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Abstract

We prove a generalization of Maehara’s lemma to show that the exten-
sions of classical and intuitionistic first-order logic with a special type of
geometric axioms, called singular geometric axioms, have Craig’s interpo-
lation property. As a corollary, we obtain a direct proof of interpolation
for (classical and intuitionistic) first-order logic with identity, as well as
interpolation for several mathematical theories, including the theory of
equivalence relations, (strict) partial and linear orders, and various intu-
itionistic order theories such as apartness and positive partial and linear
orders.

Craig’s interpolation theorem [4] is a central result in first-order logic. It
asserts that for any theorem A — B there exists a formula C, called interpolant,
such that A — C and C — B are also theorems and C only contains non-logical
symbols that are contained in both A and B (and if A and B have no non-logical
symbols in common, then either —A is a theorem or B is). The aim of this paper
is to extend interpolation beyond first-order logic. In particular, we show how
to prove interpolation in extensions of intuitionistic and classical sequent calculi
with singular geometric rules, a special case of geometric rules investigated in
[14]. Interpolation for singular geometric rules will be obtained by generalizing
a standard result, reportedly due to Maehara in [20] and known as “Maehara’s
lemma” [12][1

The proof of Maehara’s lemma for intuitionistic and classical first-order logic
requires cut elimination. This clearly challenges the project of proving the
lemma for systems extending first-order logic with axioms, since such systems
are not generally cut-free (cf. [21] §4.5] and [I6] §6.3] for different approaches to
non-logical axioms). For example, in the calculus LK, an extension of Gentzen’s
LK for first-order logic with identity, cuts on identities s = ¢ are not eliminable

n this work we shall not consider semantic methods to prove interpolation. These have
been applied extensively to non-classical logics in [7]; there are also proofs of interpolation for
non-classical logics that are more similar to our approach, especially [, [6, 11].
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(cf. Theorem 6 in [20], where these cuts are called “inessential”). Fortunately,
interpolation can still be proved for first-order logic with identity. The drawback
of the existing proofs, however, is that they are indirect, in the sense that the
interpolant is not built using exclusively the rules of the calculus. In [21],
for example, a translation is used to reduce interpolation for first-order logic
with identity to the case of pure first-order logicld A different route is taken
in [8], using the method of “axioms in the context,” where interpolation is
again not proved directly in LK, but in an variant of LK, equivalent to LK, in
which all derivable sequents have the axioms governing the identity predicate
in the context[ Beside the use of such indirect maneuvers, these approaches
are specifically designed for first-order logic with identity and it is not entirely
obvious how to adapt them to other extensions of first-order logic. On the other
hand, in this paper interpolation is proved via a generalization of Maehara’s
lemma to a class of extensions of first-order logic (which include first-order logic
with identity as a particular case) and using no other means than the rules of
the calculus (Lemma [T3]).

Our generalization of Maehara’s lemma is based on previous work by Negri
and von Plato who have shown (in a series of papers starting from [I5]) how to
recover cut elimination (as well as the admissibility of other structural rules) for
extensions of the calculi G3c and m-G3i for classical and intuitionistic first-order
logic. Of particular interest for the present work are the extensions with geo-
metric rules, investigated in [14]@ Once cut elimination is recovered in this way,
we impose a singularity condition on geometric rules to isolate those containing
at most one non-logical predicate (identity will be counted as logical). Our main
result is to show that Maehara’s lemma holds when G3c and G3i are extended
with singular geometric rules (Lemma [[3]). Then interpolation follows easily
from the generalized Maehara’s lemma (Theorem [[4]). Finally, we consider ap-
plications of Theorem [I4] and we show that singular geometric rules include
many interesting extensions of intuitionistic and classical first-order logic, espe-
cially (classical and intuitionistic) first-order logic with identity, the theory of
equivalence relations, (strict) partial and linear orders, the theory of apartness
and the theory of positive partial and linear orders.

1 Classical and intuitionistic sequent calculi

The language L is a first-order language with individual constants and no func-
tional symbols. Terms (s,t,u,...) are either variables (z,y, z,...) or individ-
ual constants (a,b,c...). L contains also denumerably many k-ary predicates
P* QF RF, ... for each k > 0. £ may also contain the identity. We agree that
all predicates, except identity, are non-logical. Moreover, it is convenient to

2For other proofs of interpolation via translation see [19] and [2].

3Thanks to a referee for bringing this to our attention.

4We depart from Negri’s approach in taking the intuitionistic single-succedent calculus G3i
instead of the multi-succedent m-G3i of [14]; in Theorem [§ we will also prove, along the way,
that cut elimination holds for geometric extensions of G3i.



have two propositional constants L (falsity) and T (truth). Formulas are built
up from atoms P¥(ty,...,t;), the constants | and T using logical operators A,
V, =, Jand V as usual. We use P,@, R, ... for atoms, A, B,C,... for formulas
and ', A, TI, ... for (possibly empty) finite multisets of formulas. The negation
—A of a formula A is defined as A — L. We also agree that I', A is an abbre-
viation for I'U A (where U is the multiset union) and AT (\/T) stands for the
conjunction (disjunction, respectively) of all formulas in T'. Moreover, if T' is
empty, then AT =T and \/T = L, where = indicates syntactic identity (up to
a-congruence) between expressions of the object-language.

The substitution of a variable x with a term ¢ in a term s (in a formula
A, in a multiset T") will be indicated as s[%] (A[f ] and T'[%], respectively) and
defined as usual. To indicate the simultaneous substitution of the list of variables
x1,...,%, (abbreviated in z) with the list of terms ¢;,...,¢, (abbreviated in
t), we use [%] in place of [ ’» |. Later on, we shall also need a more general
notion of substitution of terms for terms (not just variables) which will be proved
to preserve derivability (Lemma [@]).

Finally, let FV(A) be the set of free variables of a formula A and let Con(A)
be the set of its individual constants. We agree that the set of terms Ter(A) of
A is FV(A) U Con(A). Moreover, if Rel(A) is the set of non-logical predicates
of A then we define the language L£(A) of A as Ter(A) U Rel(A). Notice that
= ¢ L(A), for all A. Such notions are immediately extended to multisets of
formulas I', by letting FV(I") to be defined as |J 5. FV(A), and analogously for
Con(T"), Ter(T"), Rel(T") and L(T).

The calculus Ge (Gi) is a variant of LK (LI) for classical (intuitionistic, respec-
tively) first-order logic, originally introduced by Gentzen in [9]. In the literature,
especially in [2I] and [16], Gc and Gi are commonly referred to as G3c and G3i
but we will omit ‘3’ in the interest of readability. Moreover, we will write G to
refer to either Gc or Gi. A sequent in Gc is a pair (I'; A) of multisets, indicated
as I' = A. The calculus Gc consists of the following initial sequents and logical
rules (where y is an eigenvariable in RY and L3, i.e. y must not occur free in
the conclusion of these rules):



The calculus Ge

Pl = A,P

1, I'=A b

'=AT BT

A BT'= A 'r=AA I'=A,B
ANBT =AM T=AAAB
Al'=A BTI=A I'=AAB

AVBT=aA W

I'=AA BT=A

r=AAvB ™

ATl'=AB

ASBTI=A 7 T=AASB
AL, VzAT = A I'= A AlY]
VzA T = A I = A ved
AlY],T = A I'= A, 324, AlL]
AT = A 7 ENEY

Sequents in Gi are defined as in Gc, except that A must contain exactly
one formula. The calculus Gi has the following initial sequents and logical rules
(again, y is an eigenvariable in RY and L3).

The calculus Gi

PT =P
Ir=0 ™ r=r71 "'

A BT =C A I'= A FéBRA
ANB, T =C I'=AAB
AT=C BTI=C I= A =B

AVBT=C Y T=4vB™ T=4avB ™
A—-BT'=A BI=CC ATl'=B
A—BT'=C b= F:>A—>BR_)
AlL],VzA, T = C I'= A[Y]
ViA T = C T=ved
AlY], T =C = A[L]
AT =C 7 ST




A derivation in G is a tree of sequents which grows according to the rules
of G and whose leaves are initial sequents or conclusions of a 0-premise rule. A
derivation of a sequent is a derivation concluding that sequent and a sequent
is derivable when there is a derivation of it. As usual, we consider only pure-
variable derivations: bound and free variables are kept distinct, and no two rule
instances have the same variable as eigenvariable, see [2I, p. 38]. The height
h of a derivation is defined inductively as follows: the derivation height of an
initial sequent or of a conclusion of a O-premise rule is 0, the derivation height
of a derivation of a conclusion of a one-premise rule is the derivation height
of its premise plus 1, and the derivation height of a derivation of a conclusion
of a n-premise rule (n > 2) is the maximum of the derivation heights of its
premises plus 1. A sequent is h-derivable if it is derivable with a derivation of
height less than or equal to h. A rule is admissible if the conclusion is derivable
whenever the premises are derivable; a rule is height-preserving admissible if the
conclusion is h-derivable whenever the premises are h-derivable. Derivations will
be denoted by D, D1, Ds,.... We agree to use D+ I' = A to indicate that D is
a derivation in G of I' = A and - T' = A to indicate that I' = A is derivable;
finally, H* I' = A indicates that I' = A is h-derivable. We will use a double-line

rule of the form
=X

I'= A

R

to indicate that I' = A is derivable from IT = ¥ by a (possibly empty) sequence
of instances of the rule R. It is easy to see that initial sequents with A, I" = A, A,
for an arbitrary A, are derivable in G (where A is empty for Gi).

The following structural rules for Gc (weakening, contraction and cut) are
valid in the standard semantics of Gc.

Structural rules of Gc

I'= A I'= A
AT=A "™ T=A 4™
AAT = A I'=AAA
AT=A % T=a4a &

I'=AA All=X
INil=AX

Cut

However, we can safely leave them out without impairing the completeness of
Gc, since they are all admissible in it. In fact, weakening and contraction are
also height-preserving admissible. Regarding Gi, the structural rules are:



Structural rules of Gi

Ir=C AAT=C
AT=>Cc "™ Ar=c

'=s=A AA=C
IA=C

Cut

These rules are also valid in the model-theoretic semantics for intuitionistic logic,
but just like in the classical case, they are all admissible in Gi (again, weakening
and contracting are height-preserving admissible) and there is no need to take
any of them as primitive. The proof of the admissibility of the structural rules
in any of the two calculi requires some preparatory results. First, the height-
preserving admissibility of substitution in G.

Lemma 1. InG, if F" T = A andt is free for x in T, A then F" T[L] = A[L].

Second, the so-called inversion lemma. Intuitively, a rule is invertible when
it can be applied backwards, from the conclusion to its premises, and it is
height-preserving invertible when it is invertible with the preservation of the
derivation height (for a precise definition of height-preserving invertible rule see
21, p. 76-77]).

Lemma 2. In Gc all rules are height-preserving invertible. In Gi all rules,
except RV, L — and R3, are height-preserving invertible. However, L — is
height-preserving invertible with respect to its right premise.

With height-preserving admissibility of substitution and inversion lemma, it
is possible to prove the admissibility of the structural rules.

Theorem 3. In G weakening and contraction are height-preserving admissible.
Moreover, cut is admissible.

The proof of Lemma [II Lemma 2 and Theorem [ are standard and the
interested reader is referred to [21] and [16].

1.1 From axioms to rules

Extensions of G are not, in general, cut free; this means that Theorem [ does
not necessarily hold in the presence of new initial sequents or rules. For ex-
ample, a natural way to extend Gc to cover first-order logic with identity is
to allow derivations to start with initial sequents of the form = s = s and
s = t, P[5] = PI.], corresponding to the reflexivity of identity and Leibniz’s
principle of indescernibility of identicals, respectively (we call these sequents S;
and S2). Notice that Ss is in fact a scheme which becomes s = t,s = s = t = s,
when P is x = s. From this, via cut on = s = s, one derives s =t = t = s,
namely the symmetry of identity. However, such a sequent has no derivation
without cut. Therefore, cut is not admissible in Gec 4+ {S1, 52}, though it is
admissible in the underlying system Gc.



In [I5] Negri and von Plato have shown how to recover cut elimination for
(classical) first-order logic with identity by transforming S; and S; into an
equivalent pair of rules of the form:

5:57F:>A P[;],S:t,P[;],FéA
— 1 Ref_ Repl_
r=A s=t, P, T =A

If one replaces S7 and Se with the corresponding rules, it is easy to derive
s =t =t = s without any application of cut. More generally, cut elimination
holds in Gc + {Ref, Repl} (cf. Theorem 4.2 in [15] and [16, §6.5]). This result
can be, and has been, extended in different directions. Here we are particularly
interested in the fact, established by [I4], that cut elimination holds in extensions
of Ge with geometric rules (of which the rules of identity are special cases). The
result will be reviewed briefly below, while for a more thorough discussion on
this topic the reader is referred to [14] or the monograph [17].

In [T4] Negri also showed that cut elimination holds for geometric theories
formulated as extensions of the multi-succedent calculus m-G3i for intuitionistic
logic, introduced in [5]. For our purposes, however, it is better to work in Gi
as the underlying logical calculus for intuitionistic logic. In this way we can
rely on the proof of Maehara’s lemma for Gi already available in the literature
(whereas to our knowledge no attempt has been made to obtain a similar result
for m-G3i). In fact, it is not entirely obvious how to prove Maehara’s lemma for
m-G3i. Working in Gi is thus more advantageous as far as Maehara’s lemma is
concerned, but one needs first to make sure that cut elimination holds in the
presence of geometric rules. Thus, after introducing geometric rules, we will
show that the standard cut-elimination procedures goes through with minor
adjustment in geometric extensions of Gi (Theorem []).

1.2 Geometric theories

A geometric axiom is a formula following the geometric axiom scheme below:

VZ(PLA - APy = 3G MLV -V 3Gy M,y,)

where each P; is an atom and each M; is a conjunction of a list of atoms
Qi .-, Qq, and none of the variables in any y; are free in the P;js. We shall
conveniently abbreviate Q;,,...,Qs, in Q;. In a geometric axiom, if m = 0
then the consequent of — becomes L, whereas if n = 0 the antecedent of —
becomes T. A geometric theory is a theory containing only geometric axioms.
An m-premise geometric rule, for m > 0, is a rule following the geometric rule
scheme below:

QLP,.... P T =A - QY.P,....P,,[=A
P . PoT=A r

where each Q] is obtained from Q; by replacing every variable in y; with a
variable which does not occur free in the conclusion. Such variables will be
called the eigenvariables of R. Without loss of generality, we assume that each



y; consists of a single variable. In sequent calculus a geometric theory can be
formulated by adding on top of G finitely many geometric rules (recall that A
contains exactly one formula in Gi).

Moreover, geometric rules are assumed to satisfy a natural closure property
for contraction (see |16} 6.1.7]).

Definition 4 (Closure condition). If a geometric extension G’ of G contains a
rule where a substitution instance of the principal formulas produces a rule with
repetition of the form:

QL Pi,....,Py9,PLPT=A - QY P,...,Pps, PbPT=A
Pi.... Py, PP.T = A f

then G’ contains or is closed under the following contracted instance of the rule:

QL Pi,...,.Ppo, PT=A - Q. P,....,P 2, PT=A
Pl,...,Pn_Q,P,FﬁA

R¢

As an illustration, we consider the rule Transg in the theory PO (see § [L3):

s<u,s<tt<u,Il'= A

Transg
s<tt<u,I'=s A
Clearly, as an instance of such a rule we have:
$<s8,8<s,s<s,['=A
Transg

s<s,s<s,I'=> A

Hence PO has to be closed under the following contracted instance

s<s,s<s,I'= A
s<s,I'= A

¢
Tr(znsg

For PO we don’t need to add the contracted rule Tmns%, because it is admissible
thanks to rule Ref<. In general, however, this is not the case.

Let G be any extension of G with finitely many geometric rules satisfying the
closure condition (from now on, we will tacitly assume that the closure condition
is always met). We now show that cut elimination and the admissibility of the
structural rules hold in G&. Although we will heavily rely on [14], we start by
introducing a more general notion of substitution that allows an arbitrary term
u (possibly a constant) to be replaced by a term t. In the presence of such
general substitutions, special care is needed in order to maintain the height-
preserving admissibility of substitutions. In particular, general substitutions
are height-preserving admissible, provided that the replaced term w does not
occur essentially in the calculus. Intuitively, a term u occurs essentially in a
rule R when u cannot be replaced (by an arbitrary term), namely when w is a
constant and u already occurs in the axiom from which R is obtained. More
precisely,



Definition 5. A constant u occurs essentially in a geometric axiom A if and
only if, for some t # u, A[! ] is not an instance of the axiom A.

We also agree that a term u occurs essentially in a geometric rule R when it does
so in the corresponding axiom. For example, in the geometric axiom =1 < 0 of
non-degenerate partial orders (see [I7, p. 116]) both 1 and 0 occur essentially;
hence they also occur essentially in the corresponding geometric rule Non-deg:

————— Non-de
1<0,T = A I

Now we show that the general substitution [f ] is height-preserving admis-
sible in G&, provided that u occurs essentially in none of its geometric rule.

Lemma 6. In G, if " T' = A, t is free for u in I', A, and u does not occur
essentially in any rule of G&, then F"T['] = A[].

Proof. If u is a variable, the claim holds by extending Lemma [ to G&. Oth-
erwise, let u be an individual constant. We can think of the derivation D of
I'= A as
I'=A
'l = A 7
where I = A’ is like I' = A save that it has a fresh variable z in place of w.
Note that this is always feasible for purely logical derivations, and it is feasible
for derivations involving geometric rules as long as these rules do not involve
essentially the constant u. We transform D into

I = A’ ]
i = Af] 7

where ¢ is free for 2z since we assumed it is free for v in I' = A. We have
thus found a derivation (D[,]) of T'[},] = A[,] that has the same height as the

u

derivation D of ' = A. O

We can now show that Lemma[2] and Theorem [ still hold in G8. In fact, for
Gcg a proof has already been given in [14].

Theorem 7 (Negri). In Gc& all the geometric and logical rules are height-
preserving invertible. Moreover, weakening and contraction are height-preserving
admissible and cut is admissible.

At this point we need to show that the same holds for Gi. A similar result has
been proved by Negri in [I3] for a subclass of geometric rules, called universal
rules. In fact, Negri only considers specific instances of universal rules expressing
the axioms of the constructive theory of apartness and excess, see §4.5]and §4.61
Moreover, in [I3] only the quantifier-free version of Gi is considered. Here we
extend Negri’s result and show the admissibility of the structural rules for the
full calculus Gi extended by arbitrary geometric rules. Then,



Theorem 8. In Gi& all the geometric rules and all logical rules, except RV, L —
and R3, are height-preserving invertible. However, L — is height-preserving
invertible with respect to its right premise. Moreover, weakening and contraction
are height-preserving admissible and cut is admissible.

Proof. The proof of height-preserving invertibility of the geometric and logical
rules for Gi® does not differ substantially from that for Gi and is left to the
reader. We take a closer look at the admissibility of the structural rules.

Weakening. To show that weakening is height-preserving admissible in Gi&,
we need to extend the proof for Gi with the cases arising from geometric rules
R. These cases be dealt with as for geometric rules over m-Gi and Gc [14) Thm.
2]. In particular, if R is an m-premises (m > 1) geometric rule with a variable
condition on y, we replace y with a fresh variable not occurring in the weakening
formula, then we apply the inductive hypothesis and, finally, we apply R. If R
is an m-premises (m > 1) geometric rule without variable condition, we can
apply directly the inductive hypothesis and then R. Finally, if R is a O-premise
geometric rule, the conclusion of weakening is obtained directly by R.

Contraction. Once again, the new cases arising by the addition of geometric
rules to Gi are similar to the cases in which these rules are added to m-Gi or
to Gc |14, Thm. 4]. This means we have three cases: of the occurrences of the
contraction formula either (i) none, or (ii) exactly one, or (iii) both are principal
in the final step of the derivation of the premise. The first case can be dealt with
by induction, the second by inversion, and the third by the closure condition.

Cut. To show that cut is admissible we need to prove that if - T' = A and
FAA = C then F T'A = C. The proof is by induction on the weight of
the cut formula A with a sub-induction on the sum of heights of derivation of
the two premises (cut-height, for short). As for the proof of the admissibility of
Cut over m-Gi# [14], Thm. 5], we consider only the new cases arising from the
geometric rules R.

1. The left premise of Cut is by a 0-premise geometric rule R. Hence also
the conclusion of Cut is a conclusion of an instance of R.

2. The right premise is by a 0-premise geometric rule R and the cut formula
is not principal in it. We proceed as in case 1.

3. The right premise is by an instance of a 0-premise geometric rule R and
the cut formula is principal in it. In this case we know that A is atomic (or
T or L) and we consider the last step of the derivation of the left premise.
If it is by a O-premise (logic or geometric) rule or it is an initial sequent,
we proceed as in case 18 1f the left premise is by an m-premises (m > 1)
logical or geometric rule, then the cut formula is not principal in it and we

50bserve that, unlike the cases of m-Gi€ and Gcg, the cut formula A must be principal in
the left premise when this premise is an initial sequent.

10



can permute the cut upwards in the left premise (if the last rule applied
in the left premise has eigenvariables, we rename them before permuting
the cut to avoid clashes).

4. If the cut formula is not principal either in the left or in the right premise
and this premise is by an m-premises (for m > 1) geometric rule R, then,
after having renamed any eigenvariable of R to avoid clashes, we permute
the cut upwards with respect to this premise.

5. Finally, if the cut formula is principal in both premises, neither premise
has been derived by a geometric rule and we proceed as for Gi.

O

2 Singular geometric theories

To prove interpolation in extensions of first-order logic, the class of geometric
rules seems too large. Thus, we restrict our attention to a proper sub-class of
it and we introduce the class of singular geometric theories. In the next section
we will prove (Lemma [[3]) that Maehara’s lemma holds for singular geometric
extensions of first-order logic.

A singular geometric axiom is a geometric axiom with at most one non-
logical predicate and no constant occurring essentially. A singular geometric
theory is a theory containing only singular geometric axioms. In sequent calculus
a singular geometric theory can be formulated by extending G with finitely many
geometric rules of form:

Q.P,....P,T=A -~ Q. P,....P,,T=A
Pi,....PaT=A r

where no constant occurs essentially and that satisfy the following singularity
condition:

|REI(QT55Q:717P175PH)|S1 (*)

Singular geometric axioms are ubiquitous in mathematics. Here, for example,
is an incomplete list of singular geometric axioms for a binary relation R (the
list is partly taken from [3], p. 48-50]).

R is reflexive Vz(T — xzRx)

R is irreflexive Ve(xRx — L)

R is transitive VaVyVz(zRy A yRz — xRz)

R is intransitive  VaVyVz(zRy AyRz AzRz — 1)
R is co-transitive VaVyVz(zRy — xRz V zRy)

R is splitting VaVyVz(zRy — ©Rz V yRz)

R is symmetric VaVy(zRy — yRx)

R is asymmetric  VaVy(zRy AyRx — L)

11



R is anti-symmetric  VaVy(zRy A yRx — = =vy)

R is trichotomy VaVy(T — = =y V xRy V yRx)

R is linear VaVy(T — xRy V yRx)

R is Euclidean VaVyVz(zRz AN yRz — xRy)

R is left-unique VaVyVz(zRz AyRz — x = y)

R is right-unique VaVyVz(zRx A 2Ry — x = y)

R is connected VaVyVz(zRy A xRz — yRz V zRy)
R is nilpotent VaVyVz(zRz A zRy — 1)

R is a left ideal VaVyVz(zRy — zRz)

R is a right ideal VaVyVz(zRy — zRy)

R is rectangular VaVyVzVu(zRz A vRy — xRy)

R is dense VaVy(xRy — Jz(zRz A zRy))

R is total Va3y(T — zRy)

R is confluent VaVyVz(zRy A xRz — Ju(yRu A zRu))

R is left-oriented VaVy(T — Jz(zRx A zRy))
R is right-oriented ~ VaVy(T — Jz(zRz A yRz))

It is evident that a number of important classical and intuitionistic mathe-
matical theories are singular geometric. Regarding the classical ones, the theory
of partial orders (R is reflexive, transitive and anti-symmetric), the theory of
linear orders (R is a linear partial order), as well as the theories of strict partial
orders (R is irreflexive and transitive) and strict linear orders (R is a trichotomic
strict partial order) are singular geometric. Constructive singular geometric the-
ories, on the other hand, include von Plato’s theories of positive partial orders
[18] (R is irreflexive and co-transitive) and positive linear orders (R is an asym-
metric positive partial order), as well as the theory of apartness (R is irreflexive
and splitting). Also the theory of equivalence relations (R is reflexive, transitive
and symmetric) falls within the class of singular geometric. Finally, the fact the
a relation R is functional (total and right-unique) can be axiomatized using
singular geometric axioms. Singular geometric axioms are important in logic,
too. Specifically, the axioms of identity are singular geometric.

= is reflexive Va(z = x)
= satisfies the indescernibility of identicals VaVy(z =y A P[Z] — P[Y])

Notice that the indiscernibility of identicals satisfies the singularity condition
(%) because identity is a logical predicate. Hence, first-order logic with identity
is a singular geometric theory.

Cut elimination for singular geometric rules clearly follows from cut elimi-
nation for geometric rules. More precisely, let G° be any extension of G with
singular geometric rules. Then:

Corollary 9. All derivability properties expressed in Lemmalll, Theorem[7 and
Theorem [8 hold for G®.

Proof. Straightforward, since all singular geometric rules are geometric. O

12



3 Interpolation with singular geometric rules

The standard proof of interpolation in sequent calculi rests on a result due to
Maehara which appeared (in Japanese) in [12] and was later made available to
international readership by Takeuti in his [20]. While interpolation is a result
about logic, regardless the formal system (sequent calculus, natural deduction,
axiom system, etc), Maehara’s lemma is a “sequent-calculus version” of inter-
polation. Although originally Maehara proved his lemma for LK, it is easy to
adapt the proof so that it holds also in G (cf. [21I] §4.4]). We recall from [21]
some basic definitions.

Definition 10 (partition, split-interpolant). A partition of a sequent ' = A
is an expression I'1 ; T's = Ay ; Ay, where I' =11,y and A = Ay, Ay (for =
the multiset-identity). A split-interpolant of a partition I'; ; T's = A7 ; Agisa
formula C such that:

I FTy = Al, C
1I [ C, Iy = Ag
II1 E(C) - E(Fl,Al) N E(FQ,AQ)

WeuseI'; 5 T’y £ Ay ; As to indicate that C'is a split-interpolant for I'y ; 'y =
Al y Ag.

Moreover, we say that a C satisfying conditions (I) and (II) satisfies the
derivability conditions for being a split-interpolant for the partition I'y ; 'y =
Ay ; Ag, whereas if C satisfies (IIT) we say that it satisfies the language condi-
tion for being a split-interpolant for the same partition.

Lemma 11 (Maehara). In Gc every partition T'y ; T'a = Ay ; Ay of a derivable
sequent I' = A has a split-interpolant. In Gi every partition 'y ; T'o = ; A of
a derivable sequent T' = A has a split-interpolant.

The proof is by induction on the height h of the derivation. If h = 0 then
I' = A is an initial sequent or a conclusion of a O-premise rule and the proof
is as in [21]@ If h = n+ 1 one uses as induction hypothesis the fact that any
partition of the premises of a rule R has a split-interpolant. For a detailed proof
the reader is again referred to [21].

From Maehara’s lemma it is immediate to prove Craig’s interpolation theo-
rem.

Theorem 12 (Craig). If A = B is derivable in G then there exists a C' such
thatt A= C andt C = B and L(C) C L(A) N L(B).
6Notice, however, that the proof given in [21] contains a misprint and the split-interpolant

for the partition of the initial sequent I'1, P ; T's = A1, P ; Az (their notation adjusted to
ours) is L, and not 1. — L as stated in 21} p.117].
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Proof. Let A = B be derivable in G and consider the partition A ; @ = o ; B
of A = B. By Lemma [T1] this partition has a split-interpolant, namely there

exists a C such that A ; @:C;@; B. Hence H A = C and + C = B and
L(C) C L(A) N L(B) by Definition [0 O

Of any calculus for which Theorem [12] holds, we say that it has the inter-
polation property. Now we extend Lemma [I1] to extensions of G with singular
geometric rules.

In the proof of Lemma [I3] we shall only consider singular geometric rules
where each Q is a single atom 7. More precisely, we consider singular geo-
metric rules of the form

Q:,P,....P,T=A .. Q.. P, . . P.,T=A
P, . P, T=A

R

where A consists of exactly one formula in Gi. This allows some notational
simplification and will significantly improve the readability of the proof. It does
not impair the generality of the result.

Lemma 13. In Gc® every partition T'1 ; Ty = Ay ; Ao of a derivable sequent
I' = A has a split-interpolant. In Gi* every partition T'y ; Ty = ; A of a
derivable sequent I' = A has a split-interpolant.

Proof. The proof extends that of Lemma [[Il Let R be a singular geometric
rule with m premises and let II,LT' = A be its conclusion, where II is the
multiset P, ..., P, of the atomic principal formulas of R, if any. We consider
the following generic partition of the conclusion:

II, Iy 5 I, e = Ay s Ay

where II;,IIo = IT and I'y,I'y = T" and Ay, Ay = A, and where A; = & and
Ay = A for Gi*. Moreover, let © be the multiset Q7,...,Q;, of active formulas
of R, if any. We organize the proof in three exhaustive cases:

1. Rel(@,H) - Re|(H1,F1,A1);
2. Rel(@,H) - Re|(H2,F2,A2);
3. Rel(©,11) Z Rel(II, T, A).

Observe that these three cases are exhaustive since singular geometric rules
have at most one non-logical predicate in their principal and active formulas
and, therefore, when Case 3 does not hold at least one of Cases 1 and 2 holds.
We give a proof of the three cases for Gc, and then we show the modifications
needed for Gi.

Casell for Ge®. If R is an m-premise(s) rule for m > 1, then by the inductive
hypothesis (IH) every partition of each of the m premises of R has a split-
interpolant. In particular, for each k € {1,...,m}, there is a C such that:
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(Ix) F Q1 115, Ty = Ay, Cy,
(Hk) = C;g,l—‘g = Ag
(ITy) L(Ck) C L(Q5, 111,15, T1, A1) N L(Tg, Ag)

If, instead, R is a O-premise rule then (I;), (II3), and (III;) hold trivially for
Ol = 1.

We start by assuming that II is the non-empty multiset 7, ,,..., P, and
then we show the modifications needed when Il = @. Consider now the fol-
lowing derivation D;, where the topmost sequents are derivable by (I1) - (I,):

Q1,2, 111, 'y = A, Ch Qm, 12,11, Ty = Ay, Cpy
Wkn Wkn
Q7,12, 111, Ty = A4,Ch,...,Cn Qr,, T2, 111,71 = A1,Ch,...,Cm
RV * RV
QT7H27H17F1 :>A1,V;11 Ci Q77L7H27H17F1 :>A17V;il &
R

HQ,H1,F1 = A1,V;11 OZ
L
A2, I, T = Ay VL, G
H17F1 = A1,/\H2 — \/Zl1 C

A

R—

(1)
Notice that the application of R is legitimate because by assumption R is
applicable to QF,1I,I' = A and none of the eigenvariables of the )}’s can occur
free in some Cy, since L(Cy) C L(T'2, Az). Notice also that in some particular
case the double-line stands for the empty sequence of instances, e.g., the steps
by RV when R is a 0- or 1-premise rule.
Consider another derivation D2, where the left-topmost sequents are initial
sequents since Il = P; and the right-topmost ones are derivable by

(I1,)—(11,,):

FERRRIPPE o

Ci,Te=>As -+ Cn,T2=> Az
LV
o, T2 = Ao, Py 2, T2 = A, P, Vit Ci,Ta = A
RA = Wkn
H27F2 :>A27/\H2 vi:10i7H27F2:>A2
L—

/\H2 — Vzl Ci7H27F2 = Az
(2

When II; = @ we modify D; by using left weakening instead of LA to add
N Ils —i.e., T —to the antecedent, and we modify Dy by deriving the conclusion
of RA by an instance of RT instead of by instances of RA.

Let t1,...,t; be all terms such that t1,...,t € Ter(All: — V., C;) and
(o) t1,...,t¢ & Ter(Il1, Ty, A1) N Ter(Il2, o, Ay). We use © to denote t1,. .., .
We show that

(j;) tl,...,tg¢Ter(H1,F1,A1)

For each k < m, (III;) entails that Ter(C%) C Ter(T'2, Az). Hence Ter(A Il —
Vi, C;) C Ter(Il3,I's, Ay). By this and (e) we immediately get that (1) holds.

Let now z be variables z1,...,2¢ not occurring in D; and D,. Lemma
applied to Dy shows that:

FIL, Ty = Ay (AT = \/ C)IF]
i=1
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Here (1) ensures that the substitution [Z] has no effect on II;,T';, A;. By ¢

applications of RV to the derivable sequent above we obtain:
(1) FILL, Ty = A VE(A\ T — \/ C)[F])
i=1

Moreover, by applying ¢ instances of left weakening and then ¢ instances of LV
to the conclusion of Dy we obtain:

(T) FvE(\ T2 — \7 Ci)[Z]), Mg, Ty = Ay

Let Cbe VZ((AHz — V2, Ci)[Z]). By (I¢) and (II¢), we have established that
C satisfies the derivability conditions for being a split-interpolant of the given
partition. We now show that it also satisfies the language condition, namely:

(IIT,) L(C) € L(I1;,Ty, Ay) N LTz, T2, Ag)

First, if s is a term in Ter(C), it is a term occurring in A Il — \/i~, C; that is
not in the list ¢. By (o), we have:

(III.lc) ERS Ter(Hl,l"l,Al) ﬁTer(Hg,Fg,Ag)
Next, we show that:
(11120) ReI(C’) g ReI(Hl, Fl, Al) N ReI(HQ, FQ, AQ)

By assumption, we are in Case[I] i.e., Rel(©,II) C Rel(II;, Ty, A1). The following
set-theoretic reasoning shows that (IT1.2¢) holds:

111,
Rel(Ily) U (Rel(©, 10y, Iy, T'y, Ay) N Rel(Ty, Ay)) 2
Rel(©, 11, Iy, T1, Ay) N Rel(ITy, Tz, As) Case[ll
ReI(Hl,Fl, Al) N Rel(HQ,FQ, AQ)
‘We conclude that:
* ¢ * C
Q17H17H2’P1; F2$A17 A2 Qm7H17H27F1; I‘QéAl, AQ
I, I'y 5 1o, T2 YA oV GlE ) Aq Ay

Observe that when II; = @ the split-interpolant of the conclusion can be sim-
plified as follows:

VE((VI, C)[Z])
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Caseld for Ge®. The proof differs substantially from that of Case[only as far
as the derivability conditions are concerned. Thus, we give a detailed analysis of
these and leave to the reader the task to check that also the language condition
is satisfied. By IH every partition of each premise of an m-premises (m > 1)
rule R has a split-interpolant. In particular, for all k € {1,...,m}, there is a
C}. such that:

(Ix) FT1 = Ay, Cy
(IIk) F Cka QZa Hl; HQa FQ = AQ
(L) L(Ck) € L(T1, A1) N L(QF, 111,113, T'p, Ag)

In case R is a O-premise rule, (Iy), (II;), and (ITI;) hold by imposing C; = T.
Let Dy be the following derivation, where the topmost sequents are derivable
by (II;) - (IL,,):

OvaT7H17H27F2:>A2 Om,Q:n,H1,H2,F2:>A2
Wkn Wkn

Ol,...,Om,Q’{,Hl,Hg,FQ:>A2 C’l,...,C’m,an,Hl,Hg,ngAg R
Ci,...,Cm, 1,2, Ty = Ao

L
/\;11 Ci N /\Hl,HQ,FQ = Ao

A

(3)
Consider now another derivation Dy where the left topmost sequents are deriv-
able by (I1) - (I,) and the right ones are initial sequents (we take P; ,..., P;, =
IM; if II; # o, else, as we did in (@), we derive the conclusion of the right
top-most instance(s) of RA by RT):

F1:>A1701 F1:>A17Cm
RA
F1:>A1,/\§110i I, I' = AL, P, - H17F1:>A17Pij
Wkn R
H17F1:>A17/\leci H17F1:>A1,/\H1 A

RA

I, T = AL AL, A AT
(4)
Let ¢ be all terms t1,...,t, such that ¢1,...,t, € Ter(A;~, C; A AIl1) and
t1,...,te & Ter(II1,T'1, A1) N Ter(Il3, T2, Ag). As in the previous case, it is easy
to show that:
(1)t te & Ter(ll2, Iy, Ag)

Moreover let Z be variables z1, . .., zy new to D; and Dy. We reason analogously
to the previous case to obtain:

(IC) FHl,FléAl,EZ((/\ Ol/\/\Hl)[f:])

i=1

As above, thanks to (1), we also obtain:

() F 3N CoA AT T T = A,
=1
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Let C be F2((A;~; C; ANTL)[Z]). Given that Rel(©,1I) C Rel(Ilz, I's, Ay), and
given that we have quantified away all terms in ¢, we have:

(HIC) E(C) - E(Hl,Fl,Al) ﬁE(Hg,FQ,Ag)

We conclude that C' is a split-interpolant of the given partition.

Iy Q7 I, o, To = Ay Ay oo Ty Q11 I, Ty =2 Ay Ag
32((AJL, CinATI)[f

I, T’y 5 I, T ) Ay Ay

As for the previous case, when II; = @ we have a simpler split-interpolant of
the conclusion:

E((AL, CHIZD

Case[3 for Ge®. We can proceed either as in Case[Il or as in Case Bl If we
proceed as in Case[Il we obtain the following split-interpolant:

Q1,111,12, 'y o B A ;A - Qs 1, 112, Ty Ty S2 A5 A

VE(AT2—Vi, Ci)(F

I, I'y 5 1o, T2 ) Ay Ay

The proof that the formula C' presented above is the split-interpolant of the
conclusion is exactly as for Case[I] save for the relational part (I11.2¢) of the
language condition. In this case we are assuming that Rel(©,1I)  Rel(IL, T, A).
This immediately implies

(+) Re|(H1,H2) =
and, together with the fact that |Rel(©)| < 1, it implies
(++) Rel(®)NRel(Il3, Ty, Ag) = &

Hence, we can show that (II1.2¢) holds via the following set-theoretic reasoning

111,

Rel(C) c
Rel(ITy) U (Rel(©, 11, T, Ty, Ay) N Rel(Iy, Ag)) - P
(+).LH4)

Rel(©,11, 115, ', Ay) N Rel(Tl2, T'2, Ag) =
ReI(I‘l, Al) N ReI(FQ, AQ)

Caseldl for Gi*. The proof is the same as for Case[llin Gc® (with A; = @ and
Ay = A) save for the derivations D; and Ds presented in () and (2] that are
not Gi*-derivations. It is immediate to see that we can obtain a Gi*-derivation
from the derivation in () by simply omitting the instances of weakening and ap-
plying directly instances of RV to the leaves. On the other hand, the derivation

18



D5 presented in (2) becomes a Gi*-derivation by simply dropping the singleton
multiset Ay from the left top-most sequents and then adding an instance of
weakening on the left premise of L —.

Case[d for Gi*. The proof is the same as for Case2lin Gc®, since the deriva-
tions presented in [B) and () are Gi*-derivation when A; = & and Ay = A.

Case[3 for Gi*. We may proceed as for Case [l for Gi® save for the relational
part (II1.2¢) of the language condition where we reason as in CaseBlfor Ge*. O

From Lemma it is immediate to conclude that singular geometric ex-
tensions of classical and intuitionistic logic satisfy the interpolation theorem,
namely:

Theorem 14. G° has the interpolation property.

4 Applications

We now consider some corollaries of Theorem [[4]in which the strategy for build-
ing interpolants provided in Lemma is applied. Notice that in the theories
considered in this section all contracted instances are admissible and, hence, we
can ignore them, see the discussion after Definition [l

4.1 First-order logic with identity

We start with first-order logic with identity. Recall that a cut-free calculus for
classical first-order logic with identity has been presented in [I5] by adding on
top of Gc the rules Ref—- and Repl— corresponding to the reflexivity of = and
Leibniz’s principle of indescernibility of identicals, respectively. In intuitionistic
theories, on the other hand, identity is often treated differently and we will pro-
vide a constructively more acceptable treatment of identity later in dealing with
apartness. In general, however, nothing prevents us from building intuitionistic
first-order logic with identity in a parallel fashion to the classical case. This is,
for example, the route taken in [2I] and we will follow suit. More specifically,
let G= be G+ {Ref_, Repl_}. Notice that, since Ref— and Repl_ are geometric
rules, cut elimination holds in Gi~ in virtue of Theorem Moreover, since
they are also singular geometric, it follows from our Theorem [I4] that in G= the
interpolation property holds, i.e.

Corollary 15. G= has the interpolation property.

Proof. We determine the split-interpolants as applications of the procedures
given in the proof of Lemma[I3l The rule Ref— can be treated as an instance of
Case [[l with IIs = @ (obviously, it could also have been treated as an instance
of Case[2). Depending on whether both ¢ € Ter(C) and ¢ & Ter(I'1, A1) or not,
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we have then, respectively:

C
s=5T1;Ts=A1; Ay SZS,Fl;FQ%Al;AQ

I'y; T el

:])>A1;A2 1—‘1;1—‘2%A1;A2

For Repl_, there are four possible partitions of the conclusion:
o s=1t P T1; Ta=A1; Ay
o'y ; s=tP[E,Ta=A1; Ay
o PEL.T1; s=tTa=A1; Ay
e s=tT1; PE,Ta=A1; Ay

Accordingly, we need to consider four sub-cases. As in Case [I] of Lemma [I3]
when Il; = @, the interpolant for the first partition is as follows:

Plt],s =t PELT1; Ta S Ay Ay
S:t,P[;],Fl y FQIC;Al y Ag

The interpolant for the second partition is obtained by reasoning as in Case
with II; = @ of Lemma [T3t

I'y 5 P[t]7S:t,P[;],F2gA1 ; AQ

X

Fl N S:t,P[;],FQZC;Al N AQ

The interpolant for the third partition is found as in Case [Il of Lemma [13]
depending on whether ¢ € Ter(P[2],I'1, A1) (left derivation in the box below)
or not (right derivation in the box below).

s e}
PL],s =t P[E],T1; T2 = Ay Ay Pli),s =, P[], T1; T2 = A1 Ay
Vz(s=z—C[f]) Al : A2

s=t—C

PRl,T1; s=t, o —= A1; As  P[;],T1; s=1tT:

Lastly, the interpolant for the fourth partition is found as in Case 2l of Lemma
I3 depending on whether ¢ € Ter(P[2],I'2, Az) or not:

s C
I P[;],SILP[;LFQ:C;Al 3 Ao IBT P[;],.S:t,P[x],FgéAl; Az

3z(s=zAC[7]) Ay Ay
> 3

s=tNC

s=tT1; Pl,Te == A1; A s=1tT1; P[],T2

O
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4.2 Equivalence relations

In a perfectly parallel fashion, we obtain the theory of equivalence relations by
adding to G the rules corresponding to the reflexivity, transitivity and symmetry
of a binary relation ~. Thus, EQ = G + {Ref ., Trans~ , Sym_}.

s~s,I'= A s~u,s~tt~u, = A
—————  Refo Trans~

'=A ' s~tt~ul = A

t~s,s~t,I'=A
s~t,I'= A

Syme.

From the fact that these rules are singular geometric, it follows that:
Corollary 16. EQ has the interpolation property.

Proof. The case of Ref .. is like that for Ref— in G=, the only difference being
that, when ~ is not in Rel(T", A), the rule Ref. becomes an instance of Case
We consider in detail the cases of Trans. and Sym...
Regarding Trans.., there are four possible partitions of the conclusion:

e s~itt~u ;o= A1 Ag
e ' s~tt~uls= Ar; Ay
e s~t,I';t~uTls= Ar; Ay
e t~uTly; s~t, o= A1; Ay

For the first two partitions, we find the split-interpolant by reasoning as in
Case [Ml with II; = @ and Case 2] with II; = @, respectively. Hence, a split-
interpolant for the first and second partitions is:

C C
s~u,s~tt~u, 'y To = A1y As 'y s~u,s~tt~u,ly = Ar; As

s~t,t~u,F1;F2§>A1;A2 Fl;s~t7t~u,l“2g>A1;A2

For the last two partitions we can proceed as in Case [T or as in Case 2
By proceeding as in Case [Il we find the following split-interpolants, assuming,
respectively, u & Ter(s ~ ¢,T'1, A1) and s & Ter(t ~ u, 1, Aq):

C (&}
s~u,s~tt~u, I To = A Ag s~vu,s~tt~u, 'y o= A Ag

Vz(t~z—C[Z]) Vz(2~t—=C[Z])
s~t, ' t~vu, o ————= A1 ; Ag t~u, ' s~ g —————= A1 ; Ag

7Otherwise, it is an instance of Case [[] or of Case[2 and then the split-interpolant of the
conclusion can be determined as we have shown for Ref—, except for the use of the existential
quantifier when we have an instance of Case Blonly and we must quantify away s.
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If, instead, u € Ter(s ~ ¢,T'1,A1) or s € Ter(t ~ u,I'1, A7), then we do not
quantify them away and we have:

C C
s~u,s~tt~u, 'y o= A1 Ag s~u,s~tt~u, ' To = A Ag

t~ C s~t—C
s~ t,T1 gt~ Ty =225 Ag s Ay t~u, Ty s~ t Ty 2225 Ay Ay

Regarding Sym.., there are two possible partitions of the conclusion:
o SNt,Fl; 1—‘2:>A1 ; AQ
o Iy ) SNt,F2:>A1 ; AQ

We find the split-interpolant by reasoning as in Case [[l with Il = @ and Case
Rl with II; = &, respectively. Hence we have:

tNS7SNt7F1;F2:C>A1;A2 F1;t~878~t7F2=C>A1;A2
8~t7F1;F2:c>A1;A2 F1;8Nt7F2=C>A1;A2

4.3 Partial and linear orders

Now we consider some well-known order theories. We start with partial or-
ders. In sequent calculus, the theory of partial orders is obtained by extending
Gc= with the following rules corresponding to the axioms of reflexivity, tran-
sitivity and anti-symmetry of a binary relation <. Thus, let PO = Gc= +
{Ref <, Trans<, Anti-sym }:

s<s,I'= A , s<u,s<tt<u,I'= A
———— — Ref¢ Transg

I'= A s<tt<u,I'= A

s=t,s<t,t<s,I'= A
s<tt<s, I'= A

Anti-symg
Linear orders are obtained by assuming that the partial order < is also linear,
i.e LO=PO + {Ling}.

s<t,I'=A t<s,T=A
'r=A

Ling

Both PO and LO are singular geometric theories, hence:
Corollary 17. LO (hence, PO) has the interpolation property.

Proof. The procedure for building the interpolants for Ref< and Trans< are the
same as those for Ref. and Trans.., respectively, in EQ; that for Anti-symg is
like that for Trans.., save that here there is no need to quantify away any term
occurring in the split-interpolant.
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For Ling, only one partition of the conclusion has to be considered, namely
I'y ; s = A1 ; As. Its interpolant can be found as in Case B of Lemma
with Il = &, provided that < is not in Rel(T, A)E Assuming that both s and
t are in Ter(C'1,C3) but not in Ter(T'g, Ag):

S<ET I Ty A Ay t<s T To2 A1 A,

Iy ; T, 2202OV@EBED A A,

If, instead, s or ¢ is in Ter(I'y, Ag), or if it is not in Ter(Cy, C2), then it is not
quantified away. O

Unlike G and EQ, the underlying logical calculus of both PO and LO is the
classical one. The reason is that linearity is intuitionistically contentious and
normally it requires a different, more constructively acceptable, axiomatization
that will be considered in Section (4.6l

4.4 Strict partial and linear orders

The theory of strict partial orders consists of the axioms of first-order logic with
identity plus the irreflexivity and transitivity of <. As we did for PO and LO,
we consider this theory to be based on classical logic, i.e. by adding on top of
Gc™ the following rules:

s<u,s<tt<ul=A

Irref< Trans<

s<s,I'= A s<tt<u,I'=A

Let SPO be Gc™ + {Irref _, Trans<}. Total strict partial orders are then
obtained assuming that < is also trichotomic, i.e. SLO = SPO + { Trich }:

s=t,I'=A s<t,I'=A t<s,I'=A
I'=A

Trich<

Corollary 18. SLO (hence, SPO) has the interpolation property.

Proof. We show how to find the interpolants for Irref. and Trich., while
Trans< is identical to Trans.. We start with Irref .. There are two possi-
ble partitions of its conclusion, namely

.S<S,F1;F2:>A1;A2
0F1;S<S,F2:>A1;A2

As in Case [l with ITy = @ (and m = 0) and as in Case Rl with II; = @ (and
m = 0) of Lemma [T3] we find the split-interpolant for each partition as follows:

8Else, we proceed as in Case[Ior Bland, as for rule Ref~, in the latter case, when we have
to quantify away s and t we do it via existential quantifiers.

23



1 T
S<S,1—‘1;1—‘2:>A1;A2 F1;8<S,1—‘2:>A1;A2

Regarding Trich., we need to consider only one partition of the conclusion,
namely I'y ; T's = Ay ; As, whose interpolant can be found as in Case Bl of
Lemma [[3 with IT, = @ when < is not in Rel(T, A)f| Assuming that both s
and t are in Ter(C1, Cs, C3) but not in Ter(T'z, As):

S:t,rl;rggAl;Ag S<t,F1;F2%A1;A2 t<S,F1;F2%A1;A2
V21sz((C1\/C2\/C;3)[§1f2

Iy ;I LAy A,

If s or tis in Ter(T'y, Az), or if it is not in Ter(Cy, Ca, C3), then it is not quantified
away.
O

4.5 Apartness

We noticed earlier that in intuitionistic theories the identity relation is not al-
ways treated as in classical logic. In particular, identity is defined in terms of the
more constructively acceptable relation of apartness. Apartness was originally
introduced by Brouwer (and later axiomatized by Heyting in [10]) to express
inequality between real numbers in the constructive analysis of the continuum:
whereas saying that two real numbers a and b are unequal only means that the
assumption a = b is contradictory, to say that a and b are apart expresses the
constructively stronger requirement that their distance on the real line can be
effectively measured, i.e. that |a — b| > 0 has a constructive proof. Classically,
inequality and apartness coincide, but intuitionistically two real numbers can
be unequal without being apart. The theory of apartness consists of intuition-
istic first-order logic plus the irreflexivity and splitting of #. Following [13], the
theory of apartness is formulated by adding on top of Gi the following rules{lq

s#tu,s#t,I'=A t#+u,s#t,I'= A

Irref.
e sELT = A

Splity
s#s,I'= A

Let AP = Gi + {Irref_,, Split,}. Given that these two rules are singular
geometric rules, it follows that:

Corollary 19. AP has the interpolation property.

Proof. As above, we show how to find the interpolants for Irref and Split.
The former is identical to that of Irref - in SPO.
In the case of Split, there are two possible partitions of the conclusion:

9Else, as for rule Ref ., we proceed as in one of Cases [T and
10Notice that Negri’s underlying calculus is a quantifier-free version of Gi.
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e s*tI'1;Ty=; A
01—‘1;87515,1—‘2:>;A

For the first partition, we use Case [I] of Lemma [I3] with Iy = @&. Thus, if
u ¢ Ter(s #t,T1) and u € Ter(Cy,Cs), a split-interpolant for the first partition
is:

S#Uas#f,Fl;F2%;A t#uas#tarl;FQ%;A
s#4,T; T VZ(Cl[i]VCﬂi]g A

For the second partition, we use Case 2l of Lemma [[3] with IT; = &. Thus,
if u & Ter(s #£t,T2, A), a split-interpolant for the second partition is:

F1§S¢U,S¢t,F2%;A Fl;t#u,S#t,Fgg;A

Ty s T, Jz(C1[L]AC2[3]) A

When u is, respectively, in Ter(s # ¢,T'1) or in Ter(s # t,T'2, A), as well as when
it is not in Ter(C1, C3), we do not quantify it away . O

4.6 Positive partial and linear orders

Just like apartness is a positive version of inequality, so excess £ is a positive
version of the negation of a partial order <. Excess relation was introduced
by von Plato in [I8] and has been further investigated by Negri in [I3]. The
theory of positive partial orders consists of intuitionistic first-order logic plus the
irreflexivity and co-transitivity of y{ Let PPO = Gi + {Irref £ Co-tmns?{}

sdu,sgt, Il =A udt,sgt,I = A
s€t,I' = A

Irref$ Co—transg

s€s,I'=A

The theory of positive linear orders extends the theory of positive partial
orders with the asymmetry of £. Specifically, let PLO = PPO + {Asym%}:

Asym#\
s€ttds = A

Given that all these rules are singular geometric, from Theorem [I4] it follows
that

Corollary 20. PPO and in PLO have the interpolation property.

1 Co-transitivity and splitting should not be confused. In particular, splitting (along with
irreflexivity) gives symmetry, whereas co-transitivity does not. This is what distinguishes
apartness (which is symmetric) from excess (which in general is not).
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Proof. The cases of Irref¢\ and of Co- Tmm?{ are like the analogous cases for

rules Irref+ and Split+ and the split-interpolants can be obtained by those in
the proof of Corollary For rule Asym% we have four possible partitions of
the conclusion

e st tLs1;Ta=; A
o' sLttgsTa=; A
e stt,I1;tgs,Ta=; A
etlsIi;sdt,To=; A

Their split-interpolants are like those for rule Anti-symg, except that here we
have a O-premise rule. For the first and second partitions we have, respectively:

s;{t,t;{s,Fl;Fgé;A F1;8§§t,t§§s,F2;>;A

Finally, for the last two partitions we have, respectively:

Sy{t,l—‘l;t%&rgt#ﬁ:ﬂ>;A t;(s,l"l;s%t,l'b%;fl

O

To conclude, we have shown (Lemmal[I3]) how to extend Maehara’s lemma to
extensions of classical and intuitionistic sequent calculi with singular geometric
rules and provided a number of interesting examples of singular geometric rules
that are important both in logic and mathematics, especially in order theories.
In particular, we have shown that Lemmal[I3]covers first-order logic with identity
and its extension with the theory of (strict) partial and linear orders. We have
also proved that the same holds for the intuitionistic theories of apartness, as well
as for positive partial and linear order. Along the way, we have also provided a
cut-elimination theorem for geometric extensions Gi# of the intuitionistic single-
succedent calculus Gi.

Acknowledgements: We are very grateful to Birgit Elbl for precious com-
ments and helpful discussions on various points. We also thank an anonymous
referee for valuable suggestions that have helped to generalize our main result
as well as to improve its exposition.

26



References

[1]

[10]
[11]

[12]

M. Baaz and R. Iemhoff. On interpolation in existence logics. In Logic
for Programming, Artificial Intelligence, and Reasoning, volume 3835 of
Lecture Notes in Computer Science, pages 697-711. Springer, 2005.

M. Bonacina and M. Johansson. Interpolation systems for ground proofs in
automated deduction: a survey. Journal of Automated Reasoning, 54:353—
390, 2015.

E. Casari. La matematica della verita. Bollati Boringhieri, 2006.

W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model
theory and proof theory. The Journal of Symbolic Logic, 22(3):269-285,
1957.

A.G. Dragalin. Mathematical Intuitionism: Introduction to Proof Theory.
American Mathematical Society, 1988.

M. Fitting and R. Kuznets. Modal interpolation via nested sequents. An-
nals of Pure and Applied Logic, 166(3):274-305, 2015.

D. Gabbay and L. Maksimova. Interpolation and Definability: Modal and
Intuitionistic Logics. Oxford University Press, 2005.

J. Gallier. Logic for Computer Science. Dover, 2nd edition, 2015.

G. Gentzen. Investigation into logical deductions. In M. E. Sazbo, editor,
The collected papers of Gerhard Gentzen, chapter 3, pages 68-131. North-
Holland, 1969.

A. Heyting. Intuitionism. An introduction. North-Holland, 1956.

R. Kuznets. Multicomponent proof-theoretic method for proving interpola-
tion property. Annals of Pure and Applied Logic, 169(2):1369-1418, 2018.

S. Maehara. On the interpolation theorem of Craig. Suugaku, 12:235-237,
1960. (in Japanese).

S. Negri. Sequent calculus proof theory of intuitionistic apartness and order
relations. Archive for Mathematical Logic, 38(8):521-547, 1999.

S. Negri. Contraction-free sequent calculi for geometric theories with an
application to Barr’s theorem. Archive for Mathematical Logic, 42(4):389-
401, 2003.

S. Negri and J. von Plato. Cut elimination in the presence of axioms. The
Bulletin of Symbolic Logic, 4(4):418-435, 1998.

S. Negri and J. von Plato. Structural Proof Theory. Cambridge University
Press, 2001.

27



[17]

18]

S. Negri and J. von Plato. Proof Analysis: A Contribution to Hilbert’s Last
Problem. Cambridge University Press, 2011.

J. von Plato. Positive lattices. In P. Schuster, U. Berger, and H. Osswald,
editors, Reuniting the Antipodes - Constructive and Nonstandard Views of
the Continuum, volume 306 of Synthese Library, pages 185-197. Kluwer,
2001.

J. Rasga, W. Carnielli, and C. Sernadas. Interpolation via translations.
Mathematical Logic Quarterly, 55(5):515-534, 2009.

G. Takeuti. Proof Theory, volume 81 of Studies in Logic and the Founda-
tions of Mathematics. North-Holland, 2nd edition, 1987.

A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge
University Press, 2nd edition, 2000.

28



	1 Classical and intuitionistic sequent calculi
	1.1 From axioms to rules
	1.2 Geometric theories

	2 Singular geometric theories
	3 Interpolation with singular geometric rules
	4 Applications
	4.1 First-order logic with identity
	4.2 Equivalence relations
	4.3 Partial and linear orders
	4.4 Strict partial and linear orders
	4.5 Apartness
	4.6 Positive partial and linear orders


