ A−α} � α. If
A−γ ⊂ A−α, then, by Observation 12 (a), it follows that γ ∈ A−α. Hence,
{γ ∈ A : A − γ ⊂ A − α} ⊆ A − α. Therefore, A − α � α. Contradiction (by
success).

Proof of Observation 12.
(a) Let α ∈ A \ A − β, then it follows by relative closure that A − β �� α and
so, by strong inclusion, A − β ⊆ A − α.

(b) Let �� α. Hence, by success A − α �� α, and so A − α �� α ∧ β. Therefore,
by strong inclusion, A − α ⊆ A − (α ∧ β).

(c) It follows from replacing β by α ∧ β in strong inclusion.

(d) It follows from �� α and (b) that A − α ⊆ A − (α ∧ β). Hence, A −
(α ∧ β) � β. Therefore, since �� α ∧ β, due to success, it follows that
A − (α ∧ β) �� α. From (c) it follows that A − (α ∧ β) ⊆ A − α, and so
A − (α ∧ β) = A − α. On the other hand, since �� β it follows from (b)
that A − β ⊆ A − (α ∧ β) = A − α.

(e) Let �� α and α ∈ A−β, then A−α �= A−β, since from success α �∈ A−α.
We will prove by cases:
Case 1) A − α �� β. By strong inclusion, A − α ⊆ A − β. Hence
A − α ⊂ A − β.
Case 2) � β. It follows from failure that A − β = A and from inclusion
that A − α ⊆ A − β. Hence A − α ⊂ A − β.
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Case 3) A − α � β and �� β. It follows from �� α and (d) that A − β ⊆
A − α. Contradiction, since α ∈ A − β and �� α.

(f ) Follows by strong inclusion.

(g) We will prove by cases:
Case 1) � α, it follows from failure that A−α = A and so (by inclusion)
A − β ⊆ A − α.
Case 2) � β, due to the symmetry of the case, it follows that A − α ⊆
A − β.
Case 3) A − α �� β, then by strong inclusion A − α ⊆ A − β.
Case 4) �� α, �� β and A−α � β. It follows from (d) that A−β ⊆ A−α.

(h) Follows by success and (g).

(i) If � α ∧ β it follows trivially from failure. Assume now that �� α ∧ β.
It follows from � α ↔ β that �� α, �� β, � α → β and � β → α. Then,
due to success, A − β �� α and A − α �� β. Hence, by strong inclusion,
A − α = A − β.

Proof of Observation 14. Let β ∈ A and H = A−β ∪{γ ∈ A : A−β =
A−γ} we must prove that there exists α ∈ A∪Cn(∅) such that A−α = H.
If � β, then it follows, from failure, that A−β = A and that H = A. Then it
is enough to consider α = β. Assume now that �� β. We will prove by cases:
Case 1) A − δ ⊆ A − β for all δ ∈ A. We will consider α ∈ Cn(∅). Then
H ⊆ A − α = A. It remains to prove that A − α ⊆ H. Let θ ∈ A − α = A.
Hence A − θ ⊆ A − β. We will consider two cases:
Case 1.1) A−θ ⊂ A−β. By Observation 12 (f), A−β � θ. Hence, by relative
closure, θ ∈ A − β.
Case 1.2) A − θ = A − β. Then θ ∈ {γ ∈ A : A − β = A − γ}. Therefore
A − α = H.
Case 2) There exists δ ∈ A such that A − δ �⊆ A − β. Then, by linearity,
it follows that A − β ⊂ A − δ. Let θ ∈ {γ ∈ A : A − γ = A − β}. Then
A − θ = A − β. Hence A − θ ⊂ A − δ and, by Observation 12 (f) A − δ � θ.
Therefore, by relative closure, θ ∈ A − δ. Hence there exists δ such that
H ⊆ A − δ. Consider the (non-empty) set S = {ψ ∈ A : H ⊆ A − ψ}. We
will consider two cases:
Case 2.1) S ⊆ Cn(∅). Then we take α ∈ Cn(∅). H ⊆ A − α. It remains
to prove that A − α ⊆ H. Let θ ∈ A − α. If � θ, then, by relative closure,
θ ∈ A − β and so θ ∈ H.
Consider now that �� θ and assume by reductio that θ �∈ H. Then θ �∈ A − β
and A − θ �= A − β. Hence, by Observation 12 (a), A − β ⊂ A − θ. Let
ψ ∈ {γ ∈ A : A−γ = A−β}. It follows that A−ψ ⊂ A−θ. By Observation
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12 (f) and relative closure it follows that ψ ∈ A − θ. Therefore H ⊆ A − θ.
Contradiction since θ ∈ S ⊆ Cn(∅) and �� θ.
Case 2.2) There are non-tautological formulae on S. Consider S′ = S\Cn(∅).
Then by lower bound there exists γ′ ∈ S′ such that A − γ′ ⊆ A − γ for all
γ ∈ S′. Hence H ⊆ A − γ′. It remains to prove that A − γ′ ⊆ H. Let
θ ∈ A − γ′. If � θ, then by relative closure θ ∈ A − β. If �� θ, assume by
reductio that θ �∈ H. Hence θ �∈ A−β and A−θ �= A−β. Hence, by linearity,
A − θ ⊂ A − β or A − β ⊂ A − θ. Thus we have two cases to consider:
Case 2.2.1) θ �∈ A − β and A − θ ⊂ A − β. From A − θ ⊂ A − β it follows,
from Observation 12 (f) and relative closure, θ ∈ A − β. Contradiction.
Case 2.2.2) θ �∈ A − β and A − β ⊂ A − θ. Hence H ⊆ A − θ, since
A−β ⊂ A− θ and, by Observation 12 (f) and relative closure, for all ψ ∈ A
such that A − ψ = A − β, ψ ∈ A − θ. Hence A − γ′ ⊆ A − θ. Therefore
θ ∈ A − θ. Contradiction, since by success A − θ �� θ.

Proof of Observation 15. Let β ∈ A, A � α and A − α = A − β. If � β
follows trivially by failure. If �� β, then it follows, by success A − β �� β.
From clustering it follows that there exists ψ ∈ A∪Cn(∅) such that A−ψ =
A−β ∪{γ ∈ A : A−β = A−γ}. β ∈ A−ψ. Hence, A−α = A−β ⊂ A−ψ.
By Observation 12 (f) A − ψ � α.

Proof of Theorem 16.
From bounded brutal contraction to postulates:
Let − be a bounded brutal contraction operator on A. By Theorem 11
− satisfies success, inclusion, vacuity, failure, relative closure and strong
inclusion. It remains to show that − satisfies upper bound and lower bound.

Upper Bound Let X ⊆ A be a non empty set of non-tautological formulae.
Since � is well ranked there exists β ∈ X such that β � α for all α ∈
X. Hence, by Lemma 1 (f), there exists β ∈ X for all α ∈ X such that
cut≺(α) ⊆ cut≺(β). Therefore, by definition of − there exists β ∈ X for all
α ∈ X such that A − α ⊆ A − β.

Lower Bound Analogous to upper bound.

From postulates to bounded brutal contraction:
Let − be an operator on A that satisfies success, inclusion, vacuity, failure,
relative closure, lower bound, upper bound and strong inclusion. From Obser-
vation 14 and Observation 15 it follows that − satisfies uniform behaviour.
Let � be defined by:
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α � β iff

⎧⎨
⎩

A − β ⊆ A − α and �� α
or

� β

According to the Postulates to Construction part of the proof of Theorem
11 � satisfies (� 1) - (� 3) and is such that

A − α =
{

cut≺(α) if �� α
A otherwise

It remains to prove that � is bounded. To do so we must prove that � is
well-ranked and inversely well-ranked.
(� is well-ranked) Let X �= ∅ and X ⊆ A. We will prove by cases:
Case 1) All formulae in X are tautologies. Let β be one of those formulas.
Hence by (� 3) β � α for all α ∈ X.
Case 2) All formulae in X are non-tautological. By upper bound there exists
β ∈ X such that A − α ⊆ A − β for all α ∈ X. Hence, by definition of �,
there exists β ∈ X such that β � α for all α ∈ X.
Case 3) There are some formulae in X, that are tautological and others that
are not. Consider X ′ = X \Cn(∅). Hence, by the previous case, there exists
β ∈ X ′ such that β � α′ for all α′ ∈ X ′. Therefore, it follows from (� 3)
that β � α for all α ∈ X.
(� is inversely well-ranked) Let X �= ∅ and X ⊆ A. We will prove by cases:
Case 1) There are some β ∈ X ∩ Cn(∅). Then, by definition of �, α � β for
all α ∈ X.
Case 2) All formulae in X are non-tautological. By lower bound there exists
β ∈ X such that A − β ⊆ A − α for all α ∈ X. Hence, by definition of �,
there exists β ∈ X such that α � β for all α ∈ X.

Proof of Observation 17. Let α ∈ Cn(A) \ Cn(∅). By inclusion and
success A − α ⊂ A. Hence, by relative closure, A \ A − α is a non-empty
set of non-tautological formulae. Therefore, from lower bound, there exists
β ∈ A \ A − α such that A − β ⊆ A − δ for all δ ∈ A \ A − α. It follows
from β ∈ A \ A − α, by Observation 12 (a), that A − α ⊆ A − β. Hence
A − α = A − β or A − α ⊂ A − β. The latter leads to a contradiction. If
A − α ⊂ A − β there exists ψ ∈ A − β \ A − α. By relative closure it follows
that �� ψ. Hence, by linearity and success, it follows that A − ψ ⊂ A − β.
From ψ ∈ A−β \A−α it follows that ψ ∈ A\A−α, and so A−β ⊆ A−ψ.
Contradiction. Hence A − α = A − β.

Proof of Theorem 19. We will prove by cases:
Case 1) � α. It follows that A − α = A and (Cn(A) ÷≤� α) ∩ A = A.
Case 2) A �� α. It follows that (Cn(A) ÷≤� α) ∩ A = A and that A − α =
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cut≺(α). By Lemma 1 (c), it follows that cut≺(α) = A.
Case 3)A � α and �� α. We will prove that A − α = (Cn(A) ÷≤� α) ∩ A by
double inclusion.
(⊆) Let β ∈ A − α. It follows that β ∈ A. It remains to prove that β ∈
Cn(A) ÷≤� α, i.e. that β ∈ {ψ ∈ Cn(A) : cut�(ψ) ⊂ cut�(α)}.
If � β, it follows trivially by Observation 8 (b). Assume now that �� β. Then
β ∈ cut≺(α). Hence cut≺(β) ⊂ cut≺(α). It follows, from Lemma 8 (b) that
cut�(β) ⊂ cut�(α).
(⊇) Let β ∈ (Cn(A) ÷≤� α) ∩ A. If � β, then it follows from (� 2) that
{ψ ∈ A : β � ψ} ⊆ Cn(∅). Therefore, since �� α, it follows that β ∈
cut≺(α) = A − α. Assume now that �� β. From β ∈ (Cn(A) ÷≤� α) ∩ A
it follows that β ∈ A and cut�(β) ⊂ cut�(α). Hence there exists γ ∈ A
such that γ ∈ cut�(α) and γ �∈ cut�(β). Hence, {ψ ∈ A : γ ≺ ψ} �� α
and {ψ ∈ A : γ ≺ ψ} � β. Assume by reductio that β �∈ A − α i.e. that
β �∈ cut≺(α). Hence, {ψ ∈ A : β � ψ} � α. From {ψ ∈ A : β � ψ} � α and
{ψ ∈ A : γ ≺ ψ} �� α it follows that β � γ. Therefore, since {ψ ∈ A : γ ≺
ψ} � β, it follows that {ψ ∈ A : β ≺ ψ} � β which contradicts (� 1).

Proof of Theorem 20. We will prove by cases:
Case 1) � α. Then Cn(A)÷≤�α = Cn(A) and A−α = A. Hence Cn(A−α) =
Cn(A) = Cn(A) ÷≤� α.
Case 2) A �� α. Then Cn(A)÷≤� α = Cn(A) and, by Lemma 1 (c), A−α =
cut≺(α) = A. Hence Cn(A − α) = Cn(A) = Cn(A) ÷≤� α.
Case 3)A � α and �� α. Hence Cn(A)÷�α = {ψ ∈ Cn(A) : α <� ψ} = {ψ ∈
Cn(A) : cut�(ψ) ⊂ cut�(α)}. We will prove that Cn(A−α) = Cn(A)÷≤� α
by double inclusion.
(⊆) Let β ∈ Cn(A − α). If � β, then β ∈ Cn(A) and, by Observation 8
(b), cut�(β) ⊂ cut�(α). Hence β ∈ Cn(A) ÷� α. Assume now that �� β.
From β ∈ Cn(A − α) it follows that cut≺(α) � β. Hence, by Lemma 1 (j),
cut≺(α ∧ β) = cut≺(α). From α ∧ β � β by Lemma 1 (d) it follows that
cut≺(β) ⊆ cut≺(α ∧ β). Hence cut≺(β) ⊆ cut≺(α). From which, together
with Lemma 1 (b) and cut≺(α) � β it follows that cut≺(β) ⊂ cut≺(α).
Hence, by Lemma 8 (b), it follows that cut�(β) ⊂ cut�(α). Therefore, since
β ∈ Cn(A), it follows that β ∈ Cn(A) ÷≤� α.
(⊇) Let β ∈ Cn(A) ÷≤� α. Hence, β ∈ Cn(A) and cut�(β) ⊂ cut�(α).
Assume by reductio that β �∈ Cn(A−α). Therefore cut≺(α) �� β. By Lemma
1 (k) it follows that cut≺(α ∧ β) = cut≺(β). From α ∧ β � α, by Lemma
1 (d), it follows that cut≺(α) ⊆ cut≺(β). From Observation 8 (a) it follows
that cut�(α) ⊆ cut�(β). Contradiction.



354 M. Garapa et al.

Proof of Observation 21. If A = ∅ vacuously true. Assume now that
A �= ∅. Let ÷ be an operator on Cn(A) that satisfies (÷1) to (÷4), (÷9),
base-reduction, upper bound and lower bound, and α ∈ Cn(A) \ Cn(∅). It
follows trivially if α ∈ A. Assume now that α ∈ Cn(A) \ A. It holds that
A \ Cn(A) ÷ α �= ∅, otherwise, from (÷1) and (÷2), it would follow that
Cn(A) ÷ α = Cn(A) which contradicts (÷4). On the other hand, by (÷1),
(A \ Cn(A) ÷ α) ∩ Cn(∅) = ∅. Hence, by ÷ lower bound, there exists β ∈
A\Cn(A)÷α such that Cn(A)÷β ⊆ Cn(A)÷γ, for all γ ∈ A\Cn(A)÷α.
It follows, by (÷9) that Cn(A) ÷ α ⊆ Cn(A) ÷ β. It remains to prove that
Cn(A) ÷ β ⊆ Cn(A) ÷ α. Assume by reductio that this is not the case.
Hence, by (÷9), α ∈ Cn(A) ÷ β. Hence, by base-reduction, it follows that
Cn(A) ÷ β ∩ A � α. Therefore, by compactness, there exists a finite subset
of Cn(A) ÷ β ∩ A, A′ = {α1, ..., αn}, such that A′ � α. Hence, there is some
αi ∈ A′ such that αi �∈ Cn(A)÷α. Hence, by (÷1), �� αi. On the other hand,
Cn(A) ÷ β ⊆ Cn(A) ÷ αi. But αi ∈ Cn(A) ÷ β. Contradiction, by (÷4).

Proof of Theorem 22. From ensconcement-based withdrawal to postu-
lates: Let ÷ be an ensconcement-based withdrawal related to (A,�) and
let ≤=≤�. Hence ÷ satisfies the postulates for severe withdrawals. It re-
mains to show that ÷ satisfies: base-reduction, upper bound and lower bound.
Upper Bound: Let ÷ be an ensconcement-based withdrawal related to
(A,�). Let X �= ∅ and X ⊆ Cn(A) \ Cn(∅). From Observation 9, since
(A,�) is a bounded ensconcement, it follows that ≤� is bounded. Hence,
there exists β ∈ X such that β ≤ α for all α ∈ X. We will prove that
Cn(A)÷α ⊆ Cn(A)÷β for all α ∈ X. Let γ ∈ Cn(A)÷α. Hence, by defini-
tion of ÷, γ ∈ Cn(A) and α < γ. By (EE1), since β ≤ α and α < γ it follows
that β < γ. Hence γ ∈ Cn(A) ÷ β. Therefore Cn(A) ÷ α ⊆ Cn(A) ÷ β.
Lower Bound: Analogous to upper bound.
Base-reduction: Let Cn(A)÷α � β. We will prove that (Cn(A)÷α)∩A � β
by cases:
Case 1) � β. Follows trivially.
Case 2) α �∈ Cn(A) or � α. Follows trivially by (R≤).
Case 3) �� β, α ∈ Cn(A) and �� α. From Cn(A) ÷ α � β it follows, by (R≤),
that X � β where X = {ψ ∈ Cn(A) : cut�(ψ) ⊂ cut�(α)}. It holds that
X \ Cn(∅) �= ∅, since �� β. Let ψ ∈ X \ Cn(∅). Assume that cut�(ψ) = ∅
and let θ ∈ Cn(∅). Hence, by (EE5), it follows that ψ < θ. Hence, by Obser-
vation 9, cut�(θ) ⊂ cut�(ψ) = ∅. Contradiction. Hence cut�(ψ) �= ∅. From
Lemma 6, and since � is bounded, it follows that there exists δ ∈ cut�(ψ)
such that cut�(δ) = cut�(ψ). Let Y = {μ ∈ A : cut�(μ) ⊂ cut�(α)}.
Let μ1 ∈ Y such that μ1 � μ for all μ ∈ Y . Let λ ∈ cut�(μ1). Hence
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cut�(λ) ⊆ cut�(μ1), from which follows that cut�(λ) ⊂ cut�(α). Therefore
λ ∈ Y . Let φ ∈ Y . It follows that μ1 � φ. Hence φ ∈ cut�(μ1). Therefore
Y = cut�(μ1). By Lemma 7 cut�(ψ) � ψ. Hence, since cut�(δ) = cut�(ψ)
it follows that cut�(δ) � ψ. From cut�(δ) ⊂ cut�(α) it follows that δ ∈ Y .
Hence μ1 � δ. Therefore cut�(δ) ⊆ cut�(μ1) = Y , and so Y � ψ. Hence, for
all ψ ∈ Cn(A) ÷ α it follows that Y � ψ. Therefore, since Cn(A) ÷ α � β, it
follows that Y � β. Y ⊆ (Cn(A) ÷ α) ∩ A. Hence (Cn(A) ÷ α) ∩ A � β.
From postulates to ensconcement-based withdrawal: Let A be a belief base
and ÷ be an operator on Cn(A) that satisfies (÷1) to (÷4), (÷9), base-
reduction, upper bound and lower bound. Let � be a binary relation on A
defined by:
α � β if and only if α �∈ Cn(A) ÷ β or � β.
We will prove that � is a bounded ensconcement.
(�1) Let γ ∈ A \ Cn(∅). We must show that H = {α ∈ A : γ ≺ α} �� γ. It
is enough to show that H \ Cn(∅) �� γ. Let α ∈ A \ Cn(∅) and γ ≺ α. Then,
γ � α and α �� γ. Hence, by definition of �, it follows that γ �∈ Cn(A) ÷ α,
α ∈ Cn(A) ÷ γ and �� γ. Then H ⊆ Cn(A) ÷ γ where, �� γ. Hence, since by
(÷4) Cn(A) ÷ γ �� γ it follows that H �� γ.
(�2) Let α, β ∈ A be such that �� α and � β. From � β it follows, by defini-
tion of �, that α � β. Assume by reductio that �� α, � β and β � α. Hence,
by definition of �, β �∈ Cn(A) ÷ α or � α. Contradiction, since �� α and by
(÷1) β ∈ Cn(A) ÷ α.
(�3) Follows trivially by definition of �.
(� is transitive) Let α � β and β � γ. Hence, by definition of �, it fol-
lows that (α �∈ Cn(A) ÷ β or � β) and (β �∈ Cn(A) ÷ γ or � γ). Hence,
α �∈ Cn(A) ÷ β and (β �∈ Cn(A) ÷ γ or � γ) or (� β and (β �∈ Cn(A) ÷ γ or
� γ)). Hence, we have four cases to consider:
Case 1) α �∈ Cn(A) ÷ β and β �∈ Cn(A) ÷ γ. From (÷9) it follows that
Cn(A) ÷ γ ⊆ Cn(A) ÷ β. Hence, α �∈ Cn(A) ÷ γ. Therefore α � γ, by
definition of �.
Case 2) α �∈ Cn(A) ÷ β and � γ. Then α � γ follows trivially by definition
of �.
Case 3) � β and β �∈ Cn(A) ÷ γ. Contradicts (÷1).
Case 4) � β and � γ. Then α � γ follows trivially by definition of �.
(� is connected) Let α �� β. Hence α ∈ Cn(A)÷β and �� β. We will consider
two cases:
Case 1) � α. Hence β � α, by definition of �.
Case 2) �� α. Hence, by ÷ expulsiveness (Lemma 3), β �∈ Cn(A) ÷ α. There-
fore, by definition of �, β � α.
(� is well-ranked) Let X ⊆ A a non empty set. We will prove by cases:
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Case 1) X ⊆ Cn(∅). Trivial.
Case 2) X �⊆ Cn(∅). Let X ′ = X \ Cn(∅). Hence, by ÷ upper bound there
exists β ∈ X ′ such that Cn(A) ÷ α ⊆ Cn(A) ÷ β for all α ∈ X ′. By (÷4)
β �∈ Cn(A)÷α for all α ∈ X ′. Hence, by definition of �, there exists β ∈ X ′

such that β � α for all α ∈ X ′. If X = X ′ trivial. Assume now that X �= X ′.
Let γ ∈ X \ X ′. Hence � γ and by (� 2) it follows that β � γ. Therefore,
there exists β ∈ X such that β � α for all α ∈ X.
(� is inversely well-ranked) Let X ⊆ A a non empty set. We will consider
two cases:
Case 1)X ∩ Cn(∅) �= ∅. Let β ∈ X ∩ Cn(∅) hence, by definition of �, α � β
for all α ∈ X.
Case 2)X ∩ Cn(∅) = ∅. Hence, by ÷ lower bound, there exists β ∈ X such
that Cn(A) ÷ β ⊆ Cn(A) ÷ α, for all α ∈ X. By (÷4) α �∈ Cn(A) ÷ β, for
all α ∈ X. Hence, by definition of � there exists β ∈ X such that α � β,
for all α ∈ X.

We have proved that � is a bounded ensconcement. Let ≤� be the
bounded epistemic entrenchment related to Cn(A) defined from � as ex-
posed in Observation 9. It remains to show that Cn(A)÷α = Cn(A)÷≤� α,
where ÷≤� is defined (as in (R≤)) by:

Cn(A) ÷≤� α =
{

Cn(A) ∩ {ψ : α <� ψ} if α ∈ Cn(A) and �� α
Cn(A) otherwise

According to Lemma 4 and since ÷ is a severe withdrawal function, the
epistemic entrenchment ≤ on which ÷ is based on is such that: α ≤ β if and
only if α �∈ Cn(A)÷β or � β. Thus to prove that Cn(A)÷α = Cn(A)÷≤� α
it is enough to show that:
α ≤� β if and only if α �∈ Cn(A) ÷ β or � β.
(⇒) Let α ≤� β. Hence, by definition of ≤�, α ≤� β if and only if:
i) α �∈ Cn(A), or ii) α, β ∈ Cn(A) and cut�(β) ⊆ cut�(α).
We will prove by cases:
Case 1) α �∈ Cn(A). Then, by (÷2), α �∈ Cn(A) ÷ β.
Case 2) α, β ∈ Cn(A) and cut�(β) ⊆ cut�(α). It follows trivially if � β.
Assume now that �� β.
{γ ∈ A : {δ ∈ A : γ ≺ δ} �� β} ⊆ {γ ∈ A : {δ ∈ A : γ ≺ δ} �� α}.
Hence, {γ ∈ A : {δ ∈ A : (γ �∈ Cn(A)÷δ and δ ∈ Cn(A)÷γ and �� γ) or (�
δ and δ ∈ Cn(A) ÷ γ and �� γ)} �� β} ⊆ {γ ∈ A : {δ ∈ A : (γ �∈ Cn(A) ÷
δ and δ ∈ Cn(A)÷ γ and �� γ) or (� δ and δ ∈ Cn(A)÷ γ and �� γ)} �� α}.
Therefore according to (÷1) and (÷4),

X = {γ ∈ A : {δ ∈ A : (γ �∈ Cn(A) ÷ δ and δ ∈ Cn(A) ÷ γ) or (�
δ and �� γ)} �� β} ⊆ Y = {γ ∈ A : {δ ∈ A : (γ �∈ Cn(A) ÷ δ and δ ∈
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Cn(A)÷γ) or (� δ and �� γ)} �� α}. Assume by reductio that α ∈ Cn(A)÷β.
From α ∈ Cn(A)÷β it follows, by base-reduction, that Cn(A)÷β∩A � α. By
compactness, there exists a finite subset of Cn(A)÷β ∩A, H = {α1, ..., αn},
such that H � α. Let us assume that H ∩ Cn(∅) = ∅. For all αi ∈ H,
αi ∈ Cn(A)÷β = Cn(A)÷β′, for some β′ ∈ A (by Observation 21). Hence,
by expulsiveness (Lemma 3), β′ �∈ Cn(A)÷αi. Therefore β′ �∈ Y , since H ⊆
Z = {δ ∈ A : (β′ �∈ Cn(A) ÷ δ and δ ∈ Cn(A) ÷ β′) or (� δ and �� β′)}. On
the other hand β′ ∈ X, since Z ⊆ Cn(A)÷β′, and by (÷4) Cn(A)÷β′ �� β.
Hence X �⊆ Y . Contradiction.
(⇐) Let α �∈ Cn(A) ÷ β or � β. We will prove by cases:
Case 1) α �∈ Cn(A). Trivial.
Case 2) α ∈ Cn(A).
Case 2.1) � β. Then α, β ∈ Cn(A) and cut�(β) ⊆ cut�(α).
Case 2.2) α �∈ Cn(A) ÷ β and �� β. Hence, it follows that β ∈ Cn(A), �� α
and Cn(A) ÷ β ⊆ Cn(A) ÷ α, by (÷3), (÷1) and (÷9), respectively. Let
us assume by reductio that cut�(β) �⊆ cut�(α). Hence there exists ψ ∈ A
such that ψ ∈ cut�(β) and ψ �∈ cut�(α). From which follows that �� ψ,
C = {δ ∈ A : (ψ �∈ Cn(A) ÷ δ and δ ∈ Cn(A) ÷ ψ) or (� δ and �� ψ)} �� β
and C � α. It holds that C ⊆ Cn(A) ÷ ψ. Then Cn(A) ÷ ψ � α. Hence,
by (÷4) and linearity (Lemma 3), it follows that Cn(A) ÷ α ⊂ Cn(A) ÷ ψ.
From Cn(A) ÷ β ⊆ Cn(A) ÷ α it follows that Cn(A) ÷ β ⊂ Cn(A) ÷ ψ. By
(÷9), β ∈ Cn(A) ÷ ψ. Therefore, by base-reduction, Cn(A) ÷ ψ ∩ A � β. On
the other hand Cn(A) ÷ ψ ∩ A ⊆ C. Hence C � β. Contradiction.

Proof of Corollary 23.
(⇒) Let − be an operator on A that satisfies success, inclusion, vacuity,
failure, relative closure, strong inclusion, upper bound and lower bound. Then
− is a bounded brutal contraction by Theorem 16. Hence, there exists a
bounded ensconcement � such that A − α = A −� α. Therefore, by −
relative closure and inclusion, A−� α = Cn(A−� α)∩A. By Observation 9
≤� is a bounded epistemic entrenchment related to Cn(A). From Theorems
20 and 22, Cn(A −� α) = Cn(A) ÷≤� α, where ÷≤� is an operator on
Cn(A) that satisfies (÷1) to (÷4), (÷9), base-reduction, upper bound and
lower bound.
(⇐) Let − be an operator on A such that A−α = Cn(A÷α)∩A, where ÷
satisfies (÷1) to (÷4), (÷9), base-reduction, upper bound and lower bound. It
remains to prove that − satisfies success, inclusion, vacuity, failure, relative
closure, strong inclusion, upper bound and lower bound. From Theorem 22, it
follows that there exists a bounded enconscement � such that Cn(A)÷α =
Cn(A)÷≤� α. From Theorem 19 it follows that A−�α = (Cn(A)÷≤� α)∩A.
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Hence, A − α = A −� α. Therefore − is a bounded brutal contraction, from
which follows that − satisfies success, inclusion, vacuity, failure, relative
closure, strong inclusion, upper bound and lower bound, by Theorem 16.

Proof of Corollary 24.
(⇒) Let ÷ be an operator on Cn(A) that satisfies (÷1) to (÷4), (÷9), base-
reduction, upper bound and lower bound. Then, by Theorem 22, there exists
a bounded ensconcement such that ÷ is an ensconcement-based withdrawal
related to (A,�). Hence, Cn(A) ÷ α = Cn(A) ÷≤� α where ≤� is the
epistemic entrenchment with respect to Cn(A) defined in Observation 9
and ÷≤� is the severe withdrawal on Cn(A) defined by (R≤). By Theorem
19, A−α = (Cn(A)÷≤� α)∩A, where − is the �-based brutal contraction.
Therefore, by base-reduction and (÷1), Cn(A − α) = Cn((Cn(A) ÷≤� α) ∩
A) = Cn(A) ÷≤� α = Cn(A) ÷ α. By Theorem 16 − satisfies success,
inclusion, vacuity, failure, relative closure, strong inclusion, upper bound
and lower bound.
(⇐) Let − be an operator on A that satisfies success, inclusion, vacuity,
failure, relative closure, strong inclusion, upper bound and lower bound such
that: Cn(A)÷α = Cn(A−α). Hence, by Theorem 16, − is a bounded brutal
contraction on A. By Theorem 20, Cn(A−α) = Cn(A)÷≤� α, where ≤� is
the epistemic entrenchment with respect to Cn(A) defined in Observation
9, and ÷≤� is the severe withdrawal on Cn(A), defined by (R≤). Hence,
by Theorem 22, ÷ satisfies (÷1) to (÷4), (÷9), base-reduction, upper bound
and lower bound.

Proof of Observation 25. (÷1) Follows trivially from the definition. (÷2)
follows from the definition and − inclusion. (÷3) follows from the defin-
ition and − failure and − vacuity. (÷4) follows from the definition and
− success. For (÷9), consider α �∈ Cn(A) ÷ β. Hence, by definition of ÷,
α �∈ Cn(A − β). By − strong inclusion it follows that A − β ⊆ A − α.
Therefore, Cn(A) ÷ β ⊆ Cn(A) ÷ α. For base-reduction, let Cn(A) ÷ α � β.
Hence, by the definition of ÷, it follows that β ∈ Cn(A − α). By − relative
closure and − inclusion, it follows that A ∩ Cn(A − α) = A − α. Therefore,
Cn(A − α) ∩ A � β. Hence, by definition of ÷, (Cn(A) ÷ α) ∩ A � β.

Proof of Observation 26. For ÷ upper bound. Let X ⊆ Cn(A) \ Cn(∅)
be a non-empty set. From Observation 17, for all α ∈ X, there exists ψ ∈ A
such that A−α = A−ψ. Let X ′ = {ψ ∈ A : A−α = A−ψ, for some α ∈ X}.
Hence X ′ is a non-empty set of non tautological formulae. By − upper
bound there exists some β ∈ X ′ such that A − γ ⊆ A − β for all γ ∈ X ′.
Hence, there exists some δ ∈ X such that A − γ ⊆ A − δ = A − β for all
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γ ∈ X. Hence, by the definition of ÷, there exists some δ ∈ X such that
Cn(A) ÷ γ = Cn(A − γ) ⊆ Cn(A − δ) = Cn(A) ÷ δ for all γ ∈ X.

The proof for ÷ lower bound is analogous to the one presented for ÷
upper bound.
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