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A DUALITY FOR INVOLUTIVE BISEMILATTICES

STEFANO BONZIO, ANDREA LOI, AND LUISA PERUZZI

Abstract. We establish a duality between the category of involutive bisemilat-
tices and the category of semilattice inverse systems of Stone spaces, using Stone
duality from one side and the representation of involutive bisemilattices as P lonka
sum of Boolean algebras, from the other. Furthermore, we show that the dual
space of an involutive bisemilattice can be axiomatized as a GR space with in-
volution, a generalization of the spaces introduced by Gierz and Romanowska,
equipped with an involution as additional operation.

1. Introduction

It is a common trend in mathematics to study dualities for general algebraic
structures and, in particular, for those arising from mathematical logic. The first
step towards this direction traces back to the pioneering work by Stone for Boolean
algebras [24]. Later on, Stone duality has been extended to the more general case of
distributive lattices by Priestley [19]. The two above mentioned are the prototypical
examples of dualities obtained via dualizing objects and will be both recalled and
constructively used in the present work.

These kind of dualities have an intrinsic value: they are indeed a way of describ-
ing the very same mathematical object from two different perspectives, the target
category and its dual. More generally, dualities between algebraic structures and
corresponding topological spaces may open the way to applications as algebraic
problems can possibly be translated into topological ones, or new insights can be
obtained via the representation of a particular algebra as an algebra of continuos
functions over a certain space (for a more detailed exposition of applications see
[3, 2]).

The starting point of our analysis is the duality established by Gierz and Ro-
manowska [4] between distributive bisemilattices and compact totally disconnected
partially ordered left normal bands with constants, which, for sake of compactness,
we refer to as GR spaces. The duality is obtained via the usual strategy of finding
a suitable candidate to play the role of dualizing, or schizofrenic, object. However,
the relevance of the result lies mainly in the use, for the first time, of P lonka sums
as an essential tool for stating the duality.

Our aim is to provide a duality between the categories of involutive bisemilattices
and those topological spaces, here christened as GR spaces with involution. The
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2 S.BONZIO, A.LOI, AND L.PERUZZI

former consists of a class of algebras introduced and extensively studied in [1] as
algebraic semantics (although not equivalent) for paraconsistent weak Kleene logic.
The logical interests around these structures is relatively recent; on the other hand,
it is easily checked that involutive bisemilattices, as introduced in [1], are equivalent
to the regularization of the variety of Boolean algebras, axiomatized by P lonka
[15, 16].1 For this reason, involutive bisemilattices are strictly connected to Boolean
algebras as they are representable as P lonka sums of Boolean algebras.

The present work consists of two main results. On the one hand, taking advantage
of the P lonka sums representation in terms of Boolean algebras and Stone duality,
we are able to describe the dual space of an involutive bisemilattice as semilattice
inverse systems of Stone spaces (Theorem 4.8). On the other hand, we generalize
Gierz and Romanowska duality by considering GR spaces with involution as an
additional operation (Theorem 4.17). As a byproduct of our analysis we get a
topological description of semilattice inverse systems of Stone spaces (Corollary
4.18).
The paper is structured as follows. In Section 2 we summarize all the necessary
notions and known results about bisemilattices, Gierz and Romanowska duality and
involutive bisemilattices. In Section 3 we the categories of semilattice direct and
inverse systems, proving that, when constructed using dually equivalent categories,
they are also dually equivalent. In Section 4, we introduce GR spaces with involution
and prove the main results. Finally, in Section 5 we make some considerations about
categories admitting both topological duals and a representation in terms of P lonka
sums. By using Priestley duality, we then extend our results to the category of
distributive bisemilattices.

2. Preliminaries

A distributive bisemilattice is an algebra A = 〈A,+, ·〉 of type 〈2, 2〉 such that both
+ and · are idempotent, associative and commutative operations and, moreover,
+ (· respectively) distributes over · (+ respectively). Distributive bisemilattices,
originally called “quasi-lattices”, have been introduced by P lonka [13]; nowadays,
similar structures are studied in a more general setting under the name of Birkhoff
systems (see [6], [7]). Throughout the paper we will refer to these algebras simply as
bisemilattices. Observe that every distributive lattice is an example of bisemilattice
and every semilattice is a bisemilattice, where the two operations coincide. Any
bisemilattice induces two different partial orders, namely x ≤

·
y iff x · y = x and

x ≤+ y iff x + y = y.

Example 2.1. The 3-element algebra 3 = 〈{0, 1, α}, ·,+〉, whose operations are
defined by the so-called weak Kleene tables (given below), is the most prominent
example of bisemilattice, as it generates the variety of (distributive) bisemilattices
[9].

1The authors were not aware of some of the mentioned results by P lonka when writing [1].
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· 0 α 1

0 0 α 0

α α α α

1 0 α 1

+ 0 α 1

0 0 α 1

α α α α

1 1 α 1

The two partial orders induced by 3 are displayed in the following Hasse diagrams:

•0

•1
≤+

•α

• α

• 0
≤·

• 1

A duality for bisemilattices has been established in [4], by using 3 as dualizing
object. We recall here all the notions needed to state the main result.
A left normal band is an idempotent semigroup 〈A, ∗〉 satisfying the additional
identity x ∗ (y ∗ z) ≈ x ∗ (z ∗ y), which is weak form of commutativity. A left normal
band can be equipped with a partial order.

Definition 2.2. A partially ordered left normal band is an algebra A = 〈A, ∗,≤〉
such that

i) 〈A, ∗〉 is a left normal band

ii) 〈A,≤〉 is a partially ordered set

iii) if x ≤ y then x ∗ z ≤ y ∗ z and z ∗ x ≤ z ∗ y

iv) x ∗ y ≤ x

In any partially ordered left normal band it is possible to define a second partial
order via ∗ and ≤: a ⊑ b iff a ∗ b ≤ b and b ∗ a = b. A partially ordered left normal
band may be also extended by adding constants.

Definition 2.3. A partially ordered left normal band with constants is an algebra
A = 〈A, ∗,≤, c0, c1, cα〉 such that 〈A, ∗,≤〉 is a partially ordered left normal band
and c0, c1 and cα are constants satisfying

(1) x ∗ cα = cα ∗ x = cα

(2) x ∗ c0 = x ∗ c1 = x

(3) c0 ⊑ x ≤ c1 and cα ≤ x ⊑ cα

(4) if c0 ∗ x = c1 ∗ x then x = cα
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Definition 2.4. A GR space is a structure A = 〈A, ∗,≤, c0, c1, cα, τ〉, such that
〈A, ∗,≤, c0, c1, cα〉 is a partially ordered left normal band with constants and τ is a
topology making ∗ : A×A→ A a continous map and 〈A,≤, τ〉 is a compact totally
order disconnected space2.

Example 2.5. The support set of 3, namely {0, 1, α} equipped with the discrete
topology, where ≤ ≡ ≤·, c0 = 0, c1 = 1, cα = α and ∗ is defined as follows:

a ∗ b =

{
a if b 6= α

b otherwise

is a GR space (it is not difficult to check that operation a ∗ b = a+ a · b = a · (a+ b)
and that the induced order ⊑ coincides with ≤+).

We call DB the category of bisemilattices (whose morphisms are homomorphisms
of bisemilattices) and GR the category of GR spaces (whose morphisms are contin-
uous maps preserving ∗, constants and the order). The above mentioned duality is
stated as follows:

Theorem 2.6. [4, Theorem 7.5] The categories DB and GR are dual to each other
under the invertible functor Homb(−, 3) : DB → GR and its inverse Hom

GR
(−, 3) :

GR → DB.

In detail, given a bisemilattice S, its dual GR space is Ŝ = Homb(S, 3), i.e. the
space of the homomorphisms (of bisemilattices) from S to 3. Analogously, if A

is a GR space, then the dual is given by Â = Hom
GR

(A, 3), the bisemilattice of
morphisms of GR.

The isomorphism between S and
̂̂
S is given by:

ε
S

: S →
̂̂
S, x 7→ ε

S
(x), ε

S
(x)(ϕ) = ϕ(x), (1)

for every x ∈ S and ϕ ∈ Ŝ.

Analogously, for A and
̂̂
A, the isomorphism is given by:

δ
A

: A →
̂̂
A, x 7→ δ

A
(x), δ

A
(x)(ϕ) = ϕ(x), (2)

for every x ∈ A and ϕ ∈ Â.
The class of involutive bisemilattices has been introduced in [1] as the most suit-

able candidate to be the algebraic counterpart of PWK logic.

Definition 2.7. An involutive bisemilattice is an algebra B = 〈B, ·,+,
′

, 0, 1〉 of
type (2, 2, 1, 0, 0) satisfying:

I1. x+ x ≈ x;

I2. x+ y ≈ y + x;

2A topological space is totally order disconnected if (1) {(a, b) ∈ A×A : a ≤ b} is closed; (2) if
a 6≤ b then there is an open and closed lower set U such that b ∈ U and a 6∈ U .
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I3. x+ (y + z) ≈ (x+ y) + z;

I4. (x′)′ ≈ x;

I5. x · y ≈ (x′ + y′)′;

I6. x · (x′ + y) ≈ x · y;

I7. 0 + x ≈ x;

I8. 1 ≈ 0′.

We denote the variety of involutive bisemilattices by IBSL.
Every involutive bisemilattice has, in particular, the structure of a join semilattice

with zero, in virtue of axioms (I1)–(I3) and (I7). More than that, it is possible
to prove [1, Proposition 20] that · distributes over + and viceversa, therefore the
reduct 〈B,+, ·〉 is a bisemilattice. Notice that, in virtue of axioms (I5) and (I8), the
operations · and 1 are completely determined by +,

′

, and 0. It is not difficult to
check that every involutive bisemilattice has also the structure of a meet semilattice
with 1, and that the equations x+y ≈ (x′ ·y′)′, x+y ≈ x+(x′ ·y) are satisfied. There
are different equivalent ways to define involutive bisemilattices: it is not difficult to
check that IBSL corresponds to the regularization of the variety of Boolean algebras
described in [17].

Example 2.8. Every Boolean algebra, in particular the 2-element Boolean algebra
B2, is an involutive bisemilattice. Also, the 2-element semilattice with zero, which
we call S2, endowed with identity as its unary fundamental operation, is an involutive
bisemilattice. The most prominent example of involutive bisemilattice is the 3-
element algebra WK, which is obtained by expanding the language of 3 with an
involution behaving as follows:

′

1 0

α α

0 1

Upon considering the partial order ≤· induced by the product in its bisemilattice
reduct, it becomes a 3-element chain with α as its bottom element. B2, S2 and WK

can be represented by means of the following Hasse diagrams (the dashes represent
the order, while the arrows represent the negation):

B2 =
1

0

S2 =

a

1 = 0

WK =

1

0

α

It is not difficult to verify that B2 is a subalgebra of WK, while S2 is a quotient.
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Although the algebra WK allows to define the logic PWK (upon setting {1, α} as
designated values), its relevance is a consequence also of the fact that it generates
the variety IBSL, [1, Corollary 31]. This result can be also proved, observing
that involutive bisemilattices coincide with the regularization of Boolean algebras,
axiomatized in [16], and, due to [10], the only subdirectly irreducible members of
the class are B2, S2 and WK.

As the main focus of this paper is introducing a duality for involutive bisemi-
lattices, it is useful to recall here the definition of dual categories. We assume the
reader is familiar with the concepts of category and morphism (in a category).

Definition 2.9. Two categories C and D are equivalent provided there exist two
covariant functors, F : C → D and G : D → C such that G◦F = idC and F◦G = idD.

Whenever the functors considered in the above definition are controvariant (in-
stead of covariant), the two categories C and D are said to be dually equivalent or,
briefly, duals.

3. The categories of semilattice inverse and direct systems

In this section we are going to describe a very general procedure to construct
dualities for algebraic structures admitting a P lonka sum representation.

For our purposes, we need to strengthen the well known concepts of inverse and
direct system of a category, hence we introduce the notions of semilattice inverse
and semilattice direct systems in a very direct and way. For sake of simplicity, we
opt for presenting these topics following the current trend in algebraic topology (see
[11] for details).

Definition 3.1. Let C be an arbitrary category, a semilattice inverse system in the
category C is a tern X = 〈Xi, pii′, I〉 such that

(i) I is a join semilattice with lower bound;

(ii) for each i ∈ I, Xi is an object in C;

(iii) pii′ : Xi′ → Xi is a morphism of C, for each pair i 6 i′, satisfying that pii is
the identity in Xi and such that i ≤ i′ ≤ i′′ implies pii′ ◦ pi′i′′ = pii′′ .

I is called the index set of the system X , Xi are the terms and pii′ are referred
to as bonding morphisms of X . For convention, we indicate with ∨ the semilattice
operation on I, ≤ the induced order and i0 the lower bound in I.

The only difference making an inverse system a semilattice inverse system is the
requirement on the index set to be a semilattice with lower bound instead of a
directed preorder.

Definition 3.2. Given two semilattice inverse systems X = 〈Xi, pii′ , I〉 and Y =
〈Yj, qjj′, J〉, a morphism between X and Y is a pair (ϕ, fj) such that

i) ϕ : J → I is a semilattice homomorphism;

ii) for each j ∈ J , fj : Xϕ(j) → Yj is a morphism in C, such that whenever
j ≤ j′, then the diagram in Fig.3 commutes.
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Yj Yj′
qjj′

pϕ(j)ϕ(j′)
Xϕ(j) Xϕ(j′)

fj fj′

Figure 1. The commuting diagram defining morphisms of semilat-
tice inverse systems.

Notice that, for morphisms of semilattice inverse systems, the assumption that
ϕ : J → I is a (semilattice) homomorphism implies that whenever j ≤ j′ then ϕ(j) ≤
ϕ(j′). Given three semilattice inverse systems X = 〈Xi, pii′, I〉, Y = 〈Yj, qjj′, J〉,
Z = 〈Zk, rkk′, K〉, the composition of morphisms is defined in the same way as for
inverse systems.

Lemma 3.3. The composition of morphisms between semilattice inverse systems is
a morphism.

Proof. Let (ϕ, fj) : X → Y , (ψ, gk) : Y → Z, then (χ, hk) = (ψ, gk)(ϕ, fj) : X → Z
is χ = ϕψ, hk = gkfχ(k). χ is the composition of two (semilattice) homomorphisms,
hence it is a semilattice homomorphism. The claim follows from the commutativity
of the following diagram (we omitted the indexes for the maps p, q, r, f, g to make
the notation less cumbersome)

Zk Zk′
r

g g

Yψ(k) Yψ(k′)
q

p
Xχ(k) Xχ(k′)

f f

�
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Proposition 3.4. Let C an arbitrary category. Then Sem-inv-C is the category
whose objects are semilattice inverse systems in C with morphisms as defined above.

Proof. The composition of morphisms between systems is associative and the iden-
tity morphism is (1I , 1i), where 1I : I → I is the identity homomorphism on I and
1i : Xi → Xi is the identity morphism in the category C. �

The category of semilattice direct systems of a given category C is obtained by
reversing morphisms of Sem-inv-C as follows:

Definition 3.5. Let C be an arbitrary category. A semilattice direct system in C is
a triple X = 〈Xi, pii′ , I〉 such that

(i) I is a join semilattice with least element.

(ii) Xi is an object in C, for each i ∈ I;

(iii) pii′ : Xi → Xi′ is a morphism of C, for each pair i 6 i′, satisfying that pii is
the identity in Xi and such that i ≤ i′ ≤ i′′ implies pi′i′′ ◦ pii′ = pii′′ .

We call I, Xi, the index set and the terms of the direct system, respectively, while
we refer to pii′ as transition morphisms to stress the crucial difference with respect
to inverse systems.

A morphism between two semilattice direct systems X and Y is a pair (ϕ, fi) :
X → Y s. t.

i) ϕ : I → J is a semilattice homomorphism

ii) fi : Xi → Yϕ(i) is a morphism of C, making the following diagram commuta-
tive for each i, i′ ∈ I, i ≤ i′:

Yϕ(i) Yϕ(i′)
qϕ(i)ϕ(i′)

pii′
Xi Xi′

fi fi′

Figure 2. The commuting diagram defining morphisms of semilat-
tice direct systems.

The composition of two morphisms is defined as (fi, ϕ)(gj, ψ) = (hi, χ),

χ = ψϕ, hi = gϕ(i)fi : Xi → Zχ(i).

It is easily verified that the composition (hi, χ) is a morphism and it is associative and
that the element (1I , 1i), where 1I : I → I is the identity map on I and 1i : Xi → Xi

is the identity morphism in C, is the identity morphism between semilattice direct
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systems. Therefore semilattice direct systems form a category which we will call
Sem-dir-C.

In the remaining part of this section we aim to show that the categories of semilat-
tice direct and semilattice inverse systems of dually equivalent categories are dually
equivalent. In order to do that, given a controvariant functor F : C → D between

two categories C and D, we define a new functor F̃ : Sem-dir-C → Sem-inv-D as
follows

F̃(X) := 〈F(Xi),F(pii′), I〉 F̃(ϕ, fi) := (ϕ,F(fi)), (3)

where X = 〈Xi, pii′, I〉 is an object and (ϕ, fi) a morphism in the category Sem-
dir-C.

Similarly, whenever G : D → C is a controvariant functor, then we define G̃ : Sem-inv-D →
Sem-dir-C as in (3). The crucial point is proving that the new maps are indeed

functors.

Lemma 3.6. Let F : C → D be a controvariant functor between two categories C

and D. Then:
(1) F̃ is a controvariant functor between Sem-dir-C and Sem-inv-D;

(2) G̃ is a controvariant functor between Sem-inv-C and Sem-dir-D.

Proof. Proof of (1) and (2) are essentially analogous, so we just give the details of
(1): the reader can check that they can easily adapted to prove (2).

Assume that X = 〈Xi, pii′, I〉 is an object in Sem-dir-C. We first show that F̃(X) is
an object in Sem-inv-D, namely it satisfies conditions (i), (ii), (iii) of Definition 3.1.

Recall that, by (3), F̃(X) := 〈F(Xi),F(pii′), I〉.

(i) is clearly satisfied as I is a semilattice with lower bound;

(ii) Since Xi is an object in C and F a functor, F(Xi) is an object of D;

(iii) Let i ≤ i′. Then there exists a morphism pii′ : Xi → Xi′ of C such that pii is
the identity in Xi and moreover, if i ≤ i′ ≤ i′′ then pi′i′′ ◦ pii′ = pii′′ . Since
F is a controvariant functor, F(pii′) : F(Xi′) → F(Xi) is a morphism of D.
Moreover, F(pii) = F(1C) = 1D and compositions are obviously preserved.

This shows that F̃(X) is an object. Now, suppose that (ϕ, fi) is a morphism in
Sem-dir-C between two objects X = 〈Xi, pii′, I〉, Y = 〈Yj, pjj′, J〉. We show that

F̃(ϕ, fi) := (ϕ,F(fi)) is a morphism from F̃(Y) = 〈F(Yj),F(qjj′), J〉 to F̃(X) =

〈F(Xi),F(pii′), I〉 (which also assures that F̃ is controvariant). We check that

F̃(ϕ, fi) satisfies the properties i) and ii) in Definition 3.2.

i) clearly holds as ϕ : I → J is a semilattice homorphism from the index set of

F̃(X) to the index set of F̃(Y);

ii) For every i ∈ I, fi : Xi → Yϕ(i) is a morphism in C making the Diagram
in Fig.1 commutative. Therefore, F(fi) : F(Yϕ(i)) → F(Xi) is a morphism
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in D. Suppose that i ≤ i′, for some i, i′ ∈ I, then pii′ : Xi → Xi′ and
F(pii′) : F(Xi′) → F(Xi) is the correspondent morphism in D. Since ϕ is a

semilattice homomorphism, we have ϕ(i) ≤ ϕ(i′), and F̃(X) is a semilattice
inverse system, then the following diagram commutes:

F(Xi) F(Xi′)
F(pii′)

F(qϕ(i)ϕ(i′))
F(Yϕ(i)) F(Yϕ(i′))

F(fi) F(fi′)

This concludes our claim. �

Notice that the statement of Lemma 3.6 is false when considering covariant func-
tors instead of controvariant as shown by the following example.

Example 3.7. Let C be an algebraic category, Set the category of sets and F : C →
Set the forgetful functor. For any object X = 〈Xi, pii′, I〉 in Sem-dir-C, F̃(X) is not
an object in Sem-inv-Set. Indeed, for any two indexes such that i ≤ i′, we have a

morphism in C, pii′ : Xi → Xi′ ; since F is covariant, F̃(pii′) = F(pii′) is a function
(a morphism in Set) from F(Xi) to F(Xi′), hence it does not fulfill condition (iii)
in Definition 3.1.

Theorem 3.8. Let C and D be dually equivalent categories. Then Sem-dir-C and
Sem-inv-D are dually equivalent.

Proof. By hypothesis we have two controvariant functors F and G

F

C D

G

such that such that G ◦ F = idC and F ◦ G = idD. By Lemma 3.6 we have con-

trovariant functors F̃ and G̃

F̃

Sem-dir-C Sem-inv-D

G̃



A DUALITY FOR INVOLUTIVE BISEMILATTICES 11

We only need to check that the compositions G̃ ◦ F̃ and F̃ ◦ G̃ are the identities
in the categories Sem-dir-C and Sem-inv-D, respectively. Let X = 〈Xi, pii′, I〉 be an
object in Sem-dir-C. Then

G̃(F̃(X)) = G̃(〈F(Xi),F(pii′), I〉) = 〈G ◦ F(Xi),G ◦ F(pii′), I〉 = 〈Xi, pii′, I〉,

where the last equality is obtained by G ◦ F = idC. It is analogous to verify that

F̃ ◦ G̃ is the identity. �

The above result somehow resembles semilattice-based dualities establish by Ro-
manowska and Smith in [21, 22], where the authors essentially show how to lift
a duality between two categories, in particular an algebraic category and its dual
representation spaces, to a duality involving the correspondent semilattice repre-
sentations. The duality in Theorem 3.8 is also “based” on certain semilattice sys-
tems. However, the two approaches are characterized by a substantial difference:
Romanowska and Smith indeed consider, from one side, the semilattice sum of an al-
gebraic category but, on the other, the semilattice representation of the dual spaces,
and thus the duality, is obtained by dualizing the semilattice of the index sets. In
order to achieve this, they rely on the duality due to Hofmann, Mislove and Stralka
[8] for semilattices (see also [3] for details). This means, that the semilatttice repre-
sentation of the dual spaces (of the considered categories) is constructed via compact
topological semilattices with 0 which carries the Boolean topology (namely makes
the space compact, Hausdorff and totally disconnected).

4. The category of Involutive Bisemilattices and its dual

P lonka introduced [12, 14, 16] a construction to build algebras out of semilattice
systems of algebras3, see also [18, 23]

Definition 4.1. Let A = 〈Ai, ϕii′, I〉 be a semilattice direct system of algebras
Ai = 〈Ai, ft〉 of a fixed type ν, then the P lonka sum over A is the algebra Pl(A) =
〈
⊔
I Ai, g

P
t
〉, whose universe is the disjoint union and the operations gP

t
are defined

as follows: for every n-ary gt ∈ ν, and a1, . . . , an ∈
⊔
I Ai, where n > 1 and ar ∈ Air ,

we set j = i1 ∨ · · · ∨ in and define

gP
t

(a1, . . . , an) = gAj

t
(ϕi1j(a1), . . . , ϕinj(an)).

In case ν contains constants, then, for every constant g ∈ ν, we define gP = gAi0 .

Involutive bisemilattices, as well as bisemilattices admits a representation as
P lonka sums over a semilattice sistem of Boolean algebras (this was already proved
in [15, 16]).

Theorem 4.2 ([1, Thm. 46]).
1) If A is a semilattice direct system of Boolean algebras, then the Pl(A) is an

involutive bisemilattice.

3It is essential to have a semilattice with lower bound (instead of a pointless semilattice) when
working with algebras having constants, see [16].
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2) If B is an involutive bisemilattice, then B is isomorphic to the P lonka sum
over a semilattice direct system of Boolean algebras4.

The above result states that every involutive bisemilattice admits a unique rep-
resentation as P lonka sum of Boolean algebras. We summarize here the categories
we are dealing with

Category Objects Morphisms

BA Boolean Algebras Homomorphisms of BA
IBSL Involutive bisemilattices Homomorphisms of IBSL

Sem-dir-BA semilattice direct systems of B.A. Morphisms of Sem-dir-BA

SA Stone spaces continuous maps
Sem-inv-SA semilattice inverse systems of Stone sp. Morphisms of Sem-inv-SA

Theorem 4.2 states that the objects of the category IBSL are isomorphic to the
objects of the category Sem-dir-BA. We aim at proving more, namely that they
are also equivalent as categories. In order to establish this, we prove the following
auxiliary lemmata.

Lemma 4.3. Let A = 〈Ai, pii′, I〉 and B = 〈Bj, qjj′, J〉 be semilattice direct systems
of Boolean algebras. Let A = Pl(A), B = Pl(B) and h : A → B a homomorphism,
then for any i ∈ I there exists a j ∈ J such that

(1) h(Ai) ⊆ Bj

(2) h|Ai
is a Boolean homomorphism from Ai into Bj

Proof. (1) As first notice that, from the construction of P lonka sums, we have that
for any x ∈ Ai, also x′ ∈ Ai. Consequently, for any h(x) ∈ Bj, for a certain j ∈ J ,
then also h(x)′ ∈ Bj. Let a ∈ Ai for some i ∈ I, then there exists a j ∈ J such that
h(a) ∈ Bj. Therefore h(0Ai

) = h(a ∧ a′) = h(a) ∧ h(a′) = h(a) ∧ h(a)′ = 0Bj
, where

the last equality holds since h(a) and h(a)′ belong to the same Boolean algebra Bj .
Similarly, h(1Ai

) = h(a ∨ a′) = h(a) ∨ h(a′) = h(a) ∨ h(a)′ = 1Bj
.

We now have to prove that for any a ∈ Ai, with a 6= 0Ai
we have that h(a) ∈ Bj .

Suppose, by contradiction, that a ∈ Ai, and h(a) ∈ Bk, with j 6= k. Then 0Bj
=

h(0Ai
) = h(a ∧ a′) = h(a) ∧ h(a′) = h(a) ∧ h(a)′ = 0Bk

, which is impossible, as, by
construction Bj ∩Bk = ∅, hence, necessarily h(Ai) ⊆ Bj.

(2) follows from the fact that h preserves joins, meets and complements by defi-
nition and we already proved that h(0Ai

) = 0Bj
and h(1Ai

) = 1Bj
. �

Theorem 4.2 together with Lemma 4.3 state that IBSL−homomorphisms are
nothing but homomorphisms between the correspondent (unique) P lonka sum rep-
resentations. The statement of Lemma 4.3 can be exposed more precisely saying that
there exists a map ϕ : I → J such that for every homomorphism h : Pl(A) → Pl(B),

4The form of the semilattice direct system used in the P lonka sum representation is not needed
for the purposes of this work. For more details, the reader could refer to [1] or [17].
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h(Ai) ⊆ Bϕ(i). It is not difficult to prove that such map is actually a semilattice
homomorphism.

Lemma 4.4. Let A = 〈Ai, pii′, I〉 and B = 〈Bj, qjj′, J〉 be semilattice direct systems
of Boolean algebras. Let A = Pl(A), B = Pl(B), h : A → B a homomorphism and
ϕ

h
: I → J such that h(Ai) ⊆ Bϕ(i). Then ϕ

h
is a semilattice homomorphism.

Proof. Let a1 ∈ Ai and a2 ∈ Ai′ , with i, i′ ∈ I; by definition of Pl(A), a1∧a2 ∈ Ai∨i′

and h(a1) ∈ Bϕ
h
(i), h(a2) ∈ Bϕ

h
(i′), then h(a1 ∧ a2) = h(a1) ∧ h(a2) ∈ Bϕ

h
(i)∨ϕ

h
(i′).

But since h(a1 ∧ a2) ∈ Bϕ
h
(i∨i′), then necessarily ϕ

h
(i ∨ i′) = ϕ

h
(i) ∨ ϕ

h
(i′), i.e. ϕ

h

is a semilattice homorphism. �

Lemma 4.5. Let A = 〈Ai, pii′, I〉 and B = 〈Bj, qjj′, J〉 be semilattice direct systems
of Boolean algebras and (ϕ, fi) a morphism from A to B. Then h : Pl(A) → Pl(B),
defined as

h(a) := fi(a),

where i ∈ I is the index such that a ∈ Ai, is a homorphism of involutive bisemilat-
tices.

Proof. The map h is well defined for every i ∈ I, as by assumption fi is homo-
morphism of Boolean algebras. We only have to check that h is compatible with
all the operations of an involutive bisemilattice. To simplify the notation we set
A = Pl(A), B = Pl(B).

As regards the constants (we give details of one of them only), let i0 be the lower
bound in I (if follows that ϕ(i0) is the lower bound in J), then h(0) = fi0(0) =
0ϕ(i0) = 0. Similarly, for negation, assume a ∈ Ai, for some i ∈ I: h(¬a) = fi(¬a) =
¬fi(a) = ¬h(a).

As for binary operations (we consider ∧ only as the case of ∨ is analogous), assume
a ∈ Ai, b ∈ Aj and set k = i ∨ j:

h(a ∧ b)) = h(pik(a) ∧Ak pjk(b)) = fk(pik(a) ∧Ak pjk(b)) =

= fk(pik(a)) ∧Bϕ(k) fk(pjk(b)) = qϕ(i)ϕ(k)(fi(a)) ∧Bϕ(k) qϕ(j)ϕ(k)(fj(b)) =

= (fi(a) ∧ fj(b)) = (h(a) ∧ h(b)),

where the equality in the second line is justified by the commutativity of the following
diagram, which holds for i, j ≤ k, as, by assumption, (ϕ, fi) is morphism in Sem-
dir-C).

Bϕ(i) Bϕ(k)
qϕ(i)ϕ(k)

pik
Ai Ak

fi fk



14 S.BONZIO, A.LOI, AND L.PERUZZI

�

Theorem 4.6. The categories IBSL and Sem-dir-BA are equivalent.

Proof. The equivalence is proved by defining the following functors:

F

IBSL Sem-dir-BA

G

F associates to an involutive bisemilattices A ∼= Pl(A) (due to Theorem 4.2), the
semilattice direct system of Boolean algebras A. On the other hand, for a semilattice
direct system of Boolean algebras A, we define G(A) := Pl(A).

We firstly check that F and G are controvariant functors.
Let A,B ∈ IBSL such that A ∼= Pl(A) and B ∼= Pl(B), with A = 〈Ai, pii′ , I〉

and B = 〈Bj, qjj′, J〉 semilattice direct systems of Boolean algebras. Then, for every
IBSL-homomorphism h : A → B, we define F(h) := (ϕh, h|Ai

), where ϕh is the
semilattice homomorphism defined in Lemma and h|Ai

is the restriction of h on
the Boolean components Ai of the P lonka sum corresponding to A. Lemmas 4.3
4.4 guarantee that ϕh is a semilattice homomorphism and that h|Ai

is a Boolean
homomorphism in each component Ai of the P lonka sum Pl(A). Moreover, the
following diagram is commutative for each i ≤ i′ (notice that i ≤ i′ implies ϕh(i) ≤
ϕh(i

′))

Bϕh(i) Bϕh(i′)
qϕh(i)ϕh(i′)

pii′
Ai Ai′

h|Ai
h|A

i′

Therefore F(h) is a morphism from A to B, showing that F is a covariant functor.
As concern G, by Theorem 4.2 we know that Pl(A) is an involutive bisemilattice.

Moreover, if (ϕ, fi) : A → B is a morphism between the semilattice direct systems of
Boolean algebras A and B, then set G(ϕ, fi) := h, as defined in Lemma 4.5, which
assures that G(ϕ, fi) is a homomorphism from Pl(A) to Pl(B).

We are left with verifying that the composition of the two functors gives the
identity in both categories. Let A ∈ IBSL, such that A ∼= Pl(A)then

G(F(A)) = G(F(Pl(A))) = G(A) = Pl(A) = A;

F(G(A)) = F(Pl(A)) = A.
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�

Recall that a Stone space is topological space which is compact, Hausdorff and
totally disconnected. Stone spaces can be viewed as a category, which we refer to
as SA, with continuous maps as morphisms.

It is well known that the category of Stone spaces is the dual of the category
of Boolean algebras [24]. The above statement, combined with Theorem 3.8, gives
immediately the following

Corollary 4.7. The categories Sem-dir-BA and Sem-inv-SA are dually equivalent.

By Theorem 4.6, IBSL is equivalent to the category of semilattice direct systems
of Boolean algebras. Due to Corollary 4.7, we have then a first abstract characteri-
zation of the dual category of IBSL.

Theorem 4.8. The category Sem-inv-SA and IBSL are dually equivalent.

Theorem 4.8 gives a description of the dual category of involutive bisemilattices
in terms of Stone spaces, i.e. the dual category of Boolean algebras, objects coming
into play due to the representation Theorem 4.2.

The above theorem together with Theorem 4.2 should be compared with the
following theorem due to Haimo [5], where direct limits are considered instead of
P lonka sums. In the following statement, lim−→, lim←− denote the direct and inverse
limit, respectively.

Theorem 4.9 ([5], Th. 9). Let {Ai} be a direct system of Boolean algebras and
{A∗i } the corresponding family of Stone spaces. Then

(lim
−→

Ai)
∗ ∼= lim

←−
A∗i .

In Theorem 4.17 (see below) we will give a concrete topological axiomatization
of the dual space of an involutive bisemilattice via Gierz and Romanowska duality
(see Theorem 2.6). Logically motivated by the fact that involutive bisemilattices are
intrinsically characterized by an involutive negation, we aim at recovering a unary
operation in the dual space: we expand GR spaces to GR spaces with involution.

Definition 4.10. A GR space with involution is a GR space G with a continous
map ¬ : G→ G such that for any a ∈ G:

G1. ¬(¬a) = a

G2. ¬(a ∗ b) = ¬a ∗ ¬b

G3. if a ≤ b then ¬b ⊑ ¬a

G4. ¬c0 = c1, ¬c1 = c0 and ¬cα = cα

G5. The space Hom
GR

(A, 3) (see Section 2) equipped with natural involution ¬,
i.e. ¬ϕ(a) = (ϕ(¬a))′ satisfies ϕ · (¬ϕ + ψ) = ψ · ϕ, where operations are
defined pointwise;

G6. there exist ϕ0, ϕ1 ∈ Hom
GR

(A, 3) such that ¬ϕ0 = ϕ1 and ϕ + ϕ0 = ϕ, for
each ϕ ∈ Hom

GR
(A, 3).
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Example 4.11. WK equipped with discrete topology is the canonical example of
GR space with involution.

Definition 4.12. IGR is the category whose objects are GR spaces with involution
and whose morphisms are GR-morphisms preserving involution.

Given a GR space with involution G, we can consider its GR space reduct (simply
its involution free reduct), call it A, which can be associated to the dual distributive

bisemilattice Â = Hom
GR

(A, 3). Aiming at turning it into an involutive bisemilat-

tice, we define an involution on Â as follows:

¬Φ(a) = (Φ(¬a))′,

for each Φ ∈ Â and a ∈ G, where ¬ and ′ are the involutions of G and WK,
respectively.

Adopting the same idea, given an arbitrary involutive bisemilattice I, we consider
its bisemilattice reduct S = 〈I,+, ·〉, which is distributive [1, Proposition 20], and

therefore can be associated to its dual GR space, Ŝ = Hom
b
(S, 3) (see Section 2).

The bisemilattice 3 turns into WK just by adding the usual involution and the

constants 0, 1, so it makes sense to define an involution on Ŝ as:

¬ϕ(x) = (ϕ(x′))′,

for any ϕ ∈ Ŝ and x ∈ S.

Lemma 4.13. Let G be a GR-space with involution and A its GR-space reduct.

Then, if Φ ∈ Â then ¬Φ ∈ Â. Moreover, Ĝ = 〈Â,¬〉 is an involutive bisemilattice.

Proof. Assuming that Φ is a morphism of GR spaces, we have to verify that also ¬Φ
is, i.e. that it is a continuos map, preserving operation ∗, constants and the order
≤. Observe that ¬Φ is continuous as it is the composition of continuous maps.

Concerning operations and constants, we have:
¬Φ(a∗ b) = (Φ¬(a∗ b))′ = (Φ(¬a∗¬b))′ = (Φ(¬a) ∗Φ(¬b))′ = (Φ(¬a))′ ∗ (Φ(¬b))′ =
¬Φ(a) ∗ ¬Φ(b).
¬Φ(c0) = (Φ(¬c0))

′ = (Φ(c1))
′ = 1′ = 0.

Similarly, ¬Φ(c1) = (Φ(¬c1))
′ = (Φ(c0))

′ = 0′ = 1 and ¬Φ(cα) = (Φ(¬cα))′ =
(Φ(cα))′ = α′ = α.

As for the order, let a ≤ b, but then ¬b ⊑ ¬a. Since Φ preserve both the orders,
Φ(¬b) ≤+ Φ(¬a), thus (Φ(¬a))′ ≤· (Φ(¬a))′, i.e. ¬Φ(a) ≤ ¬Φ(b).

To prove that Ĝ is an involutive bisemilattice, we have to check that conditions I1

to I8 of Definition 2.7 hold for Ĝ. Clearly, I1, I2 and I3 hold as Â is a distributive
bisemilattice, while I6, I7 and I8 hold by definition. For the remaining ones, let

Φ,Ψ ∈ Â and a ∈ A.
I4. ¬(¬Φ(a)) = ¬Φ(¬(a))′ = Φ(¬¬a)′′ = Φ(a).
I5. ¬(Φ + Ψ)(a) = (Φ + Ψ(¬a))′ = (Φ(¬a) + Ψ(¬a))′ = (′Φ(¬a))′ · (Ψ(¬a))′ =
¬Φ(a) · ¬Ψ(a). �
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Proposition 4.14. G ∼=
ˆ̂
G.

Proof. We make good use of the duality established in [4], from which it follows

A ∼=
̂̂
A, where A is the GR space reduct of G. To prove our claim we only have to

prove that the isomorphism, given by (2), δ
A

(x)(ϕ) = ϕ(x), for x ∈ A and ϕ ∈ Â,
preserve the involution. This is easily checked, indeed

(¬δ
A

(x))(ϕ) = (δ
A

(x)(¬ϕ))′ = (¬ϕ(x))′ = (ϕ(¬x))′′ = ϕ(¬x).

�

Lemma 4.15. Let I ∈ IBSL with S its bisemilattice reduct. If ϕ ∈ Ŝ then ¬ϕ ∈ Ŝ.

Moreover, Î = 〈Ŝ,¬〉 is a GR space with involution.

Proof. Suppose that ϕ ∈ Ŝ, i.e. it is a map preserving sum and multiplication. It
suffices to verify that also ¬ϕ preserves the two operations. ¬ϕ(x + y) = (ϕ(x +
y)′)′ = (ϕ(x′ · y′))′ = (ϕ(x′) · ϕ(y′))′ = (ϕ(x′))′ + (ϕ(y′))′ = ¬ϕ(x) + ¬ϕ(y). For
multiplication the proof runs analogously.

For the second part, by [4], we have that Ŝ is a GR space, thus we only have

to check that ¬ has the required properties. Let ϕ, ψ ∈ Ŝ and x ∈ S; properties
G1−G4 can be easily verified as follows:

¬(¬ϕ(x)) = ¬(ϕ(x′))′ = (ϕ(x′′))′′ = ϕ(x).

¬(ϕ ∗ψ)(x) = (ϕ ∗ψ(x′))′ = (ϕ(x′) ∗ϕ(x′))′ = (ϕ(x′))′ ∗ (ψ(x′))′ = ¬ϕ(x) ∗¬ψ(x).

Let ϕ ≤ ψ, i.e. ϕ(x) ≤· ψ(x) for each x ∈ S. In particular ϕ(x′) ≤· ψ(x′), thus
(ψ(x′))′ ≤+ (ϕ(x′))′, i.e. ¬ψ ⊑ ¬ϕ.

Let ϕ0, ϕ1 and ϕα the constant homorphisms (of bisemilattices) on 0, 1 and α,
respectively. ¬ϕ0(x) = (ϕ0(x

′))′ = 0′ = 1 = ϕ1(x); ¬ϕ1(x) = (ϕ1(x
′))′ = 1′ = 0 =

ϕ0(x); ¬ϕα(x) = (ϕα(x′))′ = α′ = α = ϕα(x).

In order to prove G5 and G6, it is enough to show that I ∼=
̂̂
I. Recall that the

bisemilattice reduct S of I is isomorphic to
̂̂
S under the isomorphism given by (1),

namely ε
S
(x)(ϕ) = ϕ(x), for every ϕ ∈ Ŝ and x ∈ S. The map ε

S
is obviously a

homomorphism of bisemilattices and a bijection from I\{0, 1} to
̂̂
I\{Φ0,Φ1}, where

by Φ0,Φ1 we indicate the constants in
̂̂
I. This map can be extended to a bijection

from I to
̂̂
I, by setting ε

S
(0) = Φ0 and ε

S
(1) = Φ1. We have to prove that Φ0 and

Φ1 indeed play the role of the constants in
̂̂
I and that ε

S
also preserves involution.



18 S.BONZIO, A.LOI, AND L.PERUZZI

We start with the latter task:

(¬ε
S
(x))(ϕ) = (ε

S
(x)(¬ϕ))′ = (¬ϕ(x))′ = (ϕ(x′))′′ = ϕ(x′).

Regarding the constants, we only need to prove that ¬Φ0 = Φ1 and Ψ + Φ0 = Ψ,

for each Ψ ∈
̂̂
I. Indeed, for any ϕ ∈ Î, one has:

¬Φ0(ϕ) = ¬ε
S
(0)(ϕ) = ϕ(0′) = ϕ(1) = ε

S
(1)(ϕ) = Φ1(ϕ).

Finally, due to the surjectivity of εS, for any Ψ ∈
̂̂
I, there exists x ∈ I such that

Ψ = εS(x). Therefore Ψ(ϕ) = εS(x)(ϕ) = εS(x+ 0)(ϕ) = ϕ(x+ 0) = ϕ(x) + ϕ(0) =
εS(x)(ϕ) + εS(0)(ϕ) = (Ψ + Φ0)(ϕ) and we are done.

�

In order to prove Theorem 4.17 we are only left with proving that the func-
tors Homb(−,WK) : IBSL → IGR and Hom

GR
(−,WK) : IGR → IBSL are

controvariant (we consider just the first functor as for the other the proof runs
analogously).

Proposition 4.16. Let f : I → L be a morphism of IBSL, then it induces a

morphism of IGR f ∗ : L̂ → Î, where L̂, Î are the dual spaces of L and I, respectively.

Proof. f ∗ is defined in the usual way, i.e. f ∗(ĵ)(i) = ĵ(f(i)), for each i ∈ I and

ĵ ∈ Ĵ. It suffices to prove that f ∗ preserves involution, namely f ∗(¬ĵ) = ¬f ∗(ĵ),
for all j ∈ J :

(¬f ∗(ĵ))(i) = ¬ĵ(f(i)) = f ∗(¬ĵ)(i),

�

Surprisingly enough, we have established that semilattice inverse systems of Stone
spaces are nothing but GR spaces with involution.

Theorem 4.17. The categories of GR spaces with involution and IBSL are dually
equivalent.

Corollary 4.18. The category Sem-inv-SA is equivalent to the category of GR
spaces with involution.

Corollary 4.18 highlights an interesting as well as unexpected topological proper-
ties of Stone spaces. Indeed the category of (semilattice) inverse systems of Stone
spaces which deals with a possibly infinite family of them can be described by a
specific class of topological spaces, namely GR spaces with involution.

5. Final comments and remarks

It is natural to wonder whether the content of Theorem 4.17 may be extended to
other algebraic categories admitting topological duals such as bisemilattices and GR
spaces. Indeed, recall that bisemilattices are P lonka sums of distributive lattices,
according to the following
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Theorem 5.1. [13, Th. 3] An algebra B is a bisemilattice iff it is the P lonka sum
over a semilattice direct system of distributive lattices.

A Priestley space is an ordered topological space, i.e. a set X equipped with a
partial order ≤ and a topology τ , such that 〈X, τ〉 is compact and, for x � y there
exists a clopen up-set U such that x ∈ U and y 6∈ U . The category of Priestley
spaces, PS, is the category whose objects are Priestley spaces and morphisms are
continuos maps preserving the ordering.

The category of Priestley spaces is the dual of the category of distributive lattices
[19], [20].

Let us call BSL the category of bisemilattices (objects are bisemilattices, mor-
phisms homomorphisms of bisemilattices). It follows from our analysis and Theorem
5.1 that the objects in BSL are the same as in Sem-dir-DL, where DL stands for
the category of distributive lattices. We claim that the two categories of BSL

and Sem-dir-DL are indeed equivalent. This can be shown using the same strategy
applied in Section 4.

Lemma 5.2. Let L and M be two bisemilattices, the P lonka sums over the semi-
lattice direct systems of distributive lattices L = 〈Li, ϕi,i′, I〉 and M = 〈Mj , ϕj,j′, J〉,
and let h : L → M be a homomorphism. Then, for any i ∈ I, there exists a j ∈ J

such that h(Li) ⊆Mj.
Moreover, there exists a semilattice homomorphism ϕ : I → J , for every homor-
phism h : Pl(L) → Pl(M), h(Ai) ⊆ Bϕ(i).

Proof. Let a, b ∈ Li: we claim that h(a), h(b) ∈ Mj , for some j ∈ J . Two cases may
arise: either a, b are comparable with respect to the order ≤ of Li or they are not.
Suppose a and b are comparable: let a ≤ b and suppose that h(a) ∈ Mj, h(b) ∈Mj′

with j 6= j′. Then, h(a) = h(a∧b) = h(a)∧h(b) ∈Mj∨j′ (by definition of operations
in the P lonka sum), therefore j = j ∨ j′. On the other hand, h(b) = h(a ∨ b) =
h(a) ∨ h(b) ∈Mj∨j′. Thus j = j′.

The case of b < a can be proved anologously.
Suppose now that a is not comparable with b, namely a 6≤ b and b 6≤ a. Clearly

a ∧ b ≤ a ∨ b, hence, reasoning as above, h(a ∨ b) and h(a ∧ b) will belong to the
same Mj for some j ∈ J . Now, both a and b are comparable with a ∧ b and a ∨ b,
hence necessarily h(a) ∈Mj and h(b) ∈Mj . Therefore h(Li) ∈Mj .

The proof of the second statement runs analogously as for Lemma 4.4. �

Remark 5.3. It is not difficult to check that the statement of Lemma 4.5 can
be proven analogously when considering semilattice direct systems of distributive
lattices, instead of Boolean algebras, and morphisms between them.

As consequence of Theorem 5.1, Lemma 5.2 and Remark 5.3, we get

Theorem 5.4. The category BSL is equivalent to Sem-dir-DL.

Using Priestley duality and Theorem 3.8 we have

Theorem 5.5. The categories Sem-inv-PS and BSL are dually equivalent.
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As the category of GR spaces is the dual category of BSL (see Theorem 2.6),
this means that Sem-inv-PS are equivalent to a single class of spaces, namely

Corollary 5.6. The category Sem-inv-PS is equivalent to the category of GR
spaces.
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