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RESTRICTED PRIESTLEY DUALITIES

AND DISCRIMINATOR VARIETIES

BRIAN A. DAVEY AND ASHA GAIR

Abstract. Anyone who has ever worked with a variety A of algebras with
a reduct in the variety of bounded distributive lattices will know a restricted
Priestley duality when they meet one—but until now there has been no ab-
stract definition. Here we provide one. After deriving some basic properties of
a restricted Priestley dual category X of such a variety, we give a characteri-
sation, in terms of X, of finitely generated discriminator subvarieties of A.

As a first application of our characterisation, we give a new proof of Sankap-
panavar’s characterisation of finitely generated discriminator varieties of dis-
tributive double p-algebras.

A substantial portion of the paper is devoted to the application of our re-

sults to Cornish algebras. A Cornish algebra is a bounded distributive lattice
equipped with a family of unary operations each of which is either an endo-
morphism or a dual endomorphism of the bounded lattice. They are a natural
generalisation of Ockham algebras, which have been extensively studied. We
give an external necessary-and-sufficient condition and an easily applied, com-
pletely internal, sufficient condition for a finite set of finite Cornish algebras to
share a common ternary discriminator term and so generate a discriminator
variety. Our results give a characterisation of discriminator varieties of Ock-
ham algebras as a special case, thereby yielding Davey, Nguyen and Pitkethly’s
characterisation of quasi-primal Ockham algebras.

1. Introduction

Hilary Priestley published her famous duality for bounded distributive lattices
in 1970 [26], followed closely by a second paper in 1972 [27]. In 1976, just six years
after the publication of Priestley’s first paper on the duality, the title Priestley

duality and the name Priestley space, for an object in the dual category, appeared
in the literature.

Since 1970 a large number of authors have obtained a duality for their favourite
variety A of bounded-distributive-lattice-based algebras by restricting Priestley
duality to A and giving explicit descriptions of the Priestley duals of algebras
from A and of homomorphisms between algebras in A. The first two such restricted

Priestley dualities, for Stone algebras [28] and for pseudocomplemented distributive
lattices [29], were published by Priestley herself in 1974 and 1975. In 1984, Priestley
published a survey of the first ten years of restricted Priestley dualities [30].

While a list of all restricted Priestley dualities published since 1974 is too long
to give here, some of particular significance include:

• pseudocomplemented distributive lattices: Priestley [29],

2010 Mathematics Subject Classification. Primary: 06D50, Secondary: 18A40, 08A40, 06D30.
Key words and phrases. Priestley duality, quasi-primal algebra, semi-primal algebra, discrim-

inator variety, Cornish algebra, Ockham algebra.

1

http://arxiv.org/abs/1605.08147v1


2 B. A. DAVEY AND A. GAIR

• Heyting algebras: Esakia [18]—often referred to as Esakia duality, this duality
was obtained directly and later seen to be a restricted Priestley duality (see
Davey and Galati [10] for some historical comments),

• Ockham algebras and its subvarieties: Urquhart [35], Cornish and Fowler [7, 8],
Davey and Priestley [13], and many others,

• MV-algebras (or equivalently Wajsberg algebras) and more generally implicative
lattices: Mart́ınez [21], Martnez and Priestley [22],

• Cornish algebras and its subvarieties: Cornish [5, 6], Priestley [31], Priestley and
Santos [32]—see Section 5 below.

This paper started out life as an attempt to characterise discriminator varieties
of Cornish algebras as an application of their restricted Priestley duality. It soon
became clear that the techniques being used could be applied much more generally.
Whether they could be applied to all restricted Priestley dualities was unclear as,
despite the proliferation of restricted Priestley dualities, there was no overarching
theory—no definition of what a restricted Priestley duality actually is.

In Section 2 we fill this gap and present an abstract definition of a restricted
Priestley duality. We then develop some of the basic properties shared by all
restricted Priestley dualities. In particular, we study subalgebras of the product
of a pair of algebras from A, via a restricted Priestley duality, as this is precisely
what is needed to study finitely generated discriminator subvarieties of A.

Let A be a non-empty set. The map τ : A3 → A given by

τ(x, y, z) :=

{

x if x 6= y,

z if x = y,

is called the ternary discriminator on A. A variety V of algebras is a discriminator

variety if there is a ternary term t in the language of V such that tA is the ternary
discriminator on every subdirectly irreducible algebra A ∈ V. A finite algebra A

is called quasi-primal if the ternary discriminator is a term function of A. (See
Theorem 3.2 for several equivalent conditions.) The importance of the ternary dis-
criminator was first recognised by Werner [36] and Pixley [24, 25]. Quasi-primal
algebras, and more generally, discriminator varieties play an important role in gen-
eral algebra; see Burris and Sankappanavar [3], Werner [37], and McKenzie and
Valeriote [23], for example.

Section 3 is devoted to finitely generated discriminator varieties in general. A
variety is a finitely generated discriminator variety if and only if it is generated by
a finite set B of quasi-primal algebras that share a common ternary discriminator
term, that is,

• there is a ternary term t such that tA is the ternary discriminator operation
on A, for all A ∈ B.

In Theorem 3.2 we give three characterisations of this property. While the theo-
rem is a completely straightforward extension of known charaterisations of quasi-
primality, we have not been able to find the result in the literature. By combining
Theorem 3.2 with the results from the previous section, we give a characterisation of
finitely generated discriminator subvarieties of a bounded-distributive-lattice-based
variety A in terms of a restricted Priestley dual category X for A (Theorem 3.4).
We also give a similar characterisation of semi-primal algebras in A (Theorem 3.5).

Section 4 illustrates the application of Theorem 3.4 by giving a proof via a
restricted Priestley duality that a variety V of distributive double p-algebras is a
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finitely generated discriminator variety if and only if V is generated by a finite set
of finite simple distributive double p-algebras. The result is not new (it follows
from results of Sankappanavar [33]), but the proof is new.

Section 5 is devoted to the study of discriminator varieties of Cornish algebras.
Cornish algebras are a natural generalisation of Ockham algebras. An Ockham
algebra is a bounded distributive lattice equipped with a unary operation f that is
a dual endomorphism of the underlying bounded lattice. In order to define a Cornish
algebra (of type F ) we replace the single unary operation f in the signature of an
Ockham algebra by a set F = F+ ∪̇ F− of unary operations, where F+ is a set of
endomorphisms and F− is a set of dual endomorphisms of the underlying bounded
lattice. Ockham algebras are the algebraic counterpart of the non-classical logic in
which the De Morgan laws are retained but the law of the excluded middle and the
double negation law are removed. Cornish algebras are the algebraic counterpart
of non-classical logics in which we allow more than one De Morgan negation and
also allow strong modal operators, like the next operator in linear temporal logic.

Quasi-primal Ockham algebras were recently characterised by Davey, Nguyen
and Pitkethly, as part of their investigation of Ockham algebras with finitely many
relations [12]. In Section 5 we aim to extend their characterisation of quasi-primal
Ockham algebras to a characterisation of discriminator varieties of Cornish algebras.

We show that in order for there to exist a non-trivial quasi-primal Cornish al-
gebra of type F , we must have F− 6= ∅ (Theorem 5.7). We give an external
necessary-and-sufficient condition for a finite set of finite Cornish algebras of type
F to share a common ternary discriminator term (Theorem 5.8) and use it to
derive a purely internal sufficient condition (Theorem 5.11). These results yield
the characterisation of discriminator varieties of Ockham algebras, generalising the
characterisation of quasi-primal Ockham algebras from [12] (Theorem 5.13). They
also provide a ready supply of quasi-primal Cornish algebras and discriminator
varieties of Cornish algebras (see Example 5.14 and Example 5.15).

2. Restricted Priestley dualities

While we all recognise one when we meet one, until now there has been no
formal theory of restricted Priestley dualities. We now fill this gap by giving a
definition of a restricted Priestley duality and presenting some basic consequences
of the definition.

Let A be a category of algebras that have a bounded distributive lattice as a
(term) reduct. We can obtain a duality for A by taking the dual category X to be
the (usually not full) subcategory of Priestley spaces corresponding to the algebras
in A and the homomorphisms between them. Such a restricted Priestley duality

will be most useful if we have an abstract description of the objects and morphisms
in X. The general set up of such restricted Priestley dualities is described below.
We begin with a brief description of Priestley duality in the form we require.

A topological structure X = 〈X ;6,T〉 is a Priestley space if 〈X ;6〉 is an ordered
set, 〈X ;T〉 is a compact topological space, and, for all x, y ∈ X with x 
 y, there
is a clopen up-set V with x ∈ V and y /∈ V .

We shall denote the categories of bounded distributive lattices and Priestley
spaces by D and P, respectively. The morphisms of D and P are the natu-
ral ones: namely lattice homomorphisms preserving the bounds, and continuous
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order-preserving maps, respectively. Priestley duality for bounded distributive lat-
tices [26, 27] tells us that these categories are dually equivalent, via the contravariant
functors H : D → P and K : P → D given in the following two definitions.

Definition 2.1. Let 2 = 〈{0, 1};∨,∧, 0, 1〉 be the 2-element bounded lattice and let
2 = 〈{0, 1};6,T〉 be the discretely topologised 2-element chain. For each bounded
distributive lattice A = 〈A;∨,∧, 0, 1〉, define the Priestley space

H(A) = 〈D(A,2);6,T〉,

with order and topology inherited from 2

A. For each Priestley space X = 〈X ;6,T〉,
define the bounded distributive lattice

K(X) = 〈P(X,2);∨,∧, 0, 1〉,

with operations inherited from 2X .

The hom-functors H and K are defined on morphisms in the usual way, as are
the natural transformations e : idD → KH and ε : idP → HK.

Definition 2.2.

• For each homomorphism ϕ : A → B in D, define H(ϕ) : H(B) → H(A) by
H(ϕ)(x) := x ◦ ϕ, for all x : B → 2.

• For each morphism ψ : X → Y in P, defineK(ψ) : K(Y) → K(X) byK(ψ)(α) =
α ◦ ψ, for all α : Y → 2.

• For each A ∈ D, the homomorphism eA : A → KH(A) is given by evaluation,
that is, eA(a)(x) = x(a), for all a ∈ A and x : A → 2.

• For each X ∈ P, the morphism εX : X → HK(X) is given by evaluation, that
is, εX(x)(α) = α(x), for all x ∈ X and α : X → 2.

Theorem 2.3 (Priestley [26, 27]). Let D and P be the categories of bounded dis-

tributive lattices and Priestley spaces, respectively.

(1) H : D → P and K : P → D are well-defined functors that yield a dual cate-

gory equivalence between D and P.

(2) The maps eA : A → KH(A) and εX : X → HK(X) are isomorphisms, for

every A ∈ D and every X ∈ P.

We now give our definition of a restricted Priestley duality. Though much of
our theory applies to more general categories, to simplify the development we shall
henceforth assume that A is a variety of distributive-lattice-based algebras.

Definition 2.4. Let A be a variety of algebras that has a term reduct in D and
let ♭ : A → D be the forgetful functor. Let X be a category and let ♭ : X → P

be a functor. Assume that D : A → X and E : X → A are functors that yield a
dual category equivalence between A and X with unit e : idA → ED and counit
ε : idX → DE. We then say that 〈D,E, e, ε〉 is a restricted Priestley duality between
A and X (with underlying-Priestley-space functor ♭ : X → P) if

(1) the squares in Figure 1 commute, and
(2) e♭

A
= eA♭ and ε♭

X
= εX♭ , for all A ∈ A and all X ∈ X.

In particular, as a consequence of (1), we have

(3) D(A)♭ = H(A♭), for all A ∈ A, and
(4) E(X)♭ = K(X♭), for all X ∈ X.
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A X

D P

D

♭ ♭

H

A X

D P

E

♭ ♭

K

Figure 1. Restricted Priestley duality

It follows from (3) and (4) that ED(A)♭ = KH(A♭) and DE(X)♭ = HK(X♭). This
guarantees that e♭

A
and eA♭ have the same domain and codomain, as do ε♭

X
and εX♭ ,

whence Condition (2) makes sense. It also follows at once from (3) and (4) that
the underlying sets of D(A) and E(X) are D(A♭,2) and P(X♭,2), respectively.

A morphism ϕ : X → Y in X will be called P-surjective if its underlying Priestley
morphism ϕ♭ : X♭ → Y♭ is surjective. Similarly, ϕ is a P-embedding if its underlying
Priestley morphism is an embedding of Priestley spaces.

Remark 2.5. Given a restricted Priestley duality we are dealing simultaneously
with two dual equivalences: D,E between A and X, and H,K between D and P.
Note that, to simplify the notation, we denote the units and counits of the associated
dual adjunctions by

e : idA → ED, ε : idX → DE and e : idD → KH, ε : idP → HK.

Which of these natural transformations is actually involved will always be clear
from the context.

The following lemma records some easy consequence of this definition.

Lemma 2.6. Let 〈D,E, e, ε〉 be a restricted Priestley duality between A and X.

(1) The functor ♭ : X → P is naturally isomorphic to the composite H ◦ ♭ ◦ E,

and hence is faithful.

(2) Both ♭ : A → D and ♭ : X → P reflect isomorphisms.

Proof. (1) For all X ∈ X, we have

(H ◦ ♭ ◦ E)(X) = H(E(X)♭) = HK(X♭).

Hence we may define a natural isomorphism f : ♭ → H ◦ ♭ ◦ E by specifying that,
fX = εX♭ : X♭ → (H ◦ ♭ ◦E)(X), for all X ∈ X, where ε : idP → HK is the counit of
the dual equivalence between D and P.

(2) It is trivial that ♭ : A → D reflects isomorphisms. Let ϕ be a morphism in X

and assume that ϕ♭ is an isomorphism in P. By (1) it follows that (H◦♭◦E)(ϕ) is an
isomorphism. As E : X → A, ♭ : A → D and H : D → P all reflect isomorphisms,
it follows that ϕ is an isomorphism. Hence ♭ : X → P reflects isomorphisms. �

Lemma 2.7. Let 〈D,E, e, ε〉 be a restricted Priestley duality between A and X.

(1) A morphism u : A → B in A is surjective if and only if D(u) : D(B) → D(A)
is a P-embedding, and is an embedding if and only if D(u) : D(B) → D(A) is
P-surjective.

(2) A morphism ϕ : X → Y in X is P-surjective if and only if E(ϕ) : E(Y) → E(X)
is an embedding, and is a P-embedding if and only if E(ϕ) : E(Y) → E(X) is

surjective.
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Proof. The proof is straightforward. It uses the squares in Figure 1 along with
(a) the trivial fact that ♭ : A → D preserves and reflects surjectivity and injec-
tivity of homomorphisms, and (b) the well-known property of Priestley duality
that morphisms v : L → K in D and ψ : U → V in P are surjective (are em-
beddings) if and only if the corresponding morphisms H(v) : H(K) → H(L) and
K(ψ) : K(V) → K(U) are embeddings (are surjective); see [17, Theorem 5.19]. �

The next two results are simple but important consequences of this lemma. Let
X ∈ X. A closed subset Y of the Priestley space X♭ is called an X-substructure

of X♭ if there is a P-embedding ψ : Z → X in X such that ψ♭(Z♭) = Y. The ordered
set of X-substructures of X♭ is denoted by Sub(X).

Lemma 2.8. Let 〈D,E, e, ε〉 be a restricted Priestley duality between A and X.

Let A ∈ A and let X = D(A). Then the lattice of congruences on A is dually

isomorphic to Sub(X).

Proof. Define u : Con(A) → Sub(X) as follows. Let ηθ : A → A/θ be the natural
map, for each θ ∈ Con(A). Define Yθ = D(A/θ); thus, ψθ := D(ηθ) : Yθ → X,
which is a P-embedding by Lemma 2.7(1). Finally, define u(θ) := ψ♭

θ
(Y♭

θ
) ⊆ X♭.

It is a straightforward exercise, using Lemma 2.7, to show that u is a dual order-
isomorphism. �

Lemma 2.9. Let 〈D,E, e, ε〉 be a restricted Priestley duality between A and X.

Each morphism ϕ : X → Y in X factors in X as a P-surjection µ : X → Z followed by

a P-embedding ψ : Z → Y. Given two such factorisations µ1 : X → Z1, ψ1 : Z1 → Y
and µ2 : X → Z2, ψ2 : Z2 → Y of ϕ, there is an isomorphism γ : Z1 → Z2 in X such

that γ ◦ µ1 = µ2 and ψ2 ◦ γ = ψ1.

Proof. This is a simple consequence of the Lemma 2.7 using the fact that every
homomorphism in A has a factorisation as a surjective homomorphism followed by
an embedding and that this factorisation is unique up to isomorphism. �

The underlying-Priestley-space functor ♭ of a restricted Priestley duality usually
does not preserve products. Indeed, providing an explicit description of products in
the restricted Priestley dual categoryX is a basic research problem as it immediately
yields a description of coproducts in A.

Coproducts in X are much better behaved: the underlying-Priestley-space func-
tor ♭ both preserves and reflects coproducts.

Lemma 2.10. Let 〈D,E, e, ε〉 be a restricted Priestley duality between A and X.

(1) The underlying Priestley space of the coproduct of X1 and X2 in X is isomor-

phic to the disjoint union of their underlying Priestley spaces; more precisely,

(X1 ⊔ X2)
♭ ∼= X♭

1 ∪̇ X♭
2 via the natural map from X♭

1 ∪̇X♭
2 to (X1 ⊔ X2)

♭.

(2) Let ϕ1 : X1 → Y and ϕ2 : X2 → Y be X-morphisms. Then Y, with the mor-

phisms ϕ1 and ϕ2, is a coproduct of X1 and X2 in X provided ϕ1 and ϕ2 are

P-embeddings and Y♭ = ϕ♭
1(X1) ∪̇ ϕ

♭
2(X2).

Proof. (1) Using the commuting squares in Figure 1 along with the fact that
E : X → A sends coproduct to product, ♭ : A → D preserves products, and
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H : D → P sends products to disjoint unions, we have:

(X ⊔ Y)♭ ∼=
(

D(E(X ⊔ Y))
)♭ ∼= H

(

(E(X)× E(Y))♭
)

∼= H
(

E(X)♭ × E(Y)♭
)

∼= H(E(X)♭) ∪̇H(E(Y)♭) ∼= H(K(X♭)) ∪̇H(K(Y♭)) ∼= X♭ ∪̇Y♭.

(2) Assume that ϕ1 and ϕ2 are P-embeddings and that Y♭ = ϕ♭
1(X1) ∪̇ ϕ

♭
2(X2).

Then K(Y♭), with the morphisms K(ϕ♭
1) and K(ϕ♭

2), is a product of K(X♭
1) and

K(X♭
2) in D. Thus, since ♭ ◦E = K ◦ ♭, it follows that E(Y)♭, with the morphisms

E(ϕ1)
♭ and E(ϕ2)

♭, is a product of E(X1)
♭ and E(X2)

♭ in D. Since ♭ : A → D

reflects products, we conclude that E(Y), with the morphisms E(ϕ1) and E(ϕ2), is
a product of E(X1) and E(X2) in A, and so DE(Y), with the morphisms DE(ϕ1)
and DE(ϕ2), is a coproduct of DE(X1) and DE(X2) in X. As ε : idX → DE
is a natural isomorphism, it follows that Y, with the morphisms ϕ1 and ϕ2, is a
coproduct of X1 and X2 in X. �

We will be using the fact that embeddings into products in A are encoded via
jointly P-surjective morphisms in X.

Lemma 2.11. Let 〈D,E, e, ε〉 be a restricted Priestley duality between A and X.

A homomorphism u : B → A1 × A2 in A is an embedding if and only if the two

morphisms D(πi ◦u) : D(Bi) → D(A) in X, for i ∈ {1, 2}, are jointly P-surjective,

where πi : A1 ×A2 → Ai denotes the ith projection.

Proof. The map H(π♭
1)∪̇H(π♭

2) : H(A♭
1)∪̇H(A♭

2) → H(A♭
1×A♭

2) is an isomorphism.
Let ui := πi ◦ u : B → Ai. Then H(u♭i) = H(π♭

i ◦ u
♭) = H(u♭) ◦ H(π♭

i ). So the
diagram in Figure 2 commutes.

H(A♭
1) ∪̇H(A♭

2)

H(A♭
1 ×A♭

2) H(B♭)

H(π♭
1) ∪̇H(π♭

2)
H(u♭

1) ∪̇H(u♭
2)

H(u♭)

Figure 2. Diagram for the proof of Lemma 2.11

Thus H(u♭) is surjective if and only if H(u♭1) and H(u♭2) are jointly surjective.
Consequently, by Lemma 2.7(1),

u : B → A1 ×A2 is an embedding

⇐⇒ D(u) : D(A1 ×A2) → D(B) is P-surjective

⇐⇒ D(u)♭ : D(A1 ×A2)
♭ → D(B)♭ is surjective

⇐⇒ H(u♭) : H(A♭
1 ×A♭

2) → H(B♭) is surjective

⇐⇒ H(u♭1) : H(A♭
1) → H(B♭), H(u♭2) : H(A♭

2) → H(B♭) are jointly surjective

⇐⇒ D(u1) : D(A1) → D(B), D(u2) : D(A2) → D(B) are jointly P-surjective,

as required. �
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The following result will play a vital role in our considerations. Parts (1) and (2)
have been proved with A1 = A2 in a range of restricted Priestley dualities; see [14,
3.3], [15, 3.5], [4, p. 218], [11, pp. 222–223] and [12, 4.1].

Theorem 2.12. Let 〈D,E, e, ε〉 be a restricted Priestley duality between A and X.

Let X1,X2,Y ∈ X and define A1 := E(X1) and A2 := E(X2).

(1) Let ϕ1 : X1 → Y, ϕ2 : X2 → Y be jointly P-surjective morphisms. Then the set

B(ϕ1, ϕ2) := { (α ◦ ϕ♭
1, α ◦ ϕ♭

2) | α ∈ P(Y♭,2) } ⊆ P(X♭
1,2)×P(X♭

2,2)

forms a substructure of A1 × A2. The corresponding subalgebra B(ϕ1, ϕ2)
of A1 × A2 is isomorphic to E(Y): the map α 7→ (α ◦ ϕ♭

1, α ◦ ϕ♭
2), for all

α ∈ P(Y♭,2), is an isomorphism from E(Y) to B(ϕ1, ϕ2).
(2) Let B be a subalgebra of A1 ×A2 and let Y := D(B). For i ∈ {1, 2}, define

morphisms ϕi : Xi → Y by ϕi := D(ρi) ◦ εXi
, where ρi : B → Ai is the projec-

tion. Then ϕ1 and ϕ2 are jointly P-surjective and satisfy B = B(ϕ1, ϕ2).
(3) Let ϕ1 : X1 → Y, ϕ2 : X2 → Y be jointly P-surjective morphisms. Then

B(ϕ1, ϕ2) = B1 × B2, for some subalgebras B1 and B2 of A1 and A2, re-

spectively, if and only if Y♭ = ϕ♭
1(X

♭
1) ∪̇ ϕ

♭
2(X

♭
2).

(4) Let ϕ1 : X1 → Y, ϕ2 : X2 → Y be jointly P-surjective morphisms. The subset

B(ϕ1, ϕ2) of A1 × A2 is the graph of a one-to-one partial map from A1 to

A2 if and only if both ϕ1 and ϕ2 are P-surjective. Moreover, if X1 = X2,

then B(ϕ1, ϕ2) is the graph of an identity map on a subset of A if and only if

ϕ1 = ϕ2 (where A = A1 = A2).

Proof. (1) Since ϕ1 : X1 → Y, ϕ2 : X2 → Y are jointly P-surjective morphisms, and
(X1 ⊔ X2)

♭ ∼= X♭
1 ∪̇ X♭

2, by Lemma 2.10, the map ϕ := ϕ1 ⊔ ϕ2 : X1 ⊔ X2 → Y is a
P-surjective morphism. The image of the A-homomorphism

E(ϕ) : E(Y) → E(X1 ⊔ X2) ∼= E(X1)× E(X2)

equals the image of the underlying D-homomorphism

E(ϕ)♭ : E(Y)♭ → E(X1 ⊔ X2)
♭ ∼= E(X1)

♭ × E(X2)
♭,

which, since ♭ ◦ E = K ◦ ♭, equals

K(ϕ♭) : K(Y♭) → K((X1 ⊔ X2)
♭) ∼= K(X♭

1 ∪̇ X♭
2)

∼= K(X♭
1)×K(X♭

2).

This map is given by α 7→ (α ◦ ϕ♭
1, α ◦ ϕ♭

2), for all α ∈ P(Y♭,2), whence its image
is B(ϕ1, ϕ2). It follows that B(ϕ1, ϕ2) is a substructure of A1 ×A2. Since ϕ is P-
surjective, the homomorphism E(ϕ) is an embedding, by Lemma 2.7(2), and hence
E(Y) is isomorphic to B(ϕ1, ϕ2).

(2) Let B be a subalgebra of A1 ×A2 and let ρ1 : B → A1, ρ2 : B → A2 be the
two projections. The inclusion map ρ1 ⊓ ρ2 : B → A1 ×A2 is an embedding, and
therefore the morphisms D(ρ1) : D(A1) → D(B) and D(ρ2) : D(A2) → D(B) are
jointly P-surjective, by Lemma 2.11.

SinceAi = E(Xi), we can define morphisms ϕi : Xi → D(B) by ϕi := D(ρi) ◦ εXi
,

for i ∈ {1, 2}. As εXi
: Xi → DE(Xi) = D(Ai) is an isomorphism, for i ∈ {1, 2},

the morphisms ϕ1 : X1 → D(B) and ϕ2 : X2 → D(B) are jointly P-surjective.
Since eB♭ : B♭ → KH(B♭) is an isomorphism, we have

B =
{ (

ρ♭1(b), ρ
♭
2(b)

) ∣

∣ b ∈ B
}

=
{ (

ρ♭1 ◦ e
−1
B♭ (α), ρ

♭
2 ◦ e

−1
B♭ (α)

) ∣

∣ α ∈ KH(B♭)
}

.
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It remains to check that ρ♭i ◦ e
−1
B♭ (α) = α ◦ ϕ♭

i , for each i ∈ {1, 2} and α ∈ KH(B♭).

We have ρ♭i = K(H(ρ♭i) ◦ εX♭
i

) ◦ eB♭ , since 〈H,K, e, ε〉 is a dual adjunction between

D and P; see [4, Figure 1.2] or [1, Exercise 19J(c)]. Thus, using both Condition (1)
and Condition (2) in the definition of a restricted Priestley duality, we have

ρ♭i ◦ e
−1
B♭ (α) = K(H(ρ♭i) ◦ εX♭

i

)(α) = α ◦H(ρ♭i) ◦ εX♭
i

= α ◦D(ρi)
♭ ◦ ε♭

Xi
= α ◦ (D(ρi) ◦ εXi

)♭ = α ◦ ϕ♭
i ,

as required.
(3) Let ϕ1 : X1 → Y, ϕ2 : X2 → Y be jointly P-surjective morphisms. First,

assume that Y♭ = ϕ♭
1(X

♭
1) ∪̇ ϕ

♭
2(X

♭
2). We have

P(Y♭,2) =
{

α1 ∪̇ α2 | α1 ∈ P(ϕ♭
1(X

♭
1),2) & α2 ∈ P(ϕ♭

2(X
♭
2),2)

}

.

Hence, by (1), the map α1 ∪̇ α2 7→ (α1 ◦ ϕ
♭
1, α2 ◦ ϕ

♭
2), for all α1 ∈ P(ϕ♭

1(X
♭
1),2) and

α2 ∈ P(ϕ♭
2(X

♭
2),2), is an isomorphism from E(Y) to B(ϕ1, ϕ2). Thus, B(ϕ1, ϕ2) =

B(ϕ1)×B(ϕ2), where

B(ϕi) =
{

α ◦ ϕ♭
i | α ∈ P(ϕ♭

i(X
♭
i),2)

}

,

for i ∈ {1, 2}. Since Y♭ = ϕ♭
1(X

♭
1)∪̇ϕ

♭
2(X

♭
2), we have B(ϕi) = πi

(

B(ϕ1, ϕ2)
)

, whence
B(ϕi) is a subalgebra of Ai, for i ∈ {1, 2}.

Now assume that Y♭ 6= ϕ♭
1(X

♭
1) ∪̇ ϕ

♭
2(X

♭
2). So there exists x1 ∈ X♭

1 and x2 ∈ X♭
2

such that y1 := ϕ♭
1(x1) is comparable with y2 := ϕ♭

2(x2), say y1 6 y2. Define
Bi := πi

(

B(ϕ1, ϕ2)
)

, for i ∈ {1, 2}. We must show that B(ϕ1, ϕ2) 6= B1 × B2.

Let 0, 1 ∈ P(Y♭,2) be the constant maps onto 0 and 1, respectively and define
b1 := 1 ◦ ϕ♭

1 and b2 := 0 ◦ ϕ♭
2. Then (b1, b2) ∈ B1 × B2, but (b1, b2) /∈ B(ϕ1, ϕ2)

since (b1(x1), b2(x2)) = (1, 0), whereas, for all α ∈ P(Y♭,2), we have
(

(α ◦ ϕ♭
1)(x1), (α ◦ ϕ♭

2)(x2)
)

=
(

α(y1), α(y2)
)

6= (1, 0),

since y1 6 y2.
(4) Assume that ϕ1 isP-surjective. We shall show that if (a, b), (a, c) ∈ B(ϕ1, ϕ2),

then b = c, that is, B(ϕ1, ϕ2) is the graph of a partial map on A. Let α, β ∈ P(Y,2)
with α ◦ϕ♭

1 = β ◦ϕ♭
1. As ϕ

♭
1 is surjective, it follows that α = β; this is just the easy

observation that surjective maps are epic. Hence α ◦ ϕ♭
2 = β ◦ ϕ♭

2. By symmetry, if
ϕ2 is P-surjective, then (b, a), (c, a) ∈ B(ϕ1, ϕ2) implies that b = c. Hence, if both
ϕ1 and ϕ2 are P-surjective, then B(ϕ1, ϕ2) is the graph of a one-to-one partial map
from A1 to A2.

Suppose now that ϕ1 is not P-surjective, that is, ϕ♭
1 is not surjective. As surjec-

tive morphisms correspond to embeddings under Priestley duality, it follows that
K(ϕ♭

1) : K(Y♭) → K(X♭
1) is not one-to-one, that is, there exist α, β ∈ P(Y♭,2) with

α 6= β but

α ◦ ϕ♭
1 = K(ϕ♭

1)(α) = K(ϕ♭
1)(β) = β ◦ ϕ♭

1.

As α 6= β, there exists y ∈ Y ♭ such that α(y) 6= β(y). Since α ◦ ϕ♭
1 = β ◦ ϕ♭

1, we
must have y /∈ ϕ♭

1(X
♭
1). Hence there exists x ∈ X♭

2 with ϕ♭
2(x) = y, as ϕ♭

1 and ϕ♭
2 are

jointly surjective. Thus α(ϕ♭
2(x)) 6= β(ϕ♭

2(x)). Hence, we have α ◦ ϕ♭
1 = β ◦ ϕ♭

1 and
α ◦ϕ♭

2 6= β ◦ϕ♭
2, whence B(ϕ1, ϕ2) is not the graph of a partial map from A1 to A2.

By symmetry, it follows that if either ϕ♭
1 or ϕ♭

2 is not surjective, then B(ϕ1, ϕ2) is
not the graph of a one-to-one partial map from A1 to A2.
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Now assume that X1 = X2 and let A = A1 = A2. If ϕ1 = ϕ2, then of course
B(ϕ1, ϕ2) ⊆ { (a, a) | a ∈ A }. Assume that ϕ1 6= ϕ2. Then ϕ

♭
1 6= ϕ♭

2 as ♭ is faithful.
Hence there exists x ∈ X♭

1 = X♭
2 with ϕ♭

1(x) 6= ϕ♭
2(x). Choose α ∈ P(Y♭,2) such

that α(ϕ♭
1(x)) 6= α(ϕ♭

2(x)). Then (α ◦ ϕ♭
1, α ◦ ϕ♭

2) ∈ B(ϕ1, ϕ2)\{ (a, a) | a ∈ A }.
Hence B(ϕ1, ϕ2) ⊆ { (a, a) | a ∈ A } if and only if ϕ1 = ϕ2. �

3. Discriminator varieties

In this section we give a very brief introduction to discriminator varieties, with
an emphasis on the finitely generated case. The crucial piece of theory is the
characterisation, given in Theorem 3.2, of finitely generated discriminator vari-
eties. While the result is a completely straightforward generalisation of known
results about quasi-primal algebras, it does not appear to have been recorded be-
fore. Werner’s monograph [37] gives a detailed treatment of discriminator varieties
and quasi-primal algebras.

We say that a family B of algebras share a common ternary discriminator term

if there is a ternary term t such that tA is the ternary discriminator operation on A,
for all A ∈ B.

Facts 3.1. We record some familiar facts about discriminator varieties.

(a) The variety generated by a quasi-primal algebra is a discriminator variety.
(b) More generally, ifB is a finite set of finite algebras that share a common ternary

discriminator term, then the variety Var(B) generated by B is a discriminator
variety, and a non-trivial algebra B ∈ Var(B) is simple if and only if it is
isomorphic to a subalgebra of some A ∈ B.

(c) Every finitely generated discriminator variety arises as Var(B) as described
in (b).

(d) The simple algebras in a discriminator variety form a first-order class. Hence,
they either form a proper class or there is a finite bound on their size.

We begin with a theorem that extends several well-known characterisations of
quasi-primal algebras to finite sets of algebras. First, we require some definitions.

Let n ∈ N and let uA : An → A and uB : Bn → B. We say that (uA, uB)
preserves a relation r ⊆ A×B if, for all a1, . . . , an ∈ A and b1, . . . , bn ∈ B,

(a1, b1), . . . , (an, bn) ∈ r =⇒ (uA(a1, . . . , an), uB(b1, . . . , bn)) ∈ r.

For example, if there is an n-ary term t such that uA = tA and uB = tB and r is a
subuniverse of A×B, then (uA, uB) preserves r. By a partial isomorphism between
A and B we mean an isomorphism from a subalgebra of A to a subalgebra of B.

Theorem 3.2. Let B be a finite set of finite algebras of signature F . Then the

following are equivalent:

(1) the algebras in B are quasi-primal and share a common ternary discriminator

term;

(2) for all n ∈ N, if {uA : An → A | A ∈ B} is a family of n-ary operations

indexed by B such that, for all A1,A2 ∈ B, the pair (uA1
, uA2

) preserves the

graph of every partial isomorphism between A1 and A2, then there is a term

t in the signature F such that uA = tA, for all A ∈ B.

(3) B generates a congruence-distributive and congruence-permutable variety and,

for all A ∈ B, every non-trivial subalgebra of A is simple;
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(4) B has a majority term and, for all A1,A2 ∈ B, every subalgebra of A1 ×A2

is either the product of a subalgebra of A1 and a subalgebra of A2 or is the

graph of a partial isomorphism between A1 and A2.

Proof. For a cyclic proof of the theorem in the case that B = {A}, see [4, Theorem
3.3.12]. It is very easy to see that the proof given in [4] generalises immediately
to a proof of Theorem 3.2—in the proof of (4) ⇒ (2), we use the Multisorted
NU Duality Theorem [4, Theorem 7.1.1] rather than the NU Duality Theorem [4,
Theorem 2.3.4]. �

The following historical remarks about the conditions in Theorem 3.2 in the case
that B = {A} are in order:

(a) Condition (2) is Pixley’s original definition of a quasi-primal algebra [25], the
equivalence of (1) and (2) is [25, Theorem 3.2], and the equivalence of (2)
and (3) is [24, Theorem 5.1];

(b) the final characterisation given in (4) is an easy consequence of the Baker–
Pixley Theorem [2] characterising finite algebras with a near-unanimity term
and seems to have been used first in Davey, Schumann and Werner’s paper on
quasi-primal Helaus [16].

The next result is an immediate corollary of the theorem. It can also be proved
directly by induction on the size of the set B, and has a natural generalisation
to the situation where B has a (k+1)-ary near unanimity term: replace 1, 2 by
1, 2, . . . , k.

Corollary 3.3. Let B be a finite set of finite algebras of signature F and assume

that B has a majority term. The algebras in B share a common ternary discrimi-

nator term if and only if A1 and A2 share a common ternary discriminator term,

for all A1,A2 ∈ B.

The following theorem is an immediate consequence of Theorem 3.2 and Theo-
rem 2.12.

Theorem 3.4. Let 〈D,E, e, ε〉 be a restricted Priestley duality between A and X.

Let B be a finite set of finite algebras from A and let Y = {D(A) | A ∈ B}. Then

the following are equivalent:

(1) the algebras in B are quasi-primal and share a common ternary discriminator

term;

(2) for all X1,X2 ∈ Y, for each Y ∈ X and every pair ϕ1 : X1 → Y, ϕ2 : X2 → Y of

jointly P-surjective morphisms, we have either Y♭ = ϕ♭
1(X

♭
1) ∪̇ ϕ

♭
2(X

♭
2) or both

ϕ1 and ϕ2 are P-surjective;

A finite algebra is semi-primal if it has a majority term and every subalgebra
of A2 is either a product of subalgebras of A or is the graph { (b, b) | b ∈ B } of
the identity function on a subalgebra B of A. (This is not Foster and Pixley’s
original definition [19], but is equivalent to it.) A characterisation of semi-primal
algebras in the presence of a restricted Priestley duality is an easy consequence of
the previous theorem.

Theorem 3.5. Let 〈D,E, e, ε〉 be a restricted Priestley duality between A and X.

Let A be a finite algebra in A and let X = D(A). Then the following are equivalent:

(1) A is semi-primal;
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(2) for each Y ∈ X and every pair ϕ1 : X → Y, ϕ2 : X → Y of jointly P-surjective

morphisms, we have either Y♭ = ϕ♭
1(X

♭) ∪̇ ϕ♭
2(X

♭) or ϕ1 = ϕ2.

Proof. The equivalence follows from the ‘Moreover’ of Theorem 2.12(4). �

4. Distributive double p-algebras

We shall use Theorem 3.4 to characterise the finitely generated discriminator
varieties of distributive double p-algebras. The result is not new, but the proof is.

An algebraA = 〈A;∨,∧, ∗,+, 0, 1〉 is a distributive double p-algebra (ddp-algebra)
if A♭ := 〈A;∨,∧, 0, 1〉 is a bounded distributive lattice and ∗ and + are unary op-
erations satisfying

x ∧ y = 0 ⇐⇒ y 6 x∗ and x ∨ y = 1 ⇐⇒ y > x+.

The class A of all ddp-algebras is a variety. The restricted Priestley dual category
X for A was described by Priestley [29]. Since we are working at the finite level, we
do not require the precise description of Priestley spaces dual to a ddp-algebras; it
suffices to know that every finite ordered set arises as such a dual. We do require the
description at the finite level of the ddp-space morphisms, that is, the morphisms
dual to homomorphisms between finite ddp-algebras. For each element x of a
Priestley space X, let max(x) denote the set of maximal elements of X that dominate
x, and define min(x) dually. A map ϕ : X → Y between finite ordered sets is ddp-
space morphism if and only if it is order-preserving and ϕ(max(x)) = max(ϕ(x))
and ϕ(min(x)) = min(ϕ(x)), for all x ∈ X [29]. Thus Xfin, the finite part of X,
consists of all finite ordered sets with the ddp-space morphisms between them.

We can now state and prove the characterisation of finitely generated discrimina-
tor varieties of ddp-algebras. The characterisation follows from results of Sankap-
panavar [33], who described certain discriminator varieties of ddp-algebras. Re-
cently, the complete characterisation of discriminator varieties of ddp-algebras was
completed by Taylor [34]. Note that not every discriminator variety of ddp-algebras
is finitely generated.

Theorem 4.1. Let B be a finite set of finite ddp-algebras and consider the cor-

responding set Y = {H(A) | A ∈ B} of finite ordered sets. The following are

equivalent:

(1) the algebras in B are quasi-primal and share a common ternary discriminator

term;

(2) each A ∈ B is simple;

(3) each A ∈ B is directly indecomposable and regular, that is,

A |= [a∗ = b∗ & a+ = b+] → a = b;

(4) each X ∈ Y is connected and every element of X is either maximal or minimal.

Proof. The equivalence of (2), (3) and (4) was established by Davey [9]. As every
quasi-primal algebra is simple it remains to show that (4) implies (1).

Assume that (4) holds. By Theorem 3.4, we must show that if Y is a finite ordered
set and ϕ1 : X1 → Y, ϕ2 : X2 → Y are jointly surjective ddp-space morphisms with
X1,X2 ∈ Y, then either Y = Y1 ∪̇ Y2, where Yi := ϕi(Xi), for i = 1, 2, or both ϕ1

and ϕ2 are surjective. Let ϕ1 : X1 → Y, ϕ2 : X2 → Y be jointly surjective ddp-space
morphisms with X1,X2 ∈ Y and assume that Y 6= Y1 ∪̇ Y2. As Y = Y1 ∪ Y2, it
follows that there exist comparable elements a and b with a ∈ Y1 and b ∈ Y2. Since
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X1 and X2 are connected, both Y1 and Y2 are connected and consequently Y is
connected.

By symmetry, it suffices to show that ϕ1 is surjective. As ϕ1 and ϕ2 map maximal
elements to maximal elements and similarly for minimal elements, it follows from
(4) that every element of Y is either maximal or minimal. Let c ∈ Y1 and let d ∈ Y .
Using the fact that ϕ1(max(x)) = max(ϕ1(x)) and ϕ1(min(x)) = min(ϕ1(x)), a
simple induction on the minimum length of a fence from c to d shows that d ∈ Y1,
whence ϕ1 is surjective. �

Corollary 4.2. A finitely generated variety of ddp-algebras is a discriminator va-

riety if and only if it is generated by a finite set of simple algebras.

Remark 4.3. Given a finite set of finite simple ddp-algebras, an explicit discrimi-
nator term for the variety they generate can be obtained from the results of Sankap-
panavar [33, p. 413]. His use of the Heyting implication in his term is justified by a
result of Katriňák [20] that every regular ddp-algebra has a term-definable Heyting
implication.

5. Cornish algebras

In this final section, we apply our results to the characterisation of discriminator
varieties of Cornish algebras. As mentioned in the introduction, Cornish algebras
are a natural generalisation of Ockham algebras.

More formally, an algebraO = 〈O;∨,∧, f, 0, 1〉 is an Ockham algebra if its reduct
O♭ = 〈O;∨,∧, 0, 1〉 is a bounded distributive lattice and f is a dual endomorphism
of O♭. To define a Cornish algebra we must expand the signature by replacing the
unary operation f with a set F of unary operations. Let F = F+ ∪̇ F− be a set
of unary operation symbols. Then an algebra A = 〈A;∨,∧, FA, 0, 1〉 is called a
Cornish algebra of type F if

• A♭ := 〈A;∨,∧, 0, 1〉 is a bounded distributive lattice, and
• FA = { fA | f ∈ F } is a set of unary operations on A such that fA is an
endomorphism of A♭, for each f ∈ F+, and fA is a dual endomorphism of A♭,
for each f ∈ F−.

Ockham algebras are the special case of Cornish algebras in which F = F− = {f}.
Cornish algebras are named after William H. Cornish who introduced them in an

invited lecture entitled Monoids acting on distributive lattices at the annual meet-
ing of the Australian Mathematical Society at La Trobe University in May 1977.
The notes from that lecture were never published but were distributed privately.
They first appeared in print as part of Cornish’s far-reaching, but often overlooked,
monograph [6] published nine years later. Cornish’s monograph contains a wealth
of information about Cornish algebras, usually as particular cases of his general
theory. Special cases of Cornish’s general results have subsequently been published
by other authors unaware of the existence of Cornish’s work. A detailed analysis
of finitely generated varieties of Cornish algebras was given by Priestley [31] and
Priestley and Santos [32].

We begin by describing the restricted Priestley duality for Cornish algebras of
type F . The dual of a Cornish algebra will be a Priestley space equipped with a
family of continuous self maps each of which is either order-preserving or order-
reversing. The duality was first described by Cornish [5, 6] and follows easily from
Urquhart’s restricted Priestley duality for Ockham algebras [35].
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A topological structure X := 〈X ;FX,6,T〉 is a Cornish space of type F if

• X♭ := 〈X ;6,T〉 is a Priestley space, and
• FX = { fX | f ∈ F } is a set of unary operations on X such that fX is a
continuous order-preserving self-map of X♭, for each f ∈ F+, and fX is a
continuous order-reversing self-map of X♭, for each f ∈ F−.

Ockham spaces arise in the special case when F = F− = {f}.
Except in the examples at the end, throughout the remainder of this section,

we fix a type F and will sometimes say simply Cornish algebra or Cornish space
without explicit reference to the type.

We shall denote the categories of Cornish algebras and Cornish spaces of type F
by CF and XF , respectively. The morphisms of CF and XF are the natural ones:
namely Cornish-algebra homomorphisms, and continuous order-preserving maps
that preserve the operations in F , respectively. These categories are dually equiva-
lent, via the contravariant functors D : CF → XF and E : XF → CF given on objects
in the following definition.

Definition 5.1. Let c : {0, 1} → {0, 1} be the usual Boolean complementation:
c(0) = 1 and c(1) = 0. For each Cornish algebra A = 〈A;∨,∧, FA, 0, 1〉, define the
Cornish space

D(A) = 〈D(A♭,2);FD(A),6,T〉,

where 〈D(A♭,2);6,T〉 is the Priestley space dual to the underlying bounded dis-
tributive lattice A♭ and, for all f ∈ F , the unary operation fD(A) is given by

fD(A)(x) =

{

x ◦ fA, if f ∈ F+,

c ◦ x ◦ fA, if f ∈ F−,

for all x : A♭ → 2.
For each Cornish space X = 〈X ;FX,6,T〉, define the Cornish algebra

E(X) = 〈P(X♭,2);∨,∧, FE(X), 0, 1〉,

where 〈P(X♭,2);∨,∧, 0, 1〉 is the bounded distributive lattice dual to the Priestley
space X♭, and, for all f ∈ F , the unary operation fE(X) is given by

fE(X)(α) =

{

α ◦ fX, if f ∈ F+,

c ◦ α ◦ fX, if f ∈ F−,

for all α : X♭ → 2.

The hom-functors D and E are defined on morphisms in exactly the way the
functors H and K were defined in Definition 2.2. The same is true of the natural
transformations e : idCF

→ ED and ε : idXF
→ DE.

Theorem 5.2 (Restricted Priestley duality for Cornish algebras). Let CF and XF

be, respectively, the categories of Cornish algebras and Cornish spaces of type F .

(1) Then D : CF → XF and E : XF → CF are well-defined functors that yield a

dual category equivalence between CF and XF .

(2) The maps eA : A → ED(A) and εX : X → DE(X) are isomorphisms, for

every Cornish algebra A and every Cornish space X of type F .
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Remark 5.3. An ordered set X can have self maps fX that are both order-
preserving and order-reversing. Of course, the unary operation fE(X) := E(fX) on
the corresponding Cornish algebra will change radically depending upon whether
f ∈ F+ or f ∈ F−. The examples in Figure 3 illustrates this.

Ordered set The corresponding algebra E(X)

with map fX f ∈ F+ f ∈ F−

Figure 3. f ∈ F+ versus f ∈ F−

As our first application of the duality, we will now see that CF = ISP(C) where C
is an algebra of cardinality 2κ, with κ = max{ℵ0, |F |}. Let M be the free monoid
generated by F—concretely, M is the set F ∗ of all finite words in the alphabet F ,
with the empty word ǫ as identity. Define

C := 〈{0, 1}M;∨,∧, FC, 0, 1〉,

where ∨, ∧, 0 and 1 are defined pointwise, and, for all f ∈ F , all a ∈ {0, 1}M and
all w ∈ M,

fC(a)(w) :=

{

a(fw), if f ∈ F+,

c(a(fw)), if f ∈ F−.

Extend the +/− labelling of F to M by defining M+ to consist of words containing
an even number of symbols from F− and M− to consist of words containing an odd
number of symbols from F−. Then, for each word v in M, we can define a map
vC in a way analogous to the definition of fC; just replace f ∈ F+ and f ∈ F−

by v ∈ M+ and v ∈ M−, respectively. Note that the map vC is the term function
corresponding to v viewed as a unary term and ǫC = idC .

The following result is a consequence of very general results of Cornish [6, 8.19.2,
8.20.1]; in his language M is a ±-monoid, with M+ and M− as just defined. We
sketch the details of a direct proof.
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Theorem 5.4. The algebra C defined above is a Cornish algebra of type F and

every Cornish algebra of type F embeds into a power of C. Consequently, CF is

residually small.

Proof. It is easy to check that fC is an endomorphism of C♭ when f ∈ F+ and is a
dual endomorphism of C♭ when f ∈ F−. Hence C is a Cornish algebra of type F .

Let A = E(X) be a Cornish algebra of type F . To prove that A embeds into
a power of C, it suffices to show that the homomorphisms from A = E(X) to
C separate the points of A. For each x ∈ X , we shall define a homomorphism
ϕx : A → C. Recall that the underlying sets of A = E(X) and C are P(X♭,2) and
{0, 1}M, respectively. Define ϕx : P(X♭,2) → {0, 1}M as follows:

ϕx(α)(w) := α(wX(x)), for all α ∈ P(X♭,2) and all w ∈ M.

A simple check shows that ϕx is a homomorphism. Now let α, β ∈ P(X♭,2) with
α 6= β. Thus, there exists x ∈ X with α(x) 6= β(x). Without loss of generality, we
may assume that α(x) = 1 and β(x) = 0, and hence

ϕx(α)(ǫ) = α(ǫX(x)) = α(x) = 1,

ϕx(β)(ǫ) = β(ǫX(x)) = β(x) = 0.

Thus, ϕx(α) 6= ϕx(β), as required.
As CF = ISP(C), every subdirectly irreducible algebra in CF embeds into C and

consequently CF is residually small. �

The next lemma is an immediate consequence of Lemma 2.8. Note that, given
a Cornish space X, the lattice Sub(X), introduced immediately before Lemma 2.8,
is the lattice of topologically closed substructures of X, including the empty sub-
structure.

Lemma 5.5. Let A = E(X) with X a Cornish space of type X. Then the lattice

of congruences on A is dually isomorphic to Sub(X). In particular, A is simple if

and only if X has no non-empty proper closed substructures.

Our first observation is that there are no non-finitely generated discriminator
varieties of Cornish algebras of finite type.

Theorem 5.6. Let V be a discriminator variety of Cornish algebras of type F with

F finite. Then V = Var(A) for some finite set A of quasi-primal Cornish algebras

of type F that share a common ternary discriminator term.

Proof. Since V is residually small, Fact 3.1(d) implies that there is a finite bound on
the sizes of the simple algebras in V, and hence, as F is finite, there are only finitely
many of them (up to isomorphism). As the simple algebras in a discriminator
variety share a common ternary discriminator term and generate the variety, the
result follows. �

As a result of this theorem, the task of characterising discriminator varieties of
Cornish algebras of finite type reduces to characterising finite sets of finite Cornish
spaces satisfying Condition (2) of Theorem 3.4.

Since a quasi-primal algebra must be simple, it follows at once from Lemma 5.5
that a necessary condition for a finite Cornish algebraA = E(X) to be quasi-primal
is that the Cornish space X has no non-empty proper substructures. Our first result
gives a less obvious necessary condition for a Cornish algebra to be quasi-primal,
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namely that F− is non-empty. The proof is direct and does not rely upon the
restricted Priestley duality for Cornish algebras.

Theorem 5.7. Let A be a non-trivial finite Cornish algebra of type F . If F− = ∅,

then A is not quasi-primal.

Proof. Let A = 〈A;∨,∧, 0, 1, F 〉 be a non-trivial finite Cornish algebra of type F
and assume that F− = ∅. Suppose, by way of contradiction, that A is quasi-
primal and let t be a 3-ary term that yields the ternary discriminator on A. As
every fundamental operation ofA is order-preserving, the term function tA is order-
preserving. Since t is a Mal’cev term onA (that is tA(a, a, b) = b and tA(a, b, b) = a,
for all a, b ∈ A), the order on A is an antichain; indeed, for all a, b ∈ A, we have

a 6 b =⇒ b = tA(a, a, b) 6 tA(a, b, b) = a.

This is a contradiction since A♭ is a non-trivial lattice. Hence A is not quasi-
primal. �

We can give an external characterisation, in terms of jointly surjective morphisms
in the dual category, of finite sets of quasi-primal Cornish algebras of type F that
share a common ternary discriminator term.

Given a Cornish-space morphism ϕ : X → Y, we define ϕ(X) to be the substruc-
ture of Y with underlying set ϕ(X).

Theorem 5.8. Let B be a finite set of finite Cornish algebras of type F and let

Y = {D(A) | A ∈ B}. Then the following are equivalent:

(1) the algebras in B are quasi-primal and share a common ternary discriminator

term;

(2) for all X1,X2 ∈ Y, for each Cornish space Y and every pair ϕ1 : X1 → Y,
ϕ2 : X2 → Y of jointly surjective morphisms, we have either Y = Y1 ∪̇ Y2,

where Yi := ϕi(Xi), for i = 1, 2, or both ϕ1 and ϕ2 are surjective;

(3) each X ∈ X has no non-empty proper substructures and, for all X1,X2 ∈ X,

for each Cornish space Y and every pair ϕ1 : X1 → Y, ϕ2 : X2 → Y of jointly

surjective morphisms, if ϕ1(a) and ϕ2(b) are comparable, for some a ∈ X1 and

b ∈ X2, then there exists c ∈ X1 and d ∈ X2 with ϕ1(c) = ϕ2(d).

Proof. (1) ⇔ (2). This follows immediately from Theorem 3.4.
We will now prove that (1) and (2) together imply (3). Assume (1) and (2).

By Theorem 3.2, each A ∈ A is simple. Hence, by Lemma 5.5, each X ∈ X has
no non-empty proper substructures. Let X1,X2 ∈ Y, let Y be a Cornish space, let
ϕ1 : X1 → Y, ϕ2 : X → Y be jointly surjective morphisms and define Yi := ϕi(Xi),
for i = 1, 2. Assume that a ∈ X1 and b ∈ X2 with ϕ1(a) comparable with ϕ2(b).
It follows that Y 6= Y1 ∪̇ Y2. Thus, by (2), both ϕ1 and ϕ2 are surjective. Hence
there certainly exist c ∈ X1 and d ∈ X2 with ϕ1(c) = ϕ2(d).

(3)⇒ (2). Assume (3). Let X1,X2 ∈ Y, let Y be a Cornish space, let ϕ1 : X1 → Y,
ϕ2 : X → Y be jointly surjective morphisms and define Yi := ϕi(Xi), for i = 1, 2.
Assume that Y 6= Y1 ∪̇Y2. We must show that both ϕ1 and ϕ2 are surjective. Since
Y 6= Y1 ∪̇ Y2, there exist a ∈ X1 and b ∈ X2 with ϕ1(a) comparable with ϕ2(b),
and so, by (3), there exists c ∈ X1 and d ∈ X2 with ϕ1(c) = ϕ2(d). Since X1

and X2 have no proper substructures, we have sg
X1
(c) = X1 and sg

X2
(d) = X2,

where sg
X
(x) denotes the substructure of X generated by x. It is easy to check that
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ϕi(sgXi
(x)) = sg

Y
(ϕi(x)), and hence, since ϕ1(c) = ϕ2(d),

ϕ1(X1) = ϕ1(sgX1
(c)) = sg

Y
(ϕ1(c)) = sg

Y
(ϕ2(d)) = ϕ2(sgX2

(d)) = ϕ2(X2).

Since ϕ1 and ϕ2 are jointly surjective, it follows that

Y = ϕ1(X1) ∪ ϕ2(X2) = ϕ1(X1) = ϕ2(X2),

whence both ϕ1 and ϕ2 are surjective. �

A characterisation of semi-primal Cornish algebras is an easy consequence of the
previous theorem.

Theorem 5.9. Let A be a finite Cornish algebra of type F and let X = D(A).
Then the following are equivalent:

(1) A is semi-primal;

(2) for each Cornish space Y and jointly surjective morphisms ϕ1, ϕ2 : X → Y,
either Y = Y1 ∪̇ Y2, where Yi := ϕi(X), or ϕ1 = ϕ2.

(3) X has no non-empty proper substructures and, for each Cornish space Y and

jointly surjective morphisms ϕ1, ϕ2 : X → Y, if ϕ1(a) and ϕ2(b) are compara-

ble, for some a, b ∈ X, there exists c ∈ X with ϕ1(c) = ϕ2(c).

Proof. The equivalence of (1) and (2) follows from Theorem 3.5, and (2) implies
(3) is trivial. Finally, we prove that (3) implies (2). Assume that (3) holds, let
ϕ1, ϕ2 : X → Y be jointly surjective morphisms, and define Yi := ϕi(X). Assume
that Y 6= Y1 ∪̇ Y2. We must prove that ϕ1 = ϕ2. As Y 6= Y1 ∪̇ Y2, there exist
a, b ∈ X such that ϕ1(a) and ϕ2(b) are comparable. Then (3) guarantees that there
exists c ∈ X with ϕ1(c) = ϕ2(c). As X has no non-empty proper substructures, the
element c generates X, whence ϕ1(c) = ϕ2(c) implies that ϕ1 = ϕ2. �

The characterisations of quasi- and semi-primality given by Theorems 5.8 and 5.9
are external to the Cornish spaces involved in the theorems as they require us to
study pairs of jointly surjective maps defined on those spaces. We now give sufficient
conditions that are local to the Cornish spaces.

Given a Cornish space X of type F , a unary term t in the signature F and a ∈ X ,
the orbit of a under tX is the sequence

a(0) := a, a(1) := tX(a), a(2) := tX(tX(a)), . . .

of iterates of a under tX. If the orbit is finite, in particular if X is finite, the
orbit must eventually cycle, that is, there exist m,n ∈ N0 with n < m such
that a(0), . . . , a(m − 1) are pairwise distinct and a(m) = a(n), in which case
{a(n), . . . , a(m − 1)} is a cycle of length m− n. We say that the orbit of a under

tX eventually reaches an odd cycle if m− n is odd. We require the following result
of Davey, Nguyen and Pitkethly [12].

Lemma 5.10 ([12, Lemma 4.3]). Let g be an order-reversing self map of an ordered

set Y. Then the union of the odd cycles of g forms an antichain.

As we noted earlier when discussing the Cornish algebra C of type F used in
Theorem 5.4, we can extend the +/− labelling of the operation symbols to the set
T of unary terms in the signature F in the natural way: t(v) ∈ T+ if and only if
t(v) contains an even number of operation symbols from F+.
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Theorem 5.11. Let B be a finite set of finite Cornish algebras of type F and

let Y = {D(A) | A ∈ B}. Then the algebras in B are quasi-primal and share a

common ternary discriminator term provided Y has the following properties:

(i) each X ∈ Y has no non-empty proper substructures,

(ii) there exists a unary term t in the signature F such that t ∈ T− and, for all

X ∈ Y and all a ∈ X, the orbit of a under tX eventually reaches an odd cycle.

Moreover, if we replace (ii) by

(ii)′ there exists a unary term t in the signature F such that t ∈ T− and, for all

X ∈ Y, the map tX is constant (that is, tX(a) = tX(b), for all a, b ∈ X),

then the algebras in A are semi-primal and share a common ternary discriminator

term.

Proof. We shall use the equivalence of (1) and (3) in Theorem 5.8. Assume that
(i) and (ii) hold. Let X1,X2 ∈ Y, let ϕ1 : X1 → Y, ϕ2 : X2 → Y be jointly surjective
morphisms, for some Cornish space Y, and assume that ϕ1(a) and ϕ2(b) are com-
parable, for some a ∈ X1 and b ∈ X2. We need to find c ∈ X1 and d ∈ X2 with
ϕ1(c) = ϕ2(d).

By (ii), there exists a unary term t ∈ T− such that the orbits of a and b under
tX1 and tX2 , respectively, eventually reach odd cycles. Choose m ∈ N large enough
so that c := (tX1)m(a) and d := (tX2)m(b) belong to odd cycles of tX1 and tX2 ,
respectively. We have

ϕ1(c) = ϕ1((t
X1)m(a)) = (tY)m(ϕ1(a)), and

ϕ2(d) = ϕ2((t
X2)m(b)) = (tY)m(ϕ2(b)).

Hence, since ϕ1(a) and ϕ2(b) are comparable, so are ϕ1(c) and ϕ2(d). As c and d
belong to odd cycles of tX1 and tX2 , respectively, it follows that ϕ1(c) and ϕ2(d)
belong to odd cycles of tY. By Lemma 5.10 we have ϕ1(c) = ϕ2(d), as required.
As X has no non-empty proper substructures, by (i), it follows from Theorem 3.4
that the algebras in A are quasi-primal and share a common ternary discriminator
term.

Finally, assume that (i) and (ii)′ hold. As (ii)′ implies (ii), it follows that the
algebras in A share a common ternary discriminator term. It remains to prove
that A = E(X) is semi-primal, for all X ∈ Y. Let X ∈ Y and let e be the constant
value of tX. Then, in the calculations above with X = X1 = X2, starting from
the assumption that there exist a, b ∈ X with ϕ1(a) comparable with ϕ2(b), we
have c = d = e and m = 1, whence ϕ1(c) = ϕ2(c). Hence A is semi-primal by
Theorem 5.9. �

It is very easy to derive the following corollary.

Corollary 5.12. Let B be a finite set of finite Cornish algebras of type F and

let Y = {D(A) | A ∈ B}. Then the algebras in B are semi-primal and share a

common ternary discriminator term provided Y has the following properties:

(i) each X ∈ Y has no non-empty proper substructures,

(ii) the set F− is non-empty,

(iii) there exists a unary term t in the signature F such that tX is constant, for

all X ∈ Y.
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Proof. Assume (i)–(iii). If t ∈ T−, then Theorem 5.11 applies. If t ∈ T+, then
h := t(g(v)) belongs to T− and hX is constant, where g is any element of F−, and
again Theorem 5.11 applies. �

We can now use our results to show that the characterisation of quasi-primal
Ockham algebras (Davey, Nguyen, Pitkethly [12]) extends to a characterisation
of discriminator varieties of Ockham algebras. We will also use Theorem 5.11
and Corollary 5.12 to give examples of quasi-primal Cornish algebras that share a
common ternary discriminator term and to give an infinite family of semi-primal
Cornish algebras.

(m odd) t(v) := g(v)Cm

0 1 2
· · ·

m−1

Figure 4. The Ockham space Cm

Theorem 5.13 (See [12, Theorem 4.5]). A variety of Ockham algebras is a dis-

criminator variety if and only if it is generated by a finite set B of Ockham algebras

such that, for each A ∈ B, we have D(A) ∼= Cm, for some odd m ∈ N, where Cm

is the Ockham space shown in Figure 4: 〈Cm;6〉 is an antichain and g is a cycle.

Proof. The backward implication follows from Theorem 5.11 with t(v) := g(v).
For the forward implication, assume that A is a discriminator variety of Ockham
algebras. By Theorem 5.6, we have A = Var(B) for some finite set B of quasi-
primal Ockham algebras that share a common ternary discriminator term. Let
A ∈ B and define X = D(A) = 〈X ; g,6,T〉. It remains to show that X ∼= Cm, for
some odd m ∈ N.

As A is quasi-primal and therefore simple, it follows from Lemma 5.5 that X has
no non-empty proper substructures, and consequently g is simply a cycle. Let the
size of X be m. Ifm is odd, then by Lemma 5.10, X is isomorphic to Cm, and we are
done. Suppose, by way of contradiction, that m is even. We will find an Ockham
space Y and jointly surjective morphisms ϕ1, ϕ2 : X → Y such that Y1 := ϕ1(X)
and Y2 := ϕ2(X) are proper substructures of Y with Y 6= Y1 ∪̇Y2. By Theorem 5.8
this contradicts our assumption that E(X) is quasi-primal.

Let Y = 〈{u, v, w}; g,6,T〉 be the Ockham space with u < v < w and g(u) = w,
g(v) = v, g(w) = u, that is, Y is the reduct of the Cornish space Y3 of Figure 6
obtained by removing the order-preserving map f . We now define the jointly sur-
jective morphisms ϕ1, ϕ2 : X → Y. Choose a to be any minimal element of the
ordered set 〈X ;6〉. Then, since the map g is a dual automorphism of 〈X ;6〉, it
follows that X1 := {gn(a) | n is even} is a set of minimal elements of 〈X ;6〉 and
X2 := {gn(a) | n is odd} is a set of maximal elements of 〈X ;6〉 with X = X1 ∪̇X2.
(This is true even if 〈X ;6〉 happens to be an antichain.) We can now define the
required Ockham space morphisms ϕ1, ϕ2 : X → Y by ϕ1(x) = u, if x ∈ X1, and
ϕ1(x) = w, if x ∈ X2, and ϕ2(x) = v, for all x ∈ X . �

Example 5.14. Some examples of Cornish spaces X such that A = E(X) is quasi-
primal are given in Figure 5. The Cornish spaces are of type F = {f, g}, where
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X1

t(v) := f2(g(v))

X2 u

v

w

t(v) := f2(g(v))

X3

t(v) := g(v)

Figure 5. Some Cornish spaces whose Priestley duals are quasi-primal

F+ = {f} and F− = {g}: the map fXi is indicated by solid lines and gXi is indicated
by dotted lines. The quasi-primality of Ai = E(Xi) follows from Theorem 5.11:
in each case, the indicated term t(v) belongs to T− and gives the required odd
cycles. In fact, the term t(v) := f2(g(v)) belongs to T− and gives the required
odd cycles on X1, X2 and X3. It follows that A1 := E(X1), A2 := E(X2) and
A3 := E(X3) are quasi-primal and share a common ternary discriminator term,
whence they collectively generate a discriminator variety.

Example 5.15. An infinite familyA1, A2, A3, . . . of semi-primal Cornish algebras
of type F = {f, g}, where F+ = {f} and F− = {g}, is given in Figure 6. In each
case An := E(Yn), the maps fYn and fAn are indicated by solid lines, and gYn

and gAn are indicated by dotted lines. The semi-primality of An follows from
Corollary 5.12: the operation g belongs to F− and t(v) = fn−1(v) is one possible
choice for the term required in (iii).

Y2

u1

u2

A2

0

a1

1

Y3

u1

u2

u3

A3

0

a1

a2

1

Y4

u1

u2

u3

u4

A4

0

a1

a2

a3

1

Figure 6. An infinite family of semi-primal Cornish algebras.

References
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