Skip to main content
Log in

Is There a “Hilbert Thesis”?

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

In his introductory paper to first-order logic, Jon Barwise writes in the Handbook of Mathematical Logic (1977):

[T]he informal notion of provable used in mathematics is made precise by the formal notion provable in first-order logic. Following a sug[g]estion of Martin Davis, we refer to this view as Hilbert’s Thesis.

This paper reviews the discussion of (different variations of) Hilbert’s Thesis in the literature. In addition to the question whether it is justifiable to use Hilbert’s name here, the arguments for this thesis are compared with those for Church’s Thesis concerning computability. This leads to the question whether one could provide an analogue for proofs of the concept of partial recursive function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ackermann, W., Begründung des “tertium non datur” mittels der Hilbertschen Theorie der Widerspruchsfreiheit, Mathematische Annalen 93:1–36, 1925.

    Article  Google Scholar 

  2. Azzouni, J., The derivation-indicator view of mathematical practice, Philosophia Mathematica 12(3):81–105, 2004.

  3. Barwise, J., An introduction to first-order logic, in J. Barwise, (ed.), Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977, pp. 5–46.

  4. Beklemishev, L., and A. Visser, Problems in the logic of provability, in D. Gabbay, S. Goncharov, and M. Zakharyaschev, (eds.), Mathematical Problems from Applied Logic I: Logics for the XXIst Century, vol. 4 of International Mathematical Series, Springer, Berlin, 2005, pp. 77–136.

  5. Berk, L.A., Hilbert’s Thesis: Some Considerations about Formalizations of Mathematics, Ph.D. thesis, MIT, 1982. http://hdl.handle.net/1721.1/15650.

  6. Bernays, P., Abhandlungen zur Philosophie der Mathematik, Wissenschaftliche Buchgesellschaft, Darmstadt, 1976.

  7. Boolos, G.S., J.P. Burgess, and R.C. Jeffrey, Computability and Logic, 4th edn., Cambridge University Press, Cambridge, 2003.

  8. Boolos, G.S., and R.C. Jeffrey, Computability and Logic, 3rd edn., Cambridge University Press, Cambridge, 1989.

  9. Davis, M., and W. Sieg, Conceptual confluence in 1936: Post and Turing, in G. Sommaruga, and T. Strahm, (eds.), Turing’s Revolution: The Impact of His Ideas about Computability, Springer, Berlin, 2015, pp. 3–27.

  10. Ebbinghaus, H.-D., Ernst Zermelo, Springer, Berlin, 2007.

  11. Feferman, S., H.M. Friedman, P. Maddy, and J.R. Steel, Does mathematics need new axioms?, Bulletin of Symbolic Logic 6(4):401–446, 2000.

  12. Gentzen, G., Untersuchungen über das logische Schließen I, II, Mathematische Zeitschrift 39:176–210, 405–431, 1935.

  13. Gentzen, G., The consistency of elementary number theory, in M.E. Szabo, (ed.), The Collected Papers of Gerhard Gentzen, North-Holland, Amsterdam, 1969, pp. 132–201. English translation of Die Widerspruchsfreiheit der reinen Zahlentheorie originially published in 1939.

  14. Gödel, K., On undecidable propositions of formal mathematical systems, in M. Davis, (ed.), The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions, Raven Press, 1965, pp. 41–73.

  15. Gödel, K., Vortrag über Vollständigkeit des Funktionenkalküls, in S. Feferman, et al., (eds.), Collected Works, vol. III of Unpublished Essays and Lectures, Oxford University Press, 1995, pp. 16–29. Lecture delivered on 6 September 1930 at the Conference on Epistemology of the Exact Sciences in Königsberg; German original and English translation.

  16. Hales, T.C., Developments in formal proof, Séminaire Bourbaki, (2014), 1086, 66ème année, 2013–2014.

  17. Hilbert, D., Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Kongreß zu Paris 1900, Nachrichten von der königl. Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse aus dem Jahre 1900, 1900, pp. 253–297.

  18. Hilbert, D., Über den Zahlbegriff, Jahresbericht der Deutschen Mathematiker-Vereinigung 8:180–184, 1900.

  19. Hilbert, D., Axiomatisches Denken, Mathematische Annalen 78(3/4):405–415, 1918. (Lecture delivered on 11 September 1917 at the Swiss Mathematical Society in Zurich).

  20. Hilbert, D., Über das Unendliche, Mathematische Annalen 95:161–190, 1926.

  21. Hilbert, D., Die Grundlagen der Mathematik, Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität 6(1/2):65–85, 1928.

  22. Hilbert, D., Die Grundlegung der elementaren Zahlenlehre, Mathematische Annalen 104:485–494, 1931. (Lecture delivered in December 1930 in Hamburg).

  23. Hilbert, D., The foundations of mathematics, in J. van Heijenoort, (ed.), From Frege to Gödel, Harvard University Press, 1967, pp. 464–479. English translation of [21].

  24. Hilbert, D., On the infinite, in Jean van Heijenoort, (ed.), From Frege to Gödel, Harvard University Press, 1967, pp. 367–392. English translation of [20].

  25. Hilbert, D., and W. Ackermann, Grundzüge der theoretischen Logik, vol. XXVII of Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Springer, Berlin, 1928.

  26. Hilbert, D., and W. Ackermann, Grundzüge der theoretischen Logik, vol. XXVII of Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 2nd edn., Springer, Berlin, 1938.

  27. Jäger, G., Inductive definitions and non-wellfounded proofs, Talk given in Tübingen in honor of Peter Schroeder-Heister’s 60th birthday, 2013.

  28. Kahle, R., Von Dedekind zu Zermelo versus Peano zu Gödel, Mathematische Semesterberichte 64(2):159–167, 2017.

  29. Kleene, S.C., Introduction to Metamathematics, North Holland, Amsterdam, 1952.

  30. Kleene, S.C., Origins of recursive function theory, Annals of the History of Computing 3(1):52–67, 1981.

  31. Kleene, S.C., Gödel’s impression on students of logic in the 1930s, in P. Weingartner, and L. Schmetterer, (eds.), Gödel Remembered, vol. IV of History of Logic, Bibliopolis, Berkeley, 1987, pp. 49–64.

  32. Kreisel, G., Informal rigour and completeness proofs, in I. Lakatos, (ed.), Problems in the Philosophy of Mathematics, vol. 47 of Studies in Logic and the Foundations of Mathematics, Elsevier, Amsterdam, 1967, pp. 138–186.

  33. Kripke, S.A., The Church-Turing “Thesis” as a special corollary of Gödel’s completeness theorem, in B.J. Copeland, C.J. Posy, and O. Shagrir, (eds.), Computability, MIT Press, Cambridge, 2013, pp. 77–104.

  34. Marfori, M.A., Informal proofs and mathematical rigour, Studia Logica 96:261–272, 2010.

  35. Moschovakis, Y., Notes on Set Theory, 2nd edn., Undergraduate Texts in Mathematics, Springer, Berlin, 2006.

  36. Naibo, A., M. Petrolo, and T. Seiller, On the computational meaning of axioms, in J. Redmond, O.P. Martins, and Á.N. Fernández, (eds.), Epistemology, Knowledge and the Impact of Interaction, Springer, Berlin, 2016, pp. 141–184.

  37. Naibo, A., M. Petrolo, and T. Seiller, Verificationism and classical realizability, in C. Başkent, (ed.), Perspectives on Interrogative Models of Inquiry: Developments in Inquiry and Questions, Springer, Berlin, 2016, pp. 163–197.

  38. Odifreddi, P., Classical Recursion Theory, vol. 125 of Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1989.

  39. Parsons, C., Finitism and intuitive knowledge, in M. Schirn, (ed.), The Philosophy of Mathematics Today, Oxford University Press, Oxford, 1998, pp. 249–270.

  40. Post, E.L., Finite combinatory processes—formulation 1, Journal of Symbolic Logic 1(3):103–105, 1936.

  41. Prawitz, D., Natural Deduction, A Proof-Theoretical Study, Almquist and Wiksell, 1965.

  42. Shapiro, S., The open texture of computability, in B.J. Copeland, C.J. Posy, and O. Shagrir, (eds.), Computability, MIT Press, Cambridge, 2013, pp. 153–181.

  43. Shoenfield, J.R., Mathematical Logic, Addison-Wesley, 1967. Reprinted by ASL, AK Peters, 2000.

  44. Sieg, W., In the shadow of incompletenss, in Hilbert’s Programs and Beyond, Oxford University Press, Oxford, 2013, pp. 155–192. First published in another collection in 2011.

  45. Smullyan, R.M., Fixed points and self-reference, International Journal of Mathematics and Mathematical Sciences 7(2):283–289, 1984.

  46. Soare, R.I., Interactive computing and relativized computability, in B.J. Copeland, C.J. Posy, and O. Shagrir, (eds.), Computability, MIT Press, Cambridge, 2013, pp. 203–260.

  47. Streett, R.S., and E.A. Emerson, An automata theoretic decision procedure for the propositional mu-calculus, Information and Computation 81:249–264, 1989.

  48. Tapp, C., An den Grenzen des Unendlichen, Mathematik im Kontext, Springer, Berlin, 2013.

  49. Weir, A., Informal proof, formal proof, formalism, The Review of Symbolic Logic 9(1):23–43, 2016.

Download references

Acknowledgements

This work is partially supported by the Portuguese Science Foundation, FCT, through the projects UID/MAT/00297/2013 (Centro de Matemática e Aplicações), PTDC/FIL-FCI/109991/2009, The Notion of Mathematical Proof, and PTDC/MHC-FIL/2583/2014, Hilbert’s 24th Problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Kahle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahle, R. Is There a “Hilbert Thesis”?. Stud Logica 107, 145–165 (2019). https://doi.org/10.1007/s11225-017-9776-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-017-9776-2

Keywords

Navigation