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Abstract

An explicit categorical equivalence is defined between a proper subvari-

ety of the class of PMV -algebras, as defined by Di Nola and Dvurečenskij,

to be called PMVf -algebras, and the category of semi-low fu-rings. This

categorical representation is done using the prime spectrum of the MV -

algebras, through the equivalence between MV -algebras and lu-groups

established by Mundici, from the perspective of the Dubuc-Poveda ap-

proach, that extends the construction defined by Chang on chains. As a

particular case, semi-low fu-rings associated to Boolean algebras are char-

acterized. Besides we show that class of PMVf -algebras is coextensive.

Key words: PMV -algebra, PMVf -algebra, lu-ring, prime ideal, spec-

trum.

1 Introduction

In this paper the categorical equivalence is described, between a classical uni-
versal algebra variety, subvariety of the class of PMV -algebras, the PMVf -
algebras and the category of semi-low fu-rings. This intermediate variety is a
proper subvariety of the PMV -algebras defined by Di Nola y Dvurečenskij [5].
On the other hand, the variety of commutative unitary PMV -algebras stud-
ied by Montagna [11], to be called in this paper PMV1-algebras, is a proper
subvariety of the PMVf . Estrada [9] defined the variety of MVW -rigs, and
we defined the variety of PMVf from it. The MVW -rigs contains strictly the
variety of PMV -algebras. Every MV -algebra, with the infimum as product, is

∗Universidad del Valle.
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1

http://arxiv.org/abs/1804.00565v1


an MVW -rig (Proposition 3.1), it can happen that it is not a PMV -algebra;
for example, the  Lukasiewicz MV -algebras or the MV -algebra [0, 1].

The equivalence between the category of PMVf -algebras and the category of
semi-low fu-rings is established based of the equivalence proved by Mundici [12],
but applying the construction introduced by Dubuc-Poveda [6], since it does not
require the good sequences, and relies in the representation of any MV -algebra
as a subdirect product of totally ordered MV -algebras, that will be called from
here on chain MV -algebras or MV -chain. This representation only requires the
prime spectrum of an MV -algebras and the equivalence between chain MV -
algebras and the chain lu-groups, established by Chang [3].

It is proved that for the representation established in this paper, it is enough
with the prime spectrum of the subjacent MV -algebra, since every PMVf -
algebra A is a PMV -algebra that satisfies that xy ≤ x∧y, y x(y⊖z) = xy⊖xz,
for every x, y, z ∈ A, and every prime ideal of the subjacent MV -algebra is an
ideal of the PMVf -algebra A.

This construction finds explicit representations for the rings associated to no-
table examples of PMVf -algebras. For example, the MV -algebra [0, 1] with the
usual product, the MV -algebra of the functions from [0, 1]n to [0, 1] with the
usual product, or the PMVf -algebra of boolean algebras with product defined
by the infimum. In this representation, the semi-low fu-ring associated to the
boolean algebra 2n is precisely the ring Zn.

In section 2, the preliminary concepts about MV -algebras are presented. In
section 3, the MV -algebras with product are defined, and in that context, the
varieties of PMV1, PMVf , PMV -algebras and MVW -rigs. Some properties of
the MVW -rigs are presented, with examples that illustrate the independence
of the axioms chosen. Besides, it is shown that the inclusions between the
categories are strict. In section 4 the semi-low lu-rings are presented, (Definition
4.9) as well as one of the key results of this paper, Theorem 5.5, where the
distributive property of the product for PMVf -chains is proven. In section 5
we find the main result of this paper, the construction of the equivalence is
extended to the category of PMVf -algebras with product, and the category
of semi-low fu-rings. In section 6, some consequences of the equivalence are
drawn, and in particular the construction of the ring associated to the boolean
algebras is sketched. Finally, in section 7, we proof that the categories PMV1

and PMVf are coextensive.

2 MV -algebras

Some properties of the theory of MV -algebras are presented, that are relevant
to this work. The reader can find more complete information in [4].

Definition 2.1 (MV -algebra). An MV -algebra is a structure (A,⊕,¬, 0) such
that (A,⊕, 0) is a commutative monoid and the operation ¬ satisfies:
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i) ¬(¬x) = x,

ii) x⊕ ¬0 = ¬0,

iii) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.

Because of properties of MV -algebras, 0 ≤ a ≤ u for all a ∈ A, with u = ¬0.
The operation ¬ is called negation, while the operation ⊕ is called sum.

Affirmation 2.1 (Order). Every MV -algebra A is ordered by the relation,

x ≤ y if and only if x⊖ y = 0, for all x, y ∈ A.

Definition 2.2 (Homomorphism). Given two MV -algebras A and B, a function
f : A→ B is a homomorphism of MV -algebras if for every x, y en A :

i) f(0) = 0,

ii) f(x⊕ y) = f(x) ⊕ f(y),

iii) f(¬x) = ¬f(x).

Definition 2.3 (Ideal of an MV -algebra). A non-empty subset I of an MV -
algebra A, is an ideal if and only if:

i) If a ≤ b and b ∈ I, then a ∈ I.

ii) If a, b ∈ I, then a⊕ b ∈ I.

The set of all ideals of the MV -algebra A will be denoted by Id(A).

Definition 2.4 (Prime ideal of an MV -algebra). An ideal P of an MV -algebra
A, is prime if for all a, b ∈ A, a ∧ b ∈ P implies a ∈ P or b ∈ P.

The set of all prime ideals of the MV -algebra A will be called Spec(A), the
spectrum of A.

Theorem 2.5 (Chang representation theorem [3]). Every non trivial MV -
algebra is isomorphic to a subdirect product of MV -chains.

3 MV -algebras with product

Definition 3.1. An MV -algebra with product is a structure (A,⊕, ·,¬, 0) such
that (A,⊕,¬, 0) is an MV -algebra, and (A, ·) is a semigroup.

The operation · is called product, and the notation used is : a · a · . . . · a︸ ︷︷ ︸
n−times

= an.
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Next, four varieties ofMV -algebras with product are defined, namely theMVW -
rigs, the PMV -algebras, the PMVf -algebras and the unitary PMV1-algebras.
Some of their properties are proved and in particular, we show that each one is
contained in the other.

From here on, all products are supposed to be commutative.

Definition 3.2. (MVW-rig [[9],2.4]) An MVW-rig (A,⊕, ·,¬, 0) is an MV -
algebra with product such that

i) a0 = 0a = 0,

ii)
(
a(b ⊕ c)

)
⊖ (ab ⊕ ac) = 0,

iii) (ab ⊖ ac) ⊖
(
a(b⊖ c)

)
= 0.

Observation 3.1. For every a, b, c ∈ A, axiom ii) is equivalent to

a(b ⊕ c) ≤ ab⊕ ac (1)

and axiom iii) is equivalent to

ab⊖ ac ≤ a(b ⊖ c). (2)

Definition 3.3. An MVW -rig A is called unitary if there exists an element
s with the property that for every x in A sx = xs = x. It is follows that s is
unique.

Definition 3.4 (PMV [5]). A PMV -algebra A, is an MV -algebra with product
such that for every a, b, c ∈ A i) a ⊙ b = 0 implies ac ⊙ bc = 0; ii) a ⊙ b = 0
implies c(a⊕ b) = ca⊕ cb.

In Theorem 3.1 of [5], it is shown that the class PMV is equationally definible.

Definition 3.5 (PMVf ). A PMVf -algebra is an MVW -rig such that for every
a, b, c ∈ A, ab ≤ a ∧ b, and a(b ⊖ c) = ab⊖ ac.

Definition 3.6 (PMV -Unitary algebra [10]). A PMV - unitary algebra is an
MV -algebra A with product such that for every a, b, c ∈ A, au = a, y a(b⊖ c) =
ab⊖ ac.

Theorem 3.7. The following inclusions hold:

PMV1 ⊂ PMVf ⊆ PMV ⊂MVW -rig

Proof. The first inclusion, PMV1 ⊂ PMVf , follows from Lemma 2.9-iii on [10]
and example 3.23.

For the second inclusion, given a, b, c ∈ PMVf , if a ⊙ b = 0, since ac ≤ a
and bc ≤ b then ac ⊙ bc ≤ a ⊙ b = 0. On the other hand, a ⊙ b = 0 implies
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a ≤ u⊖ b and therefore ca ≤ c(u⊖ b) ≤ cu, and this last inequality implies (see
proposition 2.7-vii, [10]) c(b⊕ a) = c(u⊖ ((u⊖ b)⊖ a)) = cu⊖ (c(u⊖ b)⊖ ca) =
(cu⊖ c(u⊖ b)) ⊕ ca = cb⊕ ca.

The inclusion PMV ⊂MVW -rig is proven in proposition 6.3. To see that it is
a strict inclusion, see example 3.13.

3.1 Examples and properties of the MVW -rigs

Example 3.8. Every MV -algebra with the product defined by ab = 0, for all
a, b ∈ A, is an MVW -rig.

Example 3.9. The MV -algebra [0, 1] with the usual multiplication inherited
from R is a commutative MVW -rig with unitary element u = 1.

Example 3.10. The MV -algebra [0, u] of real numbers with 0 ≤ u < 1 is a
commutative MVW -rig, but it is not unitary.

Example 3.11. The MV -algebra of the continuous functions from [0, 1]n to
[0, 1] with the usual product for functions is an MVW -rig with the property:
xy ≤ x ∧ y.

Example 3.12. [[9],2.10]. Consider the algebra  ̃Ln = { m
nk ∈ Q ∩ [0, 1]| k,m ∈

N} obtained by closing the  Lukasiewicz algebra  Ln under products, where  Ln =〈
{0, 1

n−1 ,
2

n−1 , · · · ,
n−2
n−1 , 1},⊕,¬

〉
with the usual product, is an MVW -rig .

Example 3.13. [[9],2.11]. Zn = {0, 1, . . . , n} with n ∈ N, u = n as strong
unit, x⊕ y = min{n, x+ y}, ¬x = n− x y xy = min{n, x · y}, is an MVW -rig
where sum and product are the usual operations on the natural numbers.

Zn is unitary, and u 6= 1. The cancellation law does not hold, because the
product of two elements can be larger than the supremum. In some cases, the
strict inequality in (2) holds, even though the equality (1) is always true. For
example, in Z10, 2(7 ⊖ 6) = 2[¬(¬7 ⊕ 6)] = 2[¬(3 ⊕ 6)] = 2[¬9] = 2(1) = 2 >
(2)(7) ⊖ (2)(6) = 10 ⊖ 10 = 0.

Zn is not always a PMV algebra either, because for example in Z10, (3)(2) ⊙
(3)(2) = 6 ⊙ 6 = 2, even though 2 ⊙ 2 = 0.

Example 3.14.  ̂Ln+1 =
〈
{0, 1

n
, · · · n−1

n
, 1},⊕, ·,¬, 0, 1

〉
, with product defined

by
x

n
·
y

n
=
min{n, x · y}

n
, for x, y ∈ {0, 1, · · · , n}, is an MVW-rig isomorphic

to Zn, and the isomorphism is defined by ϕ :  Ln+1 −→ Zn,
x
n
7−→ x.

Proposition 3.1. Every MV -algebra A with product defined by the infimum
x · y = x ∧ y is an MVW -rig.

Proof. Because the product is defined in terms of the order, by the Chang
representation theorem, it is enough to show that the result holds for every
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totally ordered PMV algebra. Since the product defined by the infimum is
associative and commutative, it is enough to prove the inequalities (1) and (2).
Consider a, b, c ∈ A an MV -chain. If b ⊕ c ≤ a then b ⊕ c = a ∧ (b ⊕ c) ≤
b ⊕ c = (a ∧ b) ⊕ (a ∧ c). If on the contrary a ≤ b ⊕ c, and a ≤ b, c, then
a = a ∧ (b ⊕ c) ≤ a ⊕ a = (a ∧ b) ⊕ (a ∧ c). If a ≤ b ⊕ c and b ≤ a ≤ c, then
a = a ∧ (b ⊕ c) ≤ a ⊕ a = (a ∧ b) ⊕ (a ∧ c). Similarly it can be proved that
a ∧ (b⊖ c) ≥ a ∧ b⊖ a ∧ c.

Observation 3.2. Even though every MV -algebra is an MVW -rig with the
product given by the infimum, in general it is not a PMV -algebra, as is shown
in the next example.

The  Lukasiewics MV -algebra  L4 with the product defined by the infimum is

not a PMV algebra because
1

3
⊙

1

3
= 0 and

1

3
=

1

3
∧

(
1

3
⊕

1

3

)
<

1

3
⊕

1

3
=

2

3
.

Proposition 3.2. Every MV -algebra A with product defined by the supremum
for non-zero elements, namely, ab = a ∨ b, si a 6= 0 y b 6= 0 and zero otherwise,
is an MVW -rig.

Proof. It is enough to show (1) and (2) for totally ordered MVW -rigs.

Example 3.15. An interesting and relevant particular case of the proposition
is when A is a boolean algebra. A boolean algebra A can be considered as an
MV -algebra, where the sum is given by the supremum and negation is the com-
plement. If the product is defined as in the propositions 3.1 or 3.2, every boolean
algebra is naturally an MVW -rig.

Proposition 3.3. Axiom iii) in the definition 3.2, is independent of the other
axioms for MVW -rig. Similarly, axiom i) is independent of the others.

Proof. Consider the  Lukasiewicz MV -algebra  L4 with product defined by :

a · b =





0, si a = 0 o b = 0,
a⊕ b, if a⊙ b = 0,
a⊙ b, if a⊙ b 6= 0.

In this structure axiom iii) does not hold, but the others do. The product is
equivalent to the sum on the integers mod 3, Z3 for the elements of  L4 − {0}.
Therefore, this product is associative and commutative.

On the other hand, every MV -algebra with the supremum as product is a model
for all the axioms of MVW -rigs, except for axiom i). The proof is similar to
the one given in proposition 3.2.

Proposition 3.4. [[9],2.5]. For every a, b, c ∈ A a commutative MVW -rig the
following properties hold:

i) If a ≤ b then ac ≤ bc,
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ii) u2 ≤ u,

iii) a ≤ b and c ≤ d then ac ≤ bd.

Proof. Property iii) follows from i); in fact, a ≤ b and c ≤ d imply that ac ≤ bc
and cb ≤ db.

3.1.1 Ideals and Homomorphisms of MVW -rigs

Definition 3.16. Given A,B MVW -rigs, a function f : A → B is a homo-
morphism of MVW -rigs in and only if

i) f is a homomorphism of MV -algebras and

ii) f(ab) = f(a)f(b).

Definition 3.17. The kernel of a homomorphism ϕ : A→ B of MVW -rigs is

ker(ϕ) := ϕ−1(0) = {x ∈ A|ϕ(x) = 0}.

Definition 3.18. An ideal of an MVW -rig A is a subset I of A that has the
following properties:

i) I is an ideal of the subjacent MV -algebra A.

ii) Given a ∈ I, and b ∈ A, ab ∈ I (Absorbent Property).

Id
W

(A) denotes the set of all ideals of the MVW -rig A.

Example 3.19 (Boolena Algebras). Every boolean algebra is an MVW -rig,
taking the supremum as the sum and the infimum as the product. The ideals
of this MVW -rig are the ideals of the MV -algebra, that are at the same time
ideals for the lattice.

Observation 3.3. Note that in proposition 3.2, the MVW -rig has no proper
non trivial ideals. Its only ideals are zero and the MVW -rig.

Definition 3.20 (Prime ideal of an MVW -rig). An ideal P of an MVW -rig,
is called prime if for every a, b ∈ A, ab ∈ P implies a ∈ P o b ∈ P.

The set of all prime ideals of the MVW -rig A is denoted Spec
W

(A).

Proposition 3.5. [4, 9]. There is a bijective correspondence between the set of
all ideals of an MVW -rig A and the set of its congruences. Namely, given I
an ideal of the MVW -rig A, the binary relation defined by x ≡I y if and only
if (x ⊖ y) ⊕ (y ⊖ x) ∈ I is a congruence relation, and given ≡ any congruence
relation in A the set {x ∈ A|x ≡ 0} is an ideal of A.
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Because it is relevant, the proof of the compatibility of the product is repro-
duced. The full proof can be found on [[9],2.29].

Proof. Since A is an MV -algebra and I is an MV -ideal, a ≡I b and c ≡I d
imply a⊕ c ≡I b⊕ d and ¬a ≡I ¬b, (see [[4],1.2.6]). It is left then to prove that
a ≡I b and c ≡I d imply ac ≡I bd.

Given a ≡I b and c ≡I d then a ⊖ b ∈ I and c ⊖ d ∈ I respectively, so ac ≤
(a∨ b)(c∨d) =

(
(a⊖ b)⊕ b

)(
(c⊖d)⊕d

)
≤ (a⊖ b)

(
(c⊖d)⊕d

)
⊕ b
(
(c⊖d)⊕d

)
≤

(a⊖ b)(c⊖ d) ⊕ (a⊖ b)d⊕ b(c⊖ d) ⊕ bd. Equivalently

ac⊖ bd ≤ (a⊖ b)(c⊖ d) ⊕ (a⊖ b)d⊕ b(c⊖ d) ∈ I,

because (a ⊖ b) and (c ⊖ d) ∈ I and I is absorbent, ac ⊖ bd ∈ I. Similarly
bd⊖ ac ∈ I, then (ac⊖ bd) ⊕ (bd⊖ ac) ∈ I, and therefore ac ≡I bd.

Observation 3.4. For a ∈ A, the equivalent class of a respect to ≡I will be
denoted by [a]I and the quotient set A/ ≡I by A/I.

Since ≡I is a congruence, the operations ¬[a]I = [¬a]I , [a]I ⊕ [b]I = [a ⊕ b]I y
[a]I [b]I = [ab]I , are well defined over A/I.

Proposition 3.6. [[9],2.31]. If I ∈ Id
W

(A), then A/I is an MVW -rig.

Corolary 3.21. Consider I ∈ Spec(A) and A an MVW -rig. If I is absorbent,
then A/I is a totally ordered MVW -rig.

3.2 Examples and properties of the PMVf-algebras

Example 3.22. The MV -algebra [0, 1] with the usual multiplication inherited
from R is a PMVf .

Example 3.23. The MV -algebra [0, u] with the usual multiplication , and 0 <
u < 1, is a non-unitary PMVf .

Example 3.24. The set of all continuous functions from [0, 1]n to [0, 1] with
truncated sum and the usual multiplication is a PMVf .

Example 3.25. F [x1, · · · , xn] the set of all continuous functions from [0, 1]n

to [0, 1], that are constituted by finite polynomials in Z[x1, · · · , xn], namely,
f(x1, · · · , xn) ∈ F [x1, · · · , xn] ⇔ ∃p1, · · · , pk ∈ Z[x1, · · · , xn] such that for all
z ∈ [0, 1]n, f(z) = pi(z), for some i ∈ {1, · · · , n}, is a PMVf .

Example 3.26. Every boolean algebra, as in the example 3.19 is a PMVf .

Example 3.27. Every MV -algebra with multiplication defined by the infimum
is an MVW -rig, not necessarily PMVf -algebra, as was established on the ex-
ample 3.1.
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Proposition 3.7. Given a PMVf -algebra A, IdW (A) = Id(A) and furthermore
SpecW (A) ⊆ Spec(A).

Proof. By definition, IdW (A) ⊆ Id(A). Additionally, given I ∈ Id(A) and
a ∈ I, for all c ∈ A, ac ≤ a ∧ c ∈ I, so I ∈ IdW (A). On the other hand, given
I ∈ Spec

W
(A) and a, b ∈ A such that a ∧ b ∈ I, then ab ∈ I because ab ≤ a ∧ b.

Consequently a ∈ I or b ∈ I, therefore I ∈ Spec(A).

Proposition 3.8. If I ∈ Id
W

(A) and A is a PMVf -algebra, then A/I is a
PMVf -algebra.

Proof. It follows directly from proposition 3.5 and proposition 3.6.

4 lu-rings

Definition 4.1 (l-group [1, 4]). A l-group G is a lattice abelian group (G,+,−, 0),
such that, the order < is compatible with the sum.

Definition 4.2. For each x in an l-group G, its absolute value is defined by
|x| = x+ + x−, where x+ = x ∨ 0 is the positive part of x and x− = −x ∨ 0 is
the negative part.

Definition 4.3. A strong unit u of an l-group G is an element u such that
0 ≤ u ∈ G and for all x ∈ G there exists an integer n ≥ 0 with |x| ≤ nu.

An l-group with strong unit u will be called an lu-group.

Definition 4.4 (l-ideal). An l-ideal of an l-group G is a subgroup J of G that
satisfies: if x ∈ J and |y| ≤ |x| then y ∈ J.

Definition 4.5 (l-prime ideal). An l-ideal P of an lu-group G, is prime if and
only if G/P is a chain.

The set of all l-prime ideals of G is called the spectrum of G and denoted by
Specg(G).

Definition 4.6. [[1],XVII.1]. An lu-ring is a ring R = (|R|,+, ·,≤, u) such
that 〈R,+,≤, u〉 is an lu-group and, 0 ≤ x, 0 ≤ y implies 0 ≤ xy, where |R|
denotes the subjacent set.

From this point on, all rings will be assumed to be commutative.

Definition 4.7. (L-ideal [[1],XVII.3]). An L-ideal I from an l-ring R is an
l-ideal such that for every y ∈ I and x ∈ R, xy ∈ I. I is called irreducible if and
only if R/I is totally ordered.

The set of all L-ideals of R is called Id(R) and the set of all l-ideals of the
subjacent group is called Idg(R).
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Definition 4.8 (Low l-ring [11]). An l-ring is called low if and only if, for all
x, y ≥ 0 ∈ R we have that xy ≤ x ∧ y.

Definition 4.9 (Semi-low lu-ring). An lu-ring R is semi-low if and only if, for
all a, b ∈ [0, u], ab ≤ a ∧ b.

Theorem 4.10. Given R an l-ring and u ∈ R, u > 0, and the segment [0, u] =

{a ∈ R | 0 ≤ a ≤ u} with [0, u]
♯
⊂ R, the subring generated by [0, u] , then:

a) For every A ⊂ [0, u], a PMVf , A
♯ ⊂ [0, u]♯, the subring generated by A, A♯ is

a semi-low lu-ring with strong unit u and A = Γ(A♯, u).

b) Every semi-low lu-ring is generated by its segments,

[0, u]♯ = {x ∈ R | ∃n ≥ 0, |x| ≤ nu} .

Proof. a) Given A = 〈|A|,⊕, ·,¬, 0〉 a PMVf , then A = 〈|A|,⊕,¬, 0〉 is an
MV -algebra; call A∗ the associated lu-group. Then the subjacent sets
are equal |A♯| = |A∗|, because for every a ∈ A♯, a =

∑
ǫibici +

∑
δjdj ,

with bi, ci, bici, dj ∈ A and ǫi, δj ∈ {1,−1}, is a sum of elements of A.
Therefore A = Γ(A♯, u) because of Theorem 1.2-a) of [6]. On the other
hand, x, y ∈ A♯ ∩ [0, u] implies x, y ∈ A y xy ≤ x ∧ y.

b) From theorem 1.2-b) of [6], it follows that

[0, u]∗ = {x ∈ R | ∃n ≥ 0, |x| ≤ nu}

is an lu-group with strong unit u, and for the reasons exposed above, the
subjacent sets are |R| = |[0, u]∗| = |[0, u]♯|, so R = [0, u]♯.

5 Equivalence between the categories PMVf and
LRu.

Definition 5.1. We called PMVf and CPMVf to the categories whose ob-
jects are PMVf -algebras and PMVf -chains and homomorphisms between them
respectively.

Definition 5.2. We called LRu, and CLRu to the categories whose objects are
semi-low lu-rings and chain semi-low lu-rings, and homomorphisms between
them respectively.

5.1 Categorical Equivalence between CPMVf and CLRu

Theorem 5.3 (Chang’s construction of the lu-group A∗ [3], Lemma 5). Given
A an MV -chain, A∗ = 〈Z×A,+,≤〉 together with the operations (m+ 1, 0) =
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(m,u), (−m−1,¬a) = −(m, a), and (m, a)+(n, b) = (m+n, a⊕b) if a⊕b 6= u,
or (m, a) + (n, b) = (m + n + 1, a ⊙ b) if a ⊕ b = u, is a chain lu-group with
strong unit u = (1, 0) = (0, u), where the order ≤ is given by (m, a) ≤ (n, b) if
and only if m < n or m = n and a ≤ b.

Observation 5.1. Denote |A∗| = Z×A.

5.1.1 The functor (−)♯ : CPMVf → CLRu

Definition 5.4. Given A a PMVf -chain, the structure A♯ is define following
the Chang’s construction [3] as follows. A♯ = 〈|A∗|,+, ·,≤〉 , with 〈|A∗|,+,u,≤〉 ,
its associated lu-group where the product is defined by

(m, a) · (n, b) := mn(0, u2) +m(0, bu) + n(0, au) + (0, ab).

with n(0, x) = (0, x) + . . .+ (0, x)︸ ︷︷ ︸
n−times

for n ≥ 0 and n(0, x) = −(0, x) − . . .− (0, x)︸ ︷︷ ︸
n−times

for n < 0.

Proposition 5.1. The product defined above is well defined.

Proof. Note that in A∗, (m+1, 0) = (m,u); it is enough then to observe directly
from the definition of the product that (m,u) · (n, b) = (m+ 1, 0) · (n, b).

Affirmation 5.1. For every x, y, z ∈ A,

(0, x)(0, y ⊙ z) = (0, xy) + (0, xz) − (0, xu).

Proof. The equality follows directly from theorem 3.7 and definition 5.4, if y ⊙
z = 0. On the other hand, y⊙z 6= 0 ⇐⇒ ¬y⊕¬z 6= u,⇐⇒ ¬y⊙¬z = 0, implies

(0, x)(0, y ⊙ z) = (0, x)(0,¬(¬y ⊕ ¬z))
= (0, x) [−(−1,¬y ⊕ ¬z)]
= −(0, x)(−1,¬y ⊕ ¬z)
= −(0, x) [(0,¬y) + (−1,¬z)]
= −(0, x)(0,¬y) − (0, x)(−1,¬z)
= (0, x) [−(0,¬y)] + (0, x) [−(−1,¬z)]
= (0, x)(−1, y) + (0, x)(0, z)
= (0, xy) − (0, xu) + (0, xz).

Theorem 5.5. Given A a CPMVf , A♯ is a chain semi-low lu-ring.
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Proof. It is clear that A♯ with the sum operation and the associated order is a
chain lu-group. It is enough to show that with the product given by definition
5.4, it is a semi-low ring.

For every (m,x), (n, y), (s, z) ∈ A♯, the following properties hold:

Distributivity

(m,x)[(n, y) + (s, z)] = (m,x)(n, y) + (m,x)(s, z).

Because of the theorems 3.7 and 5.3, z ⊙ y = 0 implies xz ⊙ xy = 0, and
x(z ⊕ y) = xz ⊕ xy, so, (m, z) + (n, y) = (m+ n, z ⊕ y) and (m,xz) + (n, xy) =
(m+ n, xz ⊕ xy).

This affirmation will be proved dividing the proof in two cases.

Case 1. y ⊙ z = 0.

(m,x)[(n, y) + (s, z)] = (m,x)[(n+ s, y ⊕ z)]

= m(n+ s)(0, u2) +m(0, (y ⊕ z)u) + (n+ s)(0, xu)

+(0, x(y ⊕ z))

= mn(0, u2) +ms(0, u2) +m(0, yu⊕ zu) + n(0, xu)

+s(0, xu) + (0, xy ⊕ xz)

= mn(0, u2) +ms(0, u2) +m(0, yu) +m(0, zu)

+n(0, xu) + s(0, xu) + (0, xy) + (0, xz)

=
[
mn(0, u2) +m(0, yu) + n(0, xu) + (0, xy)

]

+
[
ms(0, u2) +m(0, zu) + s(0, xu) + (0, xz)

]

= (m,x)(n, y) + (m,x)(s, z).

From theorem 5.3, y ⊙ z 6= 0 implies, (n, y) + (s, z) = (n + s + 1, y ⊙ z), and
form affirmation 5.1, (0, x)(0, y⊙ z) = (0, x(y⊙ z)) = (0, xy) + (0, xz)− (0, xu).

Case 2. y ⊙ z 6= 0

(m,x)[(n, y) + (s, z)] = (m,x)[(n+ s+ 1, y ⊙ z)]
= m(n+ s+ 1)(0, u2) +m(0, (y ⊙ z)u)

+(n+ s+ 1)(0, xu) + (0, x(y ⊙ z))
= m(n+ s+ 1)(0, u2) +m

[
(0, yu) + (0, zu) − (0, u2)

]

+(n+ s+ 1)(0, xu) +
[
(0, xy) + (0, xz) − (0, xu)

]

= mn(0, u2) +ms(0, u2) +m(0, u2) +m(0, yu)
+m(0, zu) −m(0, u2) + n(0, xu) + s(0, xu)
+(0, xu) + (0, xy) + (0, xz) − (0, xu)

=
[
mn(0, u2) +m(0, yu) + n(0, xu) + (0, xy)

]

+
[
ms(0, u2) +m(0, zu) + s(0, xu) + (0, xz)

]

= (m,x)(n, y) + (m,x)(s, z).

12



Associativity

(m,x)
[
(n, y)(s, z)

]
= (m,x)

[
ns(0, u2) + n(0, zu) + s(0, yu) + (0, yz)

]

= mns(0, u3) + ns(0, xu2) +mn(0, zu2) + n(0, xzu)
+ms(0, yu2) + s(0, xyu) +m(0, yzu) + (0, xyz)

= mns(0, u3) +mn(0, zu2) +ms(0, yu2) +m(0, zyu)
+ns(0, xu2) + n(0, xuz) + s(0, xyu) + (0, xyz)

=
[
mn(0, u2) +m(0, yu) + n(0, xu) + (0, xy)

]
(s, z)

=
[
(m,x)(n, y)

]
(s, z).

Given (0, 0) ≤ (m,x) and (0, 0) ≤ (n, y) it is clear that 0 ≤ m and 0 ≤ n, so

(0, 0) ≤ mn(0, u2) +m(0, yu) + n(0, xu) + (0, xy) = (m,x)(n, y).

Now it can be proved that A♯ is semi-low.
Given (0, 0) ≤ (m,x), (n, y) ≤ (0, u) it must be that m = n = 0, so

(0, x)(0, y) = (0, xy) ≤ (0, x ∧ y) = (0, x) ∧ (0, y).

Corolary 5.6. For every PMVf -chain A,

(
n∑

i=1

(0, xi)

)(
n∑

i=1

(0, yi)

)
=

n∑

i=1

(0, xiyi),

in A♯.

Proposition 5.2. (−)♯ is functorial.

For h : A→ B in CPMVE , define h♯ : A♯ → B♯ en CLRu as follows: h♯(m, a) :=
(m,h(a)). By construction (see [[6], 2.2]), h♯ is a homomorphism of lu-groups,
so it is enough to prove that h♯ is a homomorphism of lu-rings. This follows
directly from definition 5.4. Namely, h♯[(m, a)(n, b)] = h♯(m, a)h♯(n, b).

Besides, given (m, a) ∈ A♯, (gh)♯(m, a) = (m, gh(a)) = g♯(m,h(a)) = g♯ ◦
h♯(m, a).

5.1.2 The Functor Γ: CLRu → CPMVf

Definition 5.7. For (R, u) a chain semi-low lu-ring, define Γ(R, u) = {x ∈ R |
0 ≤ x ≤ u} together with the operations x ⊕ y = (x + y) ∧ u, ¬x = u − x and,
x · y = xy. The multiplication is well defined because xy ≤ x ∧ y ≤ u.

Proposition 5.3 ([5],3.2). Given (R, u) an lu-ring that satisfies u2 ≤ u, Γ(R, u)
is a PMV -algebra.
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Observation 5.2. If R is a chain semi-low lu-ring, then x(y ∨ z) = xy ∨ xz.
In fact, it can be assume without loss of generality that y ≤ z. Then x(y ∨ z) =
xz = xy ∨ xz. A similar statement for the infimum is true. Consequently, in
this case x(y ⊖ z) = xy ⊖ xz.

Corolary 5.8. For every R a chain semi-low lu-ring, Γ(R, u) is an PMVf .

Affirmation 5.2. Γ is functorial.

Given α : (R, u) → (H, v) in CLRu, define Γ(α) : Γ(R, u) → Γ(H, v) in CPMVf

as follows: Γ(α) := α|[0,u]. By construction Γ(α) is a homomorphism of totally
ordered MV -algebras. Then it is enough to see that it respects products, that
is,

Γ(α)(a)Γ(α)(b) = α(a)α(b) = α(ab) = Γ(α)(ab).

Therefore, Γ(α) is a morphism in CLRu, such that for all x ∈ Γ(R, u), it holds
that Γ(β)Γ(α)(x) = Γ(β) (Γ(α)(x)) = Γ(β)(α(x)) = β(α(x)) = (βα)(x) =
Γ(βα)(x).

Theorem 5.9. For every PMVf -chain A and chain semi-low lu-ring (R, u),
the following are isomorphisms:

A ∼= Γ(A♯, u) and R ∼= (Γ(R, u))♯

Proof. The correspondences i and υ :

i : A −→ Γ(A♯, u) υ : (Γ(R, u))♯ −→ R
a 7−→ (0, a) (m,x) 7−→ mu+ x

are isomorphisms of MV -algebras and lu-groups respectively ([3], Lemma 6). It
is then enough to prove that they respect the product. For a, b ∈ A,

i(ab) = (0, ab) = (0, a)(0, b) = i(a)i(b).

On the other hand, given (m, a), (n, b) ∈ A♯, it is true that:
υ [(m, a)(n, b)] = υ

[
mn(0, u2) +m(0, bu) + n(0, au) + (0, ab)

]
= mn

[
υ(0, u2)

]
+

m [υ(0, bu)] + n [υ(0, bu)] + υ(0, ab) = mnu2 +mbu+ nau+ ab = mu(nu+ b) +
a(nu+ b) = (mu + a)(nu+ b) = υ(m, a)υ(n, b).

It is now easy to prove that the isomorphisms defined based on Chang’s con-
struction given in theorem 5.3, i and υ, determine a categorical equivalence.

Theorem 5.10. The isomorphisms i and υ defined above are natural transfor-
mations associated to the functors Γ(−)♯ and (−)♯Γ respectively and establish
an equivalence of categories

CPMVf
(−)♯

−→ CLRu CLRu
Γ

−→ CPMVf
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Proof. The proof is analogous to theorem 2.2 on [6]. Given A
h

−→ B in CPMVf ,

and with (R, u)
ϕ

−→ (H,w) in CLRu, the naturality of i and v follows from the
commutativity of the following diagrams:

A
i //

h
��

Γ(A♯, u) �
� //

Γ(h♯)��

A♯

��

Γ(R, u)♯

(Γϕ)♯ ��

v // (R, u)

ϕ
��

B
i // Γ(B♯, u) �

� // B♯ Γ(H,w)♯
v // (H,w)

Given a ∈ A, it holds that Γ(h♯)i(a) = Γ(h♯)(0, a) = h♯(0, a) = (0, h(a)) = ih(a),
and for (n, x) ∈ Γ(R,w)♯, then ϕv(n, x) = ϕ(nu+x) = nw+ϕ(x) = v(n, ϕ(x)) =
v(n, (Γϕ)(x)) = v(Γϕ)♯(n, x).

5.2 Categorical equivalence between the categories PMVf

and LRu.

5.2.1 Subdirect representation of PMVf -algebras by chains

Recall the partial order isomorphism between the ideals of an lu-group G and
the ideals of its MV -algebra Γ(G, u), established on theorem 7.2.2 of [4].

Theorem 5.11. Given G an lu-group and A = Γ(G, u), the correspondence

φ : I(A) −→ I(G)
J 7−→ φ(J) = {x ∈ G| |x| ∧ u ∈ J}

is a partial order isomorphism between the ideals of the MV -algebra Γ(G, u) and
the l-ideals of the lu-group, and its inverse is given by H 7→ ψ(H) = H ∩ [0, u].

Proposition 5.4. For a semi-low lu-ring R, an ideal J of the PMVf -algebra
Γ(R, u) and φ(J) the ideal of the lu-group (R,+, u) as in theorem 5.11, it holds
that φ(J) = J♯ with

J♯ =

{
x ∈ R | x =

m∑

i=1

ǫici, ci ∈ J, ǫi ∈ {−1, 1}

}
.

Proof. J♯ is an l-ideal of the lu-group (R,+, u). In fact, J♯ is a subgroup of R
by construction. Next it must be proven that given x ∈ J♯ and y ∈ R such
that |y| ≤ |x|, y ∈ J♯. Suppose without loss of generality that |x| = x+ = x and
|y| = y+ = y.

Since x =
m∑
i=1

ǫici with ci ∈ J,

x ∧ u =

(
m∑

i=1

ǫici

)
∧ u =

∣∣∣∣∣
m∑

i=1

ǫici

∣∣∣∣∣ ∧ u ≤

(
m∑

i=1

ci

)
∧ u = ⊕n

i=1ci ∈ J, (3)
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therefore, x ∧ u ∈ J.

By theorem 1.5-c of [6], it is enough to consider x =
n∑

k=0

ak, with ak = (x −

ku) ∧ u ∨ 0, where 0 < x < nu for some n ∈ N, since the elements are in an
lu-group.

If x− ku > 0, ak ∈ J because

(x − ku) ∧ u ∨ 0 = (x − ku) ∧ u ≤ x ∧ u ∈ J,

by inequality (3). If (x− ku) < 0 then ak = 0 ∈ J.

Since 0 ≤ y ≤ x ≤ nu implies bk = (y− ku)∧ u∨ 0 ≤ (x− ku)∧ u∨ 0 = ak ∈ J,

then y =
n∑

k=0

bk ∈ J♯.

The same proof can be used if x = x− and y = y−. Because |x| = x+ + x− and
|y| = y+ + y−, both are sums of positive elements and J♯ is a subgroup of R,
|y| ≤ |x| and x ∈ J♯ imply y ∈ J♯.

By construction J ⊆ J♯, and for inequality (3), J♯ ∩ [0, u] ⊆ J so

J♯ ∩ [0, u] = J = φ(J) ∩ [0, u],

thus, by the isomorphism given in theorem 5.11, J♯ = φ(J).

Corolary 5.12. φ(J) = J♯ is an ideal of the lu-ring.

Proof. It is enough to show that J♯ is absorbent. For any r ∈ R, r =
m∑
j=1

αjdj

with dj ∈ [0, u] and αj ∈ {−1, 1}, because of theorem 4.10, and given x ∈ J♯,

x =
n∑

i=1

ǫici, with ci ∈ J, then

rx =

m∑

j=1

αjdj

n∑

i=1

ǫici =

mn∑

i,j=1

αjǫidjci,

where djci ∈ J, since this is absorbent, therefore rx ∈ J♯.

Corolary 5.13. In a semi-low lu- ring every l-ideal is an L-ideal.

Idg(R) = Id(R).

Proof. For any J ∈ Idg(R), because of theorem 5.11 it holds that J ∩ [0, u] ∈
Id(Γ(R, u)). Because Γ(R, u) ∈ PMVf , J ∩ [0, u] absorbs, then J ∩ [0, u] ∈
Id

W
(Γ(R, u)) and consequently by proposition 5.4, J = (J ∩ [0, u])♯ ∈ Id(R).

In particular, Specg(R) ⊂ Id(R).

Corolary 5.14. For any J ∈ Idg(R) where R is a semi-low lu-ring, R/J is a
semi-low lu-ring.
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Theorem 5.15. For any J ∈ Idg(R) where R is a semi-low lu-ring,

Θ: Γ(R/J, uJ) → Γ(R, u)/(J ∩ [0, u]); [x]J 7−→ [x]J∩[0,u]

is an isomorphism of PMVf -algebras.

Proof. Because the MV -algebras are isomorphic, due to theorem 7.2.4 of [4], it
is enough to see that the isomorphism respects products. Using corollary 5.14,
proposition 5.3 and the definition of Θ it follows that

Θ([a]J [b]J) = Θ([ab]J) = [ab]J∩[0,u] =
(
[a]J∩[0,u]

) (
[b]J∩[0,u]

)
.

Corolary 5.16. If J ∈ Specg(R) then Θ is an isomorphism of PMVf -chains.

Proof. It follows from the last theorem and the corollary 5.8.

Theorem 5.17. Every PMVf -algebra is isomorphic to a subdirect product of
PMVf -chains.

Proof. For any PMVf -algebra A there is an injective homomorphism of MV -
algebras,

(̂ ) : A→
∏

P∈Spec(A)

A/P,

mapping a 7→ â where â : SpecA →
⊔

P∈SpecA

A/P with â(P ) = [a]P . It is

a homomorphism of PMVf -algebras, and πP ◦ (̂ ) : A → A/P is a surjective
homomorphism for each prime ideal P ∈ Spec(A). In fact, every prime ideal P
in the MV -algebra is an ideal in the PMVf -algebra, as proven in proposition

3.7, where âb = â · b̂, due to the correspondence between ideals and congruences
in any PMVf -algebra.

Corolary 5.18. Every PMVf -equation (see [4], section 1.4) that holds in any
PMVf -chain holds in every PMVf -algebra.

Corolary 5.19. In every PMVf -algebra it holds that a(b∧c) = ab∧ac, a(b∨c) =
ab ∨ ac.

Corolary 5.20. If (R, u) is a semi-low lu-ring, Γ((R, u)) is a PMVf -algebra.

Proof. From the corollary 5.8 it follows that every Γ(R, u)/P is a PMVf -chain
for every P, and the other hand, Γ((R, u)) is isomorphic to a subdirect product
of

∏
P∈Spec(Γ(R,u))

Γ(R, u)/P and therefore Γ((R, u)) is a PMVf -algebra.

Theorem 5.21. Every semi-low lu-ring R is isomorphic to a subdirect product
of chains.
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Proof. It is enough to show that the injective homomorphism of lu-groups given
by

(̂−)
g

: R →
∏

P∈Specg(R)

R/P ; x 7−→ [x]P ,

is an lu-ring homomorphism. In fact, from theorem 7.2.2 of [4] and corollary 5.12
it follows directly that R/P is a semi-low lu-ring for every P ∈ Specg(R).

5.2.2 Extension of the functors (−)♯ y Γ

The diagram on the left will be completed to extend the construction of Chang

to the functor PMVf
(−)♯

−→ LRu, and then it will be proven that this extends
the equivalence from the first row to an equivalence in the second.

CPMVf

(−)♯ //
_�

iM ��

CRuE
_�

iR ��
PMVf LRu

CLRu
Γ //

_�

iR ��

CPMVf
_�

iM ��
LRu

Γ // PMVf

Definition 5.22. For any PMVf -algebra A, we define

A◦ = {(0, â) : a ∈ A} ⊆
∏

P∈Spec A

(A/P )♯.

Definition 5.23 (Associate lu-ring). For any PMVf -algebra A we define A♯ =
gen(A◦) as the l-ring generated in the l-ring

∏
P∈SpecA

(A/P )♯.

Notation. |A∗| =

{
x ∈

∏
P∈SpecA

(A/P )∗ | x =
n∑

i=1

ǫi(0, âi), ai ∈ A, n ∈ N

}
.

Affirmation 5.3. A♯ is a semi-low lu-ring and A♯ = 〈|A∗|,+, ·, u,≤〉 where
A∗ = 〈|A∗|,+, u,≤〉 is the lu-group associated to the subjacent MV -algebra A,
and the product is defined as follows:

ϕ : |A∗|2 −→ |A∗|
(x, y) 7−→ ϕ (x, y) := x · y.

with x =
n∑

i=1

ǫi(0, âi), y =
m∑
j=1

δj(0, b̂j), x ·y =
nm∑
i,j=1

ǫiδk(0, âibj), ǫi, δj ∈ {−1, 1}

y, ai, bj ∈ A,.

Proof. ϕ is well defined because for each P ∈ Spec(A) the product (x · y)(P ) =
x(P ) · y(P ) coincides with the product given in definition 5.4 and described in
corollary 5.6. From theorem 5.5 it follows that the operation is associative and
distributive.
On the other hand, 〈|A∗|,+, ·,≤〉 is a semi-low lu-ring because for every 0 ≤
x , y ≤ u,
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x =
n∑

i=1

(0, âi) = (0,⊕n
i=1âi) e y =

m∑
j=1

(
0, b̂j

)
=
(

0,⊕m
j=1b̂j

)
,

(x · y)(P ) = x(P ) · y(P ) = (0, [⊕ai]P ) ·
(
0, [⊕bj]P

)
=
(
0, [⊕ai]P · [⊕bj]P

)
≤(

0, [⊕ai]P ∧ [⊕bj]P
)

= (0, [⊕ai]P ) ∧
(
0, [⊕bj]P

)
= x(P ) ∧ y(P ).

Since A◦ ⊆ |A∗|, and every lu-ring H that contains A◦, must contain all finite
sums and products of elements of A◦, 〈|A∗|,+, ·, u,≤〉 ⊆ H.

Definition 5.24. For any h : A → B in the category PMVf , we define h♯ :

A♯ → B♯ en LRu by h♯
(

n∑
i=1

ǫi(0, âi)

)
:=

n∑
i=1

ǫi

(
0, ĥ(ai)

)
.

Theorem 5.25. The application (−)♯ : PMVf → LRu that assigns to each
PMVf -algebra A the lu-ring A♯, is functorial.

Proof. Since for every h : A→ B in the category PMVf h
♯ is a homomorphism

of lu-rings and h♯ is a homomorphism of l-rings such that the following diagram
commutes

A
∼= //

h

��

A◦ �
� = //

h♯

��✤
✤

✤
Γ(A♯, u)

� � //

Γ(h♯)
��✤
✤

✤

A♯

h♯

��✤
✤

✤

� � // ∏
P∈Spec A

(A/P )♯

h
♯

��
B

∼= // B◦ �
� = // Γ(B♯, u) �

� // B♯ �
� // ∏

Q∈Spec B

(B/Q)♯

According to theorem 3.3 on [6], h♯ is a homomorphism of lu-groups and h♯ is a
homorphims of l-groups. Recall that on the proof of theorem 3.3 on [6], for any
Q ∈ Spec(B) the well defined morphism h|Q : A/h−1Q→ B/Q; h|Q

(
[a]h−1Q

)
=

[h(a)]Q, makes the following diagram commute

A/h−1Q
i //

h|Q
��

(A/h−1Q)♯

(h|Q)♯��
B/Q

i // (B/Q)♯

and therefore the group homomorphims h♯ can be defined as follows:
given σ ∈

∏
P∈Spec A

(A/P )♯, h♯(σ)(Q) = (h|Q)♯(σ(h−1Q)), (h1h2)♯ = h1
♯h2

♯,

and h♯|A♯ = h♯.

To finish the proof, it is enough to show that h♯ respects products in the gene-
rators of A◦.
Given P ∈ SpecA, it follows from proposition 5.2 that

h♯
[
(0, â)

(
0, b̂
)]

(P ) = h♯ [(0, [a]P )(0, [b]P )] = h♯ [(0, [a]P )] h♯ [(0, [b]P )] .

As seen in the affirmation 5.3, A♯ is a semi-low lu-ring, and if h : A → B is a
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homomorphism of PMVf -algebras, h♯ : A♯ → B♯ is a homomorphism of semi-
low lu-rings.

On the other hand, given A
h // B

g // C ∈ PMVf , (gh)♯ = g♯h♯ follows directly
from definition 5.24.

Theorem 5.26. Γ: LRu → PMVf is a functor, where Γ(R, u) = [0, u] and
Γ(h) = h|[0,u] for every homomorphism of lu-rings h : R → R′.

Proof. It is follows directly from corollary 5.20 and the affirmation 5.2.

5.2.3 The equivalence

Theorem 5.27. Given any PMVf -algebra A and semi-low lu-ring (R, u), the
following homomorphisms are isomorphisms of PMVf -algebras and semi-low
lu-rings.

A ∼= Γ(A♯, u) and (R, u) ∼= (Γ(R, u))♯.

Proof. For the first isomorphism A ∼= A◦ as PMVf -algebras, with A◦ ⊂ A♯ as
shown in the following commutative diagram

A // (̂−)A // ∏
P∈SpecA

(A/P ) // i // ∏
P∈Spec A

(A/P )♯

A◦ ⊂ A♯
((∼=

((◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗ '

�

44✐✐✐✐✐✐✐✐✐✐✐

where i is built using the universal property as follows:

A/P
iP // (A/P )♯

∏
P∈SpecA

A/P

πP

OO

∃ !i //❴❴

∏
P∈SpecA

(A/P )♯

π
♯
P

OO

with iP the application defined for each P as

iP : A/P −→ (A/P )♯

[a]P 7−→ (0, [a]P ).

Because of theorem 4.10 a), A◦ = Γ(A♯, u), and so A ∼= Γ(A♯, u).

On the other hand, the isomorphisms of the chain semi-low lu-rings, obtained
from the Chang’s construction in 5.3, in the theorem 5.9 on the fibers of Γ(R, u)♯

determine an isomorphism of semi-low lu-rings τ
R

: Γ(R, u)♯ −→ (R, u), as fol-
lows:
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Γ(R, u)♯ �
�

id

⊂ //

τ
R

��✤
✤

✤

∏
P∈Spec R

(Γ(R, u)/P ∩ [0, u])♯ // Θ
∼=

// ∏
P∈Spec R

Γ(R/P, uP )♯

v∼=

��
(R, u) // (̂−)

g

// ∏
P∈Spec R

(R/P, uP )

where τ
R

(0, x̂) =
[
(̂−)

g]−1

(vΘ(0, x̂)) =
[
(̂−)

g]−1

(x̂g).

τ
R

is well defined because the homomorphism (̂−)
g

is injective. The fact that τ
R

is injective follows from the fact that for every x, y ∈ Γ(R, u), x̂g = ŷg implies

x = y, and so x̂ = ŷ, since (̂−) is a homomorphism. τ
R

is surjective because for
every x ∈ (R, u) it holds that x =

∑n
i=1 ǫixi for some xi ∈ [0, u] by the theorem

4.10, b). Consequently τ
R

(
∑n

i=1 ǫi(0, x̂i)) =
∑n

i=1 ǫiτR(0, x̂i) = x.

Theorem 5.28. For every A ∈ PMVf and R ∈ LRu the isomorphisms

A
i(̂−)A // Γ(A♯, u) Γ(R, u)♯

τR // (R, u)

are natural transformations.

Proof. It follows directly from theorem 3.3 of [6].

6 PMVf vs f-rings

Definition 6.1. (f -rings [[1],XVII.5]). A function ring or f -ring is an l-ring
that satisfies

a ∧ b = 0 and c ≥ 0 implies ac ∧ b = a ∧ cb = 0.

Proposition 6.1. [[1],XVII.5]. In every f -ring it holds that

a ∧ b = 0 =⇒ ab = 0.

Theorem 6.2. (Fuchs [[1],XVII.5]). An l-ring is an f -ring if and only if all
its l-closed ideals are L-ideals.

Proposition 6.2. For any PMVf A, A
♯ is a semi-low fu-ring.

Proof. From affirmation 5.3, A♯ is a semi-low lu-ring. From corollary 5.13 and
theorem 6.2, it is an f -ring, since all its l-ideals are L-ideals.

Example 6.3. [0, 1]♯ = R.

Proposition 6.3. PMV ⊂MVW -rig.
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Proof. From theorem 4.2 of [5], it follows that for any PMV -algebra A there
exists an lu-ring R such that Γ(R, u) ∼= A and because of proposition 5.3, A is
an MVW -rig. The inclusion is strict because of remark 3.2.

Affirmation 6.1. For any set X the semi-low fu-ring associated to the PMVf -
boolean algebra 2X is isomorphic to the ring of bounded functions of ZX , B(ZX).

Proof. It is enough to see that
(
2X
)♯ ∼= B(ZX). The application Θ defined on

the generators, for all f ∈ 2X ,

(
2X
)♯ Θ // B(ZX)

if̂ ✤ // f̃ : X // Z

x ✤ // f(x)

with Θ
(∑k

j=1 if̂j

)
=
∑k

j=1 Θ(if̂j) and Θ
(

(if̂)(iĝ)
)

= Θ((if̂))Θ ((iĝ)) , is a

ring isomorphism.

Because 2X is a hyper-archimedean MV -algebra, every prime ideal is maximal
and of the form Px = {f ∈ 2X : f(x) = 0}, for all x ∈ X and [f ]Px

= f(x).

Then, if x ∈ X , f̃(x) 6= g̃(x) ⇔ f(x) 6= g(x) ⇔ f 6= g ⇔ [f ]Px
6= [g]Px

⇔ f̂ 6= ĝ,
implies that Θ is well defined and injective, with Px ∈ Spec(2X).

On the other hand, for h ∈ B(ZX) it holds that

h =

n∑

k=−n

kλk

with |h| ≤ n, λk ∈ 2X such that λk(x) = 1 if h(x) = k and zero elsewhere.
Therefore Θ is surjective. By construction Θ is a homomorphism of l-rings.

Example 6.4. The semi-low fu-ring (2n)♯ is isomorphic to the ring Zn.

Corolary 6.5. Every boolean algebra seen as a PMVf -algebra is a subalgebra
of 2X for some set X. Since the functor (−)♯ preserves subalgebras, the semi-
low fu-ring associated to a boolean algebra is a subring of the semi-low fu-ring
B(ZX).

Example 6.6. F [x] ⊂ C
(
[0, 1][0,1]

)
, the semi-low fu-ring of continuous func-

tions defined as follows:

f ∈ F [x] ⇔ ∃P1, · · · , Pk ∈ Z[x], such that ∀x ∈ [0, 1] f(x) = Pi(x),

for some 1 ≤ i ≤ k, is the semi-low fu-ring associated to the PMVf -algebra
Γ(F [x]). This algebra is the minimum PMVf -algebra that contain the MV -
algebra Free1.

22



7 The category PMVf is coextensive

A category C is coextensive if only if Cop is extensive.

Definition 7.1. [2] A category with finite products is coextensive if only if the
projections of product is the terminal object and for all g : A × B → C, the
following pushout exists and C ∼= C1 × C2.

A oo πA

��✤
✤

A×B
πB //

g
��

B

��✤
✤

C1
oo C // C2

Observation 7.1. The terminal object of PMVf category, is the PMVf -
algebra {0} = 1.

Proposition 7.1. The category PMVf is coextensive.

Proof. The pushout of projections πA and πB of PMVf -algebras A,B, is the
terminal object because of for all λA, λB , λAπA = λBπB implied λA = λB = 0.
It is enough to see that (0, 1) ∈ A×B implies λAπA(0, 1) = 0 = λBπB(0, 1) = 1.

A×B
πB //

πA ��

B

�� λB

��

A //

λA --

1

λ   
C

Let g : A×B → C, an homomorphism the PMVf -algebras, we named g(0, 1) =
e, to idempotent element of C, and thus g(1, 0) = ¬e is idempotent too. We
show that θ : C → C/ 〈e〉 × C/ 〈¬e〉 ; c 7→ ([c]〈e〉, [c]〈¬e〉), is an isomorphism
of PMVf -algebras, with 〈e〉 and 〈¬e〉, the generated ideals of the subjacent
MV -algebra of C. These ideals are ideals of the PMVf -algebra C, proposition
3.7.

θ is well defined and is an homomorphism of PMVf -algebras, proposition 3.8.
It is injective because of exists c ∈ C such that, θ(c) = ([c]〈e〉, [c]〈¬e〉) =
([0]〈e〉, [0]〈¬e〉), then c ∈ 〈e〉 and c ∈ 〈¬e〉 , thus, c ≤ e and c ≤ ¬e because
of e and ¬e are idempotent elements, thus c ≤ e ∧ ¬e = g[(0, 1) ∧ (1, 0)] = 0.

The other hand, for all x, y ∈ C, x ≡ y mod 〈〈e〉 , 〈¬e〉〉 , because of 〈〈e〉 , 〈¬e〉〉 =
C. From the Chinese Remainder Theorem, Lemma 2 [8], exists c ∈ C such that
c ≡ x mod 〈e〉 y c ≡ y mod 〈¬e〉 , then θ(c) = ([c]〈e〉, [c]〈¬e〉) = ([x]〈e〉, [y]〈¬e〉),
for some c ∈ C, thus θ is surjective.

Now we defined qe = πeθ con πe : C/ 〈e〉 × C/ 〈¬e〉 → C/ 〈e〉 and qA as follows:
for all a ∈ A, qA(a) = qe(g(a, b)). qA is well defined because of qe(g(a, b)) =
qe(g(a, b′)). If θ(g(a, b)) = ([x]〈e〉, [x]〈¬e〉) and θ(g(a, b′)) = ([y]〈e〉, [y]〈¬e〉), it is
enough to see that [x]〈e〉 = [y]〈e〉.
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θ(g(0, b)) = ([z]〈e〉, [z]〈¬e〉) with z ≤ e. In effect, ([e]〈e〉, [e]〈¬e〉) = θ(g(0, 1)) =
θ(g(0, b ⊕ ¬b)) = θ(g(0, b)) ⊕ θ(g(0,¬b)) = ([z]〈e〉, [z]〈¬e〉) ⊕ ([w]〈e〉, [w]〈¬e〉) =
([z ⊕ w]〈e〉, [z ⊕ w]〈¬e〉), with z, w ∈ C. Thus, z ≤ z ⊕ w ≤ e.

Besides, θ(g(a, b))⊖ θ(g(a, b′)) = θ(g(0, b⊖ b′)) = ([x⊖ y]〈e〉, [x⊖ y]〈¬e〉), and for
previous affirmation, x⊖ y ≤ e, and [x]〈e〉 = [y]〈e〉 = qA(a).

qA is an homomorphism of PMVf -algebras by construction.

Finally we show that the following diagrams are pushout.

A oo πA

qA��✤
✤

A×B
πB //

g
��

B

qB��✤
✤

C/ 〈e〉 oo
qe

C
q
¬e // C/ 〈¬e〉

Let λA and λg such that λAπA = λgg, exists a unique λ such that the following
diagram is commutative,

A oo πA

qA��λA





A×B

g
��

C/ 〈e〉 oo
qe

λ{{

C

λgqqP

We defined λ([c]〈e〉) = λg(c). λ is well defined, because of [c]〈e〉 = [c′]〈e〉 ↔
c⊖c′ ≤ e, and λg(e) = λg(g(0, 1)) = λAπA((0, 1)) = 0. λqe = λg by construction,
and λqA(a) = λqe(g(a, b)) = λgg(a, b) = λAπA(a, b) = λA(a), with b ∈ B. λ is
unique by construction.

The similar form we show that q¬eg = qBπB , is a pushout.

Corolary 7.2. The category PMV1 defined by Montagna [11], is coextensive.

8 Conclusions

The construction of Dubuc-Poveda [6] lets you visualize the associate ring of
each PMVf -algebra, because this do not use the good sequences, and used the
easy construction by Chang [3] for chains. The explicit construction of this
equivalence permit us to study some properties of commutative algebra for the
class of semi-low fu-rings, in relationship with PMVf -algebras. We know about
the problem to study the free algebras of fu-rings, however, its relationship with
the PMVf -algebras will let to see this from the other perspective.
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