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Abstract. In this paper we introduce hypersequent-based frameworks for the modelling

of defeasible reasoning by means of logic-based argumentation and the induced entailment

relations. These structures are an extension of sequent-based argumentation frameworks, in

which arguments and the attack relations among them are expressed not only by Gentzen-

style sequents, but by more general expressions, called hypersequents. This generalization

allows us to overcome some of the known weaknesses of logical argumentation frameworks

and to prove several desirable properties of the entailments that are induced by the ex-

tended (hypersequent-based) frameworks. It also allows us to incorporate as the deductive

base of our formalism some well-known logics (like the intermediate logic LC, the modal

logic S5, and the relevance logic RM), which lack cut-free sequent calculi, and so are not

adequate for standard sequent-based argumentation. We show that hypersequent-based

argumentation yields robust defeasible variants of these logics, with many desirable prop-

erties.
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1. Introduction

Argumentation theory has been described as “a core study within artificial
intelligence” [27]. Among others, it is one of the standard methods for model-
ing defeasible reasoning. Logical argumentation (sometimes called deductive
or structural argumentation) is a branch of argumentation theory in which
arguments have a specific structure. This includes rule-based argumenta-
tion, such as the ASPIC+ framework [71], assumption-based argumentation
(ABA) systems [34], defeasible logic programming (DeLP) systems [52], and
methods that are based on Tarskian logics, like Besnard and Hunter’s ap-
proach [31], in which classical logic is the deductive base (the so-called core
logic). The latter method was generalized in [9] to sequent-based argumen-
tation, where Gentzen’s sequents [53], extensively used in proof theory, are
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incorporated for representing arguments, and attacks are formulated by spe-
cial inference rules called sequent elimination rules. The result is a generic
and modular approach to logical argumentation, in which any logic with
a corresponding sound and complete sequent calculus can be used as the
underlying core logic. A dynamic proof theory as a computational tool for
sequent-based argumentation was introduced in [10,11]. This allows for rea-
soning with these argumentation frameworks in a fully automatic way.

In this paper we further extend sequent-based argumentation to hyper-
sequents [13,66,69]. These are a powerful generalization of Gentzen’s se-
quents which may be regarded as disjunctions of sequents. This generaliza-
tion turned out to be applicable for a large variety of non-classical logics
(see, e.g., [45,62,65]), allows a high degree of parallelism in constructing
proofs, and has some applications in the proof theory of fuzzy logics (see,
e.g., [65]). In our context, there are several further advantages of generalizing
sequent-based argumentation to hypersequents.

• It allows us to consider other logics as the deductive base of the argu-
mentation system. For some well-known logics, like the modal logic S5,
the relevance logic RM, and Gödel–Dummett logic LC, an ordinary cut-
free sequent calculus is not available, but they do have cut-free hyper-
sequent calculi. Cut-free calculi have multiple proof-theoretic benefits,
e.g., they allow for resolution, guarantee the strong normalization prop-
erty, and imply the subformula property. The latter, meaning that for
constructing/proving an argument only its subformulas have to be taken
into account, is essential for reducing the proof space when looking for
counter arguments, in which case the cut rule should be avoided.

• The incorporation of hypersequents enables us to split sequents into
different components, and so different rationality postulates [1,40] can
be satisfied, some of which are not available otherwise. For instance, the
long-standing problem of deductive argumentation frameworks, whose
extensions may be inconsistent (see [2,43]) may be resolved by switch-
ing to hypersequent-based argumentation frameworks (see Note 6 and
Section 7).

The above-mentioned advantages of hypersequential argumentation
frameworks are demonstrated in what follows both for particular and for
general cases. First, we demonstrate the usefulness of logical argumenta-
tion with hypersequents on frameworks whose core logic is either classical
logic (CL) or one of the logics mentioned above (namely, S5, RM, and LC).
Then, we consider general entailment relations that are obtained by the hy-
persequential argumentation-based approach, and show how the following
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ingredients affect their properties: (1) the set of assumptions (premises) at
hand; (2) the core logic and its (hyper)sequent calculus, according to which
arguments are introduced; (3) the interplay among arguments, namely: how
an argument challenges another argument; and (4) considerations that are
related to the semantics of the argumentation framework (in particular, what
set of arguments should be taken into account when inferences are made).

This paper revises and largely extends the papers [35] and [36], where
S5 and RM (respectively) were studied as the core logics. In addition to
providing full proofs and further explanations to the results in these papers,
and incorporating also the logic LC, we take here a more abstract approach
(i.e., define a general setting to which all the specific core logics fit) and con-
sider some rationality postulates from [1,40], and [41], expressed in terms of
the induced entailment relations. In particular, we prove that hypersequent-
based formalisms for a number of logics, including CL and LC, avoid the
problem of logical argumentation raised in [43], and further discussed in [2].
We also investigate the relation of some entailments that are induced by
specific frameworks to reasoning with maximally consistent subsets [74], re-
sulting in a generalization of the results in [6]. A byproduct of our approach
is therefore a defeasible variant of a large variety of logics and entailment
relations with many desirable properties.

The rest of the paper is organized as follows. The next two sections con-
tain some preliminary material: in Section 2 we recall some basic notions
of abstract and sequent-based argumentation, and in Section 3 we review
the notion of hypersequents. Then, in Section 4 we extend sequent-based
argumentation frameworks to hypersequent-based ones and in Section 5 we
discuss the logics LC, S5 and RM as possible core logics of such frameworks.
In Section 6 we consider some general properties of hypersequent-based cal-
culi that are needed for the results in the next sections. Then, in Section 7
we study some interesting properties of hypersequential frameworks and the
entailment relations induced by them. Relations to reasoning with maximal
consistent subsets are discussed in Section 8. Finally, in Section 9 we make
some concluding remarks. The appendices contain some auxiliary material.

2. Preliminaries

We start by introducing the notation and some basic logical notions that we
will use in the remainder of the paper. Then we review abstract argumenta-
tion frameworks (Section 2.1), and their structured representation in terms
of sequents (Section 2.2).
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Throughout the paper we consider propositional languages, denoted by
L. Sets of formulas are denoted by S, T , finite sets of formulas are denoted
by Γ, Δ, Π, Θ, formulas are denoted by φ, ψ, δ, γ, and atomic formulas are
denoted by p, q, r, all of which can be primed or indexed. In what follows, we
shall assume that L contains at least a unary operator (¬) and two binary
operators (∧ and ∨).

Given a language L, L-entailments are relations between sets of formulas
in L and formulas in L, intuitively indicating that the latter follow from the
former. Common kinds of entailments are considered next.

Definition 1. A (Tarskian) consequence relation for a language L is an L-
entailment � satisfying, for every S, S ′ in L, the following three conditions:

• reflexivity: if φ ∈ S then S � φ;

• transitivity: if S � φ and S ′, φ � ψ, then S, S ′ � ψ;

• monotonicity: if S ′ � φ and S ′ ⊆ S, then S � φ.

Some further properties that the consequence relation � is sometimes re-
quired to fulfill are the following:

• compactness: if S � φ then there is a finite Γ ⊆ S for which Γ � φ;

• non-trivialilty: there is a set of formulas S �= ∅ and a formula φ for which
S � φ;

• structurality (closure under substitutions): for every substitution θ and
every S and φ, if S � φ then {θ(ψ) | ψ ∈ S} � θ(φ).

Definition 2. A logic for a language L is a pair L= 〈L, �〉, where � is a
non-trivial and structural L-entailment relation.

Given a logic L= 〈L, �〉, we say that a formula φ ∈ L is an L-theorem if
∅ � φ (in short: � φ), and that it is an L-consequence of S if S � φ.

Note 1. The requirements for a logic in Definition 2 are very weak. It is usual
to assume, in addition, that the entailment relation � of a logic is a Tarskian
consequence relation (in the sense of Definition 1), which is indeed the case
for all the specific logics (i.e., CL,S5, LC and RM) that are considered in
this paper (see Section 5). To keep the presentation as general as possible,
we have decided to require these common additional properties only when
they are really necessary for the results. For instance, in the general meta-
theoretic part of this paper (Sections 6–8) we shall suppose that the logics
under consideration are also compact and monotonic.
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We will assume that the operators ¬ and ∧ satisfy, respectively, the fol-
lowing conditions (for every atom p, formulas φ, ψ, and set of formulas S):1

�-negation: p �� ¬p and ¬p �� p,

�-conjunction: S � ψ ∧ φ iff S � ψ and S � φ.

When the language contains an implication connective (⊃) we shall some-
times abbreviate (φ ⊃ ψ) ∧ (ψ ⊃ φ) by φ ↔ ψ and denote by

∧
Γ (respec-

tively, we denote by
∨

Γ) the conjunction (respectively, the disjunction) of
all the formulas in Γ. Furthermore, we let ¬S = {¬φ | φ ∈ S}.

The following notions will be useful in what follows.

Definition 3. Let L= 〈L, �〉 be a logic and let S be a set of L-formulas.

• The finitary �-closure of S is the set CNL(S) = {φ | Γ � φ for some finite
Γ ⊆ S}.2

• S is �-consistent, if there are no formulas φ1, . . . , φn ∈ S for which
� ¬(φ1 ∧ · · · ∧ φn). In the latter case S is �-inconsistent.3,4

2.1. Argumentation Frameworks and Their Semantics

An abstract argumentation framework, as introduced by Dung [48], can be
viewed as a directed graph, in which the nodes represent arguments and the
arrows represent attacks between arguments. Formally:

Definition 4. An (abstract) argumentation framework is a pair AF =
〈Args, A〉, where Args is a set of arguments and A ⊆ Args × Args is an
attack relation on these arguments.

An argumentation framework provides an abstract model of a discursive
situation in which arguments are exchanged. In this context it is natural
to ask what combinations of arguments are collectively acceptable. Dung-
style argumentation semantics [48] aim at providing rational criteria for

1A standard requirement from a disjunction ∨ is that S, ψ ∨ φ � σ iff S, ψ � σ and
S, φ � σ. However, for the general meta-theory in what follows we shall not need this
property, and for the concrete logics discussed in the paper we shall use their inference
rules for disjunction.

2The requirement of finiteness is needed for some of our technical results later on (see,
e.g., Lemma 14). For the standard application to finitary logics we can define: CNL(S) =
{φ | S � φ}.

3Recall that we assume that L contains a negation and a conjunction connective.
4Note that if S is consistent, then so are CNL(S) and S ′ for every S ′ ⊆ S. If S is

inconsistent, then so is every superset of S.
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selecting sets of arguments (called extensions) from a given argumentation
framework.5

Definition 5. Let AF = 〈Args, A〉 be an argumentation framework, let
S ⊆ Args be a set of arguments, and let a ∈ Args. It is said that:

• S attacks a if there is an a′ ∈ S such that (a′, a) ∈ A;

• S defends a if S attacks every attacker of a;

• S is conflict-free if there are no a1, a2 ∈ S such that (a1, a2) ∈ A;

• S is admissible if it is conflict-free and it defends all of its elements.

An admissible set that contains all the arguments that it defends is a com-
plete extension of AF . Below are definitions of some particular complete
extensions of AF :

• the grounded extension of AF is the minimal (with respect to ⊆) complete
extension of AF ;

• a preferred extension of AF is a maximal (with respect to ⊆) complete
extension of AF ;

• a stable extension of AF is a conflict-free set of argument in ArgL(S) that
attacks every argument not in it.6

In what follows we shall refer to either complete (cmp), grounded (grd),
preferred (prf) or stable (stb) semantics as completeness-based semantics.
We denote by Extsem(AF) the set of all the extensions of AF under the
semantics sem ∈ {cmp, grd, prf, stb}.7

Example 1. Figure 1 shows an argumentation framework in which, for in-
stance, a� defends a1 from the attack of a⊥. The set S = {a1, a�} is thus
a complete (and even the grounded) extension of this argumentation frame-
work. We note, however, that S is not a stable nor a preferred extension of
this framework, since it does not attack the arguments not in it, and since,

5The argumentation semantics serve thus a different purpose than semantics that give
meaning to the formal language underlying logics (such as those logics used for the purpose
of generating arguments in Section 2.2).

6As shown in [48], the grounded extension is unique for a given framework and every
stable extension is also a preferred extension. Moreover, while grounded and preferred
extensions exist for every argumentation framework, stable extensions may not be available
in some cases.

7Other extensions and their properties are discussed, e.g., in [21–23].
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Figure 1. An abstract argumentation framework (Example 1). The nodes

with a gray background are a stable/preferred extension of the frame-

work

e.g., S′ = {a1, a2, a3, a4, a5, a6, a�} (nodes with gray background) is a com-
plete set of the framework that properly contains S. The set S′ is both a
stable and a preferred extension of this framework.

2.2. Sequent-Based Argumentation

In the frameworks as they were introduced by Dung, the arguments and
attacks are abstract objects: there is no structure in the arguments nor is
there a specific nature of the attacks. In logical argumentation a formal
language provides the structure for arguments and an entailment relation
determines the arguments’ validity and the nature of the attacks. Some
specific approaches to logical argumentation are introduced, e.g., in [9,31,
34,68,70,75]. Surveys on the subject have appeared in [30] and [72].

As noted previously, our setting is based on sequent-based argumenta-
tion [4,9], where arguments are represented by the well-known proof theo-
retical notion of a sequent [53] (see, e.g., [9] and the discussion below for
some justification of this choice).

Definition 6. Let L= 〈L, �〉 be a logic and let S be a set of formulas in L.

• An L-sequent (sequent for short) is an expression of the form Γ ⇒ Δ,
where Γ and Δ are finite sets of formulas in L and ⇒ is a symbol that
does not appear in L.

• An L-argument (argument for short) is an L-sequent of the form Γ ⇒ ψ,8

where Γ � ψ. We say that Γ is the support set of Γ ⇒ ψ and that ψ

8Set signs in arguments are omitted.
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is its conclusion. They are respectively denoted by Supp(Γ ⇒ ψ) and
Conc(Γ ⇒ ψ).

• An L-argument based on S is an L-argument Γ ⇒ ψ, where Γ ⊆ S. We
denote by ArgL(S) the set of all the L-arguments based on S.

The formal systems used for the constructions of sequents (and so of ar-
guments) for a logic L= 〈L, �〉 are called sequent calculi [53], denoted here by
C. A sequent is said to be provable (or derivable) in C if there is a derivation
for it in C. The construction of arguments from simpler arguments is done by
means of derivations via the inference rules of the sequent calculus. In what
follows we shall assume that a sequent calculus C is sound and complete for
its logic (i.e., Γ ⇒ ψ is provable in C iff Γ � ψ).

Note 2. One of the advantages of sequent-based argumentation is that any
logic with a corresponding sequent calculus can be used as the core logic.9

The use of sequent calculi as the basis for an argumentation system opens
up the possibility to incorporate other methods from proof theory as well.
Moreover, unlike some other logical approaches to argumentation (e.g., [2]),
in sequent-based argumentation, the support set of the argument does not
have to be consistent, nor ⊆-minimal.10

Another advantage of the sequent-based approach is that it allows us to
define a variety of attacks between sequents, which are expressed in the form
of sequent-based inference rules. More specifically, in our case attacks are
represented by sequent elimination rules. Such a rule consists of an attacking
argument (the first condition of the rule), an attacked argument (the last
condition of the rule), conditions for the attack (the other conditions) and a
conclusion (the eliminated attacked sequent). The outcome of an application
of such a rule is that the attacked sequent is ‘eliminated’ (or ‘invalidated’;
see below for the exact meaning of this). The elimination of a sequent a =
Γ ⇒ Δ is denoted by a or by Γ �⇒ Δ.

Definition 7. A sequent elimination rule (or attack rule) is a rule R of the
form (where n ≥ 2):

Γ1 ⇒ Δ1 . . . Γn ⇒ Δn

Γn �⇒ Δn
R (1)

Let L= 〈L, �〉 be a logic with corresponding sequent calculus C, θ an L-
substitution, and S a set of L-formulas. An elimination rule R of the form

9Note that this implies, in particular, that for a given S, all the elements in ArgL(S)
are C-provable.

10See [9] for a detailed overview and further advantages of this approach.
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above is ArgL(S)-applicable11 (with respect to θ), if θ(Γ1) ⇒ θ(Δ1) and
θ(Γn) ⇒ θ(Δn) are in ArgL(S), and for each 1 < i < n, θ(Γi) ⇒ θ(Δi) is C-
provable. In this case we say that θ(Γ1) ⇒ θ(Δ1) R-attacks θ(Γn) ⇒ θ(Δn).

Example 2. We refer to [9,79] for a definition of many sequent elimination
rules. Below are some of them (assuming that Γ2 �= ∅12):

Defeat:
Γ1 ⇒ ψ1 ⇒ ψ1 ⊃ ¬

∧
Γ2 Γ2 ⇒ ψ2

Γ2 �⇒ ψ2
(Def)

Undercut:
Γ1 ⇒ ψ1 ⇒ ψ1 ↔ ¬

∧
Γ2 Γ2, Γ′

2 ⇒ ψ2

Γ2, Γ′
2 �⇒ ψ2

(Ucut)

Rebuttal:
Γ1 ⇒ ψ1 ⇒ ψ1 ↔ ¬ψ2 Γ2 ⇒ ψ2

Γ2 �⇒ ψ2
(Reb)

Direct undercut:
Γ1 ⇒ ψ1 ⇒ ψ1 ↔ ¬γ2 Γ′

2, γ2 ⇒ ψ2

Γ′
2, γ2 �⇒ ψ2

(DUcut)

Consistency undercut:
⇒ ¬

∧
Γ2 Γ2, Γ′

2 ⇒ ψ

Γ1, Γ2 �⇒ ψ
(ConUcut)

The rules above indicate different cases in which the attacker challenges
the attacked argument. For instance, an argument (sequent) defeats another
argument, if the conclusion of the former implies, according to the underly-
ing logic, the negation of the support set of the latter. Likewise, according
to Consistency Undercut, arguments whose support set is inconsistent in
the base logic, are unconditionally attacked by arguments that depict the
inconsistency of the attacked support set.

Example 3. Suppose that {p, ¬p} ⊆ S. When classical logic (CL) is the
core logic, the sequents p ⇒ p and ¬p ⇒ ¬p attack each other according to
Defeat and Undercut (see Example 2). The tautological sequent ⇒ ψ∨¬ψ is
not defeated or undercut by any argument in ArgCL(S), since it has an empty
support set. The sequent p, ¬p ⇒ q is Consistency Undercut by ⇒ ¬(p∧¬p),
which expresses the inconsistency of its support.

A sequent-based argumentation framework is now defined as follows:

11Or just applicable, for short.
12Many of these rules suppose to have available an implication ⊃. Where the ⊃ con-

nective is missing from the language, one may define compact versions of the elimination
rules: for instance, we may replace ⇒ ψ1 ⊃ ¬

∧
Γ2 in Defeat by ψ1 ⇒ ¬

∧
Γ2. Clearly,

for core logics for which the deduction theorem holds, these two notions of attack will
coincide.
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Definition 8. A sequent-based argumentation framework for a set of for-
mulas S based on a logic L= 〈L, �〉 and a set AR of sequent elimination
rules, is a pair AFL,AR(S) = 〈ArgL(S), A〉, where A ⊆ ArgL(S) × ArgL(S)
and (a1, a2) ∈ A iff there is an R ∈ AR such that a1 R-attacks a2. The
subscripts AR and/or L will be omitted when clear from the context or
arbitrary.

Some examples of sequent-based argumentation frameworks are consid-
ered next.

Example 4. Let AFCL(S) = 〈ArgCL(S), A〉 be a sequent-based argumenta-
tion framework for S = {p, q, ¬p∨¬q, r} and let A be based on a nonempty
set AR ⊆ {Defeat, Undercut, ConUcut}. Then the following sequents are in
ArgCL(S):

a1 = r ⇒ r a4 = ¬p ∨ ¬q ⇒ ¬p ∨ ¬q a7 = p, q ⇒ p ∧ q
a2 = p ⇒ p a5 = p ⇒ ¬((¬p ∨ ¬q) ∧ q) a8 = ¬p ∨ ¬q, q ⇒ ¬p
a3 = q ⇒ q a6 = q ⇒ ¬((¬p ∨ ¬q) ∧ p) a9 = ¬p ∨ ¬q, p ⇒ ¬q

a⊥ = p, q, ¬p ∨ ¬q ⇒ ¬r a� = ⇒ ¬(p ∧ q ∧ (¬p ∨ ¬q))

Note that Figure 1 above may serve also as a graphical representation
of (part of) the sequent-based argumentation framework AFCL(S), where
{Defeat} ⊆ AR ⊆ {Defeat, Undercut, ConUcut}.13

Example 5. Let AFCL,{Ucut}(S) be a sequent-based argumentation frame-
work for S = {p, ¬p, q}, based on CL, with Undercut as the sole attack rule.
Then, as noted in Example 3, the sequent ⇒ p∨¬p belongs to every complete
extension of AFCL,{Ucut}(S), since it cannot be undercut-attacked. Similarly,
q ⇒ q also belongs to every complete extension of AFCL,{Ucut}(S), since
⇒ p∨¬p counter-attacks any attacker of q ⇒ q that belongs to ArgCL(S).14

This implies that both ⇒ p ∨ ¬p and q ⇒ q are in the grounded extension
of AFCL,{Ucut}(S).

Example 6. Similar considerations as those in the previous example show
that the sequent r ⇒ r belongs to every complete extension of the argumen-
tation framework AFCL(S) of Example 4.

We are now ready to define the entailment relations that are induced
from a given sequent-based argumentation framework and its semantics.

13With Undercut as the only attack rule, some attacks should be removed from the
figure, e.g., those from a2 to a8, from a3 to a9, and from a4 to a7.

14This follows since any attacker of q ⇒ q has an inconsistent support.
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Definition 9. Given a sequent-based argumentation framework
AFL,AR(S), and a semantics sem as defined in Definition 5, the following
entailment relations are induced from AFL,AR(S):

• Skeptical entailment: S |∼∩
L,sem φ iff there is an argument

a ∈
⋂

Extsem(AFL,AR(S)) such that Conc(a) = φ.

• Credulous entailment: S |∼∪
L,sem φ iff for some extension

E ∈ Extsem(AFL,AR(S)) there is an argument a ∈ E where Conc(a) = φ
and Supp(a) ⊆ S.

The subscripts L and sem are omitted when these are clear from the context.

Example 7. Note that, since the grounded extension is unique, |∼∩
grd and

|∼∪
grd coincide (so both can be denoted by |∼grd). For instance, in Exam-

ple 5, p, ¬p, q |∼grd q, while p, ¬p, q |�∼grd p and p, ¬p, q |�∼grd ¬p. Also in the
same example, although p, ¬p, q |∼∪

sem p and p, ¬p, q |∼∪
sem ¬p, we have that

p, ¬p, q |�∼∩
sem p and p, ¬p, q |�∼∩

sem ¬p for sem ∈ {cmp, prf, stb}. Similarly, in
Example 4, we have that S |∼�

sem r and S |�∼�
sem ¬r for sem ∈ {cmp, prf, stb}

and � ∈ {∪, ∩}.

3. Hypersequents and Their Calculi

Ordinary sequent calculi do not capture all interesting logics. For some log-
ics, which have a clear and simple semantics, no standard cut-free sequent
calculus is known. Notable examples are the Gödel–Dummett intermediate
logic LC, the relevance logic RM and the modal logic S5. As indicated in the
introduction, in our context a cut-free calculus is very important, e.g., for
reducing the proof space in a quest for appropriate arguments and counter-
arguments. Indeed, cut-elimination frequently implies the subformula prop-
erty, thus for producing a counterargument for a particular argument a, one
has to consider only the (sub)formulas that are mentioned in a.

A large range of extensions of sequent calculi have been introduced for
providing decent proof systems for different non-classical logics. Here we
consider a natural extension of sequent calculi, called hypersequent calculi.
Hypersequents were independently introduced by Mints [66], Pottinger [69]
and Avron [13]. Nowadays Avron’s notation is mostly used (see, e.g., [15]).
Intuitively, a hypersequent is a finite set (or sequence) of sequents, which is
valid if and only if at least one of its component sequents is valid. This al-
lows us to define new inference (and elimination) rules for “multi-processing”
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different sequents. These types of rules increase the expressive power of hy-
persequents compared to ordinary sequent calculi, and as a result the cor-
responding argumentation systems have some desirable properties that are
not available for ordinary sequent-based frameworks (we refer to Section 7
for more details about this).

In this section we formally define what a hypersequent is and show how
to translate ordinary sequent rules to hypersequent versions. Argumentation
frameworks that are based on hypersequents are defined in the next section
and some useful test cases are considered in Section 5. General properties of
hypersequential frameworks and their relations to reasoning with maximal
consistency are discussed in Sections 7 and 8.

Definition 10. Given a language L, an L-hypersequent [15] is an expres-
sion of the form Γ1 ⇒ Δ1 | . . . | Γn ⇒ Δn, where Γi ⇒ Δi (1 ≤ i ≤ n) are
L-sequents and | is a new symbol, not appearing in L.15 Each Γi ⇒ Δi is
called a component of the hypersequent.

In what follows, hypersequents are denoted by G, H, primed or indexed if
needed. Given a hypersequent H = Γ1 ⇒ Δ1 | . . . | Γn ⇒ Δn, we say that:

• the support of H is the set Supp(H) = {Γ1, . . . ,Γn}, and

• the conclusion of H is the formula Conc(H) =
∨

Δ1 ∨ . . . ∨
∨

Δn.

Given a set Λ of hypersequents, we let Concs(Λ) = {Conc(H) | H ∈ Λ}.

Note that every ordinary sequent is a hypersequent as well. Also, the con-
version of a sequent calculus to a hypersequent calculus is usually a standard
matter (see Example 8 below). Provability in a hypersequent calculus is de-
fined like in standard sequent calculi.

Example 8. To see how sequent rules can be translated into hypersequent
versions, consider for instance the right implication rule of Gentzen’s calculus
LK for classical logic (on the left below). The corresponding hypersequent
rule is similar, now with added components (on the right below):

Γ, φ ⇒ Δ, ψ

Γ ⇒ Δ, φ ⊃ ψ
[⇒⊃]

G | Γ, φ ⇒ Δ, ψ | H
G | Γ ⇒ Δ, φ ⊃ ψ | H [⇒⊃]

As noted in [15], many sequent rules can be translated like this. Often there
are two versions (an additive form and a multiplicative form), which are
equivalent if contraction, exchange and weakening are part of the system.

15The common, intuitive interpretation of the sign “|” is as a (meta-)disjunction.
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Axioms: G | ψ ⇒ ψ

Logical rules:

[¬⇒]
G | Γ ⇒ Δ, ϕ

G | ¬ϕ, Γ ⇒ Δ
[⇒¬]

G | ϕ, Γ ⇒ Δ
G | Γ ⇒ Δ,¬ϕ

[⊃⇒]
G1 | Γ1 ⇒ Δ1, ϕ G2 | ψ, Γ2 ⇒ Δ2

G1 | G2 | Γ1, Γ2, ϕ ⊃ ψ ⇒ Δ1, Δ2
[⇒⊃]

G | Γ, ϕ ⇒ Δ, ψ

G | Γ ⇒ Δ, ϕ ⊃ ψ

[∧⇒]
G | Γ, ϕ, ψ ⇒ Δ

G | Γ, ϕ ∧ ψ ⇒ Δ
[⇒∧]

G1 | Γ1 ⇒ Δ1, ϕ G2 | Γ2 ⇒ Δ2, ψ

G1 | G2 | Γ1, Γ2 ⇒ Δ1, Δ2, ϕ ∧ ψ

[∨⇒]
G1 | Γ1, ϕ ⇒ Δ1 G2 | Γ2, ψ ⇒ Δ2

G1 | G2 | Γ1, Γ2, ϕ ∨ ψ ⇒ Δ1, Δ2
[⇒∨]

G | Γ ⇒ Δ, ϕ, ψ

G | Γ ⇒ Δ, ϕ ∨ ψ

Structural rules:

[EC]
G | s | s

G | s
[EW]

G
G | s

[IC]
G | Γ, ϕ, ϕ ⇒ Δ
G | Γ, ϕ ⇒ Δ

G | Γ ⇒ Δ, ϕ, ϕ

G | Γ ⇒ Δ, ϕ
[IW]

G | Γ ⇒ Δ
G | Γ, ϕ ⇒ Δ

G | Γ ⇒ Δ
G | Γ ⇒ Δ, ϕ

[Sp]
G | Γ1, Γ2 ⇒ Δ1, Δ2

G | Γ1 ⇒ Δ1|Γ2 ⇒ Δ2
[Cut]

G | Γ1 ⇒ Δ1, ϕ G | ϕ, Γ2 ⇒ Δ2

G | Γ1, Γ2 ⇒ Δ1, Δ2

Figure 2. The proof system GLK

Take for example the right conjunction rule of LK. The dual hypersequent
rule in an additive form:

G | Γ ⇒ Δ, φ | H G | Γ ⇒ Δ, ψ | H
G | Γ ⇒ Δ, φ ∧ ψ | H [⇒∧]

and the multiplicative form of the same rule:

G1 | Γ1 ⇒ Δ1, φ | H1 G2 | Γ2 ⇒ Δ2, ψ | H2

G1 | G2 | Γ1, Γ2 ⇒ Δ1, Δ2, φ ∧ ψ | H1 | H2
[⇒∧]

See Figure 2 for the hypersequent version of LK, which we will refer to
as GLK. Note that in addition to the adjustments to hypersequents of the
logical rules, as described above, this calculus also contains adjustments to
hypersequents of standard structural rules, like internal contraction (IC) and
internal weakening (IW), some structural rules that are specific to hyper-
sequents, such as external contraction (EC) and external weakening (EW),
and the splitting rule (Sp), which will be discussed in greater details in what
follows.

In order to define hypersequent-based argumentation frameworks, it is
not enough to simply take hypersequent inference rules to create arguments.
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A new definition of arguments is required and sequent elimination rules
should be turned into hypersequent elimination rules. This is what we will
do in the next section.

4. Hypersequent-Based Argumentation

Just as sequent-based argumentation frameworks were based on sequents as
arguments (and on attacks as corresponding sequent-based rules), we now
define hypersequent-based argumentation frameworks based on hypersequents
as arguments (and on attacks as corresponding hypersequent-based rules).

Definition 11. Given a logic L= 〈L, �〉, a set S of L-formulas, and a hy-
persequent calculus H for L, we define:

• An (L,H)-hyperargument (an argument, for short) is an L-hypersequent
H, provable in H, each component of which is of the form Γi ⇒ ψi or
Γi ⇒.

• An S-based argument (induced by L and H) is an (L,H)-hyperargument H,
such that Γ ⊆ S for every Γ ∈ Supp(H). The set of the S-based arguments
that are induced by L and H is denoted by ArgL,H(S).

In what follows, since the underlying hypersequent calculus H will be
clear from the context or arbitrary, we shall omit it from the notations. We
shall therefore continue to denote by ArgL(S) the set of arguments that are
based on S.

Note 3. Unlike sequent-based arguments that are determined solely by the
underlying logic (recall Definition 6), hypersequent-based arguments, as de-
fined above, depend also on the underlying hypersequent calculus. This is
so, since different calculi for the same logic might result in different argu-
ments (which, furthermore, may be attacked by different arguments).16 To
see this, consider for instance the case where classical logic (CL) is taken
as the base logic. Since sequents are a particular case of hypersequents, one
may consider the standard sequent-based calculus LK for classical logic [53]
as the underlying hypersequent calculus. Another option would be to use the
hypersequent calculus GLK (Example 8 and Figure 2). Note that while both
calculi are sound and complete for CL, they produce different hypersequents

16Note that, in contrast to the above, for every set of formulas S, any two sound and
complete sequent calculi C and C′ (for the same logic L) will give rise to the same set
ArgL(S) and consequently to the same attacks. This is the reason that in the definition of
sequents, unlike hypersequents, the underlying calculus is not taken into account.
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(for instance, in LK only hypersequents with one component are derivable).
As shown e.g. in Example 10 below, this has far reaching consequences on
the structure of the argumentation frameworks that are obtained in each
case and on their properties. In Section 7 we shall give a detailed analysis
showing how the content of the calculus at hand affects the properties of the
induced argumentation framework (for instance, Theorem 1 provides some
justification for preferring GLK over LK for argumentation-based reasoning;
see also Example 20).

Definition 12. Let H be a hypersequent calculus for a logic L= 〈L, �〉.
• We say that H is (premise-abiding) complete [respectively: sound, ade-

quate] for L= 〈L, �〉, iff for every L-hypersequent H we have that H is
derivable in H if [respectively: only if, iff]

⋃
Supp(H) � Conc(H).

• We say that H is weakly complete [respectively: sound, adequate] for L= 〈L, �〉,
iff for every L-formula φ we have that ⇒ φ is derivable in H if [respectively:
only if, iff] � φ.

Note 4. The adequacy of hypersequent calculi with respect to a logic L =
〈L, �〉 is usually established relative to a translation function τ which as-
sociates hypersequents with formulas in L and for which holds: H is deriv-
able iff τ(H) is a theorem of the given logic. Premise-abiding adequacy is a
stronger requirement in that it requires the support and conclusion of H to
directly correspond to the �-entailment it represents. As will be shown later
(see Example 19), the hypersequent calculus GRM for RM is not premise-
abiding adequate, although it is adequate relative to a translation τ .

As before, arguments are constructed by the inference rules of the hy-
persequent calculus under consideration (see Section 3). For the elimination
rules, we keep the notations and their structure as in the sequent-based
case: H denotes the elimination of the hypersequent H, the first hyperse-
quent in the conditions of an elimination rule is the attacking argument,
the last hypersequent in the conditions is the attacked argument, and the
rest of the conditions are to be satisfied for the attack to take place (cf.
Definition 7).

Some elimination rules for hypersequents are given below. Applications
of elimination rules and attacks between hypersequents are defined as in
Definition 7, except that sequents are replaced by hypersequents and the
sequent calculus C is replaced by a hypersequent calculus H. Note that when
both the attacking and the attacked arguments are ordinary sequents, that
is, when both of them have only one component, these rules are the same as
their ordinary sequent-based counterparts. In the general case, these rules
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reflect the nature of hypersequents, and in particular the disjunctive reading
of their components.

Example 9. Below are hypersequent counterparts of the rules in Exam-
ple 2. Let G, H be two arguments, where Supp(H) = {Δ1, . . . ,Δm} and
j ∈ {1, . . . , m}. We define:

G ⇒ Conc(G) ⊃ ¬
∧

Δj H
H

[DefH ] where Δj �= ∅

G ⇒ Conc(G) ↔ ¬
∧

Δ′
j H

H
[UcutH ] where ∅ �= Δ′

j ⊆ Δj

G ⇒ Conc(G) ↔ ¬ψj H
H

[RebH ] where Δj ⇒ ψj is the jth component of H

G ⇒ Conc(G) ↔ ¬δ H
H

[DUcutH ] where δ ∈ Δj for some 1 ≤ j ≤ m

⇒ ¬
∧ ⋃m

i=1 Δi H
H

[ConUcutH ] where
⋃m

i=1 Δi �= ∅

Note 5. Some comments on the arrack rules of the last examples are in
order:

• Clearly, hypersequents offer other types of attack rules, as well as further
variations of sequent-based attack rules. For instance, the definition above
of the rebut rule [RebH ] is rather liberal in that it allows to attack in any
component of the attacked argument. A weaker variant of this rule could
be the following:

G ⇒ Conc(G) ↔ ¬Conc(H) H
H

.

• Except for [ConUcut], the presented elimination rules based on defeat
and undercut model a rather cautious reasoning style in that they allow
an attack on the premises of any component of the attacked argument.
E.g., the hypersequent p ⇒ p ∨ q | q ⇒ p ∨ q is DefH/UcutH/DUcutH-
attacked by ¬p ⇒ ¬p. This approach may seem overly cautious since, in
our example, the premise of the second component is sufficient to establish
the conclusion p ∨ q. In view of this, one may consider an alternative
approach to defeats and undercuts according to which all supports of the
attacked argument have to be falsified by the conclusion of the attacking
argument. Note, however, that such a definition would not allow ¬p ⇒ ¬p
to attack the GLK-derivable hypersequent p ⇒ p ∧ q | q ⇒ p ∧ q, which
seems counter-intuitive and therefore problematic.
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• The definitions in Example 9 are conservative in the sense that when ap-
plied to ordinary sequents they yield the same results as the corresponding
elimination rules in Example 2.

Hypersequent-based argumentation frameworks will be defined in a sim-
ilar way to sequent-based argumentation frameworks (cf. Definition 8).

Definition 13. A hypersequent-based argumentation framework for a set
of formulas S based on a logic L= 〈L, �〉, a hypersequent calculus H for L,
and a set AR of hypersequent elimination rules, is a pair AFL,H,AR(S) =〈
ArgL,H(S), A

〉
, where ArgL,H(S) is the set of (L,H)-hyperarguments (argu-

ments) based on S, A ⊆ ArgL,H(S) × ArgL,H(S) and (H1, H2) ∈ A iff there
is an R ∈ AR such that H1 R-attacks H2.

As before, we shall always omit the subscript H from the above nota-
tions,17 and the subscripts L and/or AR when they are clear from the context
or arbitrary.

Example 10. Consider again the argumentation framework AFL,AR(S) =
〈ArgL(S), A〉 from Example 4, now in a hypersequent setting, where S =
{p, q, ¬p∨¬q, r}, L = CL, and A is based on AR = {ConUcutH , DefeatH}.18

With the possibility of splitting components, we get in addition to the ar-
guments a⊥, a�, a1 −a9 in the sequent-based setting, also the following (hy-
persequential) arguments:

H10 = ¬p ∨ ¬q ⇒ ¬p | q ⇒ ¬p

H11 = ¬p ∨ ¬q ⇒ ¬q | p ⇒ ¬q

H12 = p ⇒ p ∧ q | q ⇒ p ∧ q

See Figure 3 for the extension of the graph in Figure 1 (the dashed graph)
with the additional hypersequent arguments and attacks (the solid parts of
the graph). To avoid clutter we have omitted all attacks on a⊥ except for
the one from a� (i.e., the attacks from a7, a8, a9, H10, H11 and H12 on a⊥
are omitted.

It is interesting to note that in the sequent-based setting considered in
Example 4 it can be proven that E = {a�, a1, a2, a3, a4, a5, a6} is admissible

17Recall, however, our cautionary remark in Note 3 concerning the fact that the set of
arguments and the attacks are not solely determined by the underlying logic but do also
depend on the specific underlying hypersequent calculus.

18Recall that, when applied to ordinary sequents, DefeatH from Example 9 is the same
rule as the Defeat rule from Example 2.
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a⊥

a�

a1a2a5

a3a6

a7 a4

a8

a9

H10 H12 H11

Figure 3. Part of the hypersequent-based argumentation graph for S =

{p, q, ¬p ∨ ¬q, r}, with core logic CL and ConUcutH and DefeatH as

attack rules, from Example 10. To avoid clutter we omit all attacks on

a⊥ except for the one from a�. The dashed graph is the same graph as

the one in Figure 1 (in the context of Example 4, referring to the same

S), the solid nodes and arrows become available when generalizing to

the hypersequent setting

in AFCL,{Def}(S) (see also Figure 1).19 However, Concs(E) is inconsistent.
This problem may be avoided by using a hypersequent-based framework as
in the current example. Indeed, in the present setting, the following three
sets of arguments are part of different complete extensions: E1 = {a�, a1, a2,
a3, a5, a6, a7, H12}, E2 = {a�, a1, a3, a4, a6, a8, H10} and E3 = {a�, a1, a2, a4,
a5, a9, H11} (see Figure 3). Now, E = {a�, a1, a2, a3, a4, a5, a6} is no longer
admissible, since, for instance, a2 is attacked by H10. In order to defend a2,
E must be extended with a hypersequent like a7, a9, or H11, and so the new
set of arguments is not conflict-free anymore.

We note, furthermore, that in this hypersequent-based framework each
extension contains the argument a1, therefore not only that inconsistent
extensions are avoided, but also free arguments (i.e., those that are not in-
volved in any contradictory set of premises) are preserved by the extensions.

19Note that although there are infinitely many arguments a′
⊥ in ArgL(S) defeating a�

(all with equivalent conclusions to ¬r and with supports Supp(a′
⊥) = {p, q, ¬p ∨ ¬q}), the

single argument a� in E attacks all of them.
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Note 6. The fact that extensions of structured argumentation frameworks
may not be consistent is a well-known problem, discussed e.g. in [2,43]. As
argued in the last example, a switch to a hypersequent-based argumenta-
tion frameworks may resolve the problem. Intuitively, this is so due to the
possibility of introducing new arguments by splitting hypersequents into dif-
ferent components. Indeed, in Section 7.3 we show that the consistency of
extensions of hypersequential frameworks like the ones of Example 10 is
guaranteed.

Given a hypersequent-based argumentation framework AFL,AR(S), Dung-
style semantics are defined in an equivalent way to those in Definition 5. Ac-
cordingly, the entailment relations induced by hypersequential frameworks
are defined as in the sequent-based case (cf. Definition 9):

Definition 14. Given a hypersequent-based argumentation framework
AFL,AR(S), we define20:

• Skeptical entailment: S |∼∩
L,sem φ iff there is an argument H ∈

⋂
Extsem

(AFL,AR(S)) such that Conc(H) = φ.

• Credulous entailment: S |∼∪
L,sem φ iff there is some E ∈ Extsem

(AFL,AR(S)) and an argument H ∈ E such that Conc(H) = φ.

The subscripts L and sem are omitted when they are clear from the context.

Example 11. Let AFCL,{ConUcutH ,DefH}(S) where S = {p, q, ¬p ∨ ¬q, r} as
in Example 10. Then S|∼∩

CL,semr, but S|�∼∩
CL,semp for sem ∈ {grd, cmp, prf, stb}.

Furthermore, S |∼∪
CL,sem′ φ for φ ∈ {p, q, ¬p ∨ ¬q} and sem′ ∈ {cmp, prf, stb}.

5. Some Notable Test-Cases

In this section we exemplify reasoning with specific hypersequential frame-
works. We shall consider three frameworks that are based on well-known
logics, for which an ordinary cut-free sequent calculus is not known. For
each logic we recall a corresponding (cut-free) hypersequent-based calculus
and illustrate the use of hypersequent-based attack rules from Definition 9
by means of some examples.

20To reduce and shorten the notations, we use here the same notations as in Defini-
tion 9 for the entailment relations of hypersequential frameworks. This will not cause any
confusion in what follows.
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5.1. LC-Based Hypersequential Frameworks

We start by considering Gödel–Dummett logic LC (also known as Gödel
Logic or G) as the base logic of the framework. This logic is sometimes con-
sidered to be the most important intermediate logic (see [14]), namely: a logic
that includes intuitionistic logic and is included in classical logic (see [44]).
Specifically, LC = 〈L, �LC〉 is obtained by adding the axiom (φ ⊃ ψ)∨(ψ ⊃ φ)
to (propositional) intuitionistic logic. This logic has some connections to rel-
evance logics [49], is used in research on Heyting’s Arithmetics [83], and is
one of the best known fuzzy logics (see, e.g., [20,57,65]).

As noted above, no finite cut-free sequent calculus is known for LC (the
ordinary cut-free sequent calculus of LC that was introduced in [76] is not
finite). Here we use a finite hypersequent calculus that was introduced for
LC (along with calculi for some other intermediate logics) in [14]; see Fig-
ure 4.21,22

Example 12. (See also [15]). The axiom (φ ⊃ ψ)∨ (ψ ⊃ φ) (which is added
to intuitionistic logic to obtain LC) can be derived in GLC as follows:

φ ⇒ φ ψ ⇒ ψ.

φ ⇒ ψ | ψ ⇒ φ
[Com]

⇒ φ ⊃ ψ | ψ ⇒ φ
[⇒⊃]

⇒ (φ ⊃ ψ) ∨ (ψ ⊃ φ) | ψ ⇒ φ
[⇒∨]

⇒ (φ ⊃ ψ) ∨ (ψ ⊃ φ) | ⇒ ψ ⊃ φ
[⇒⊃]

⇒ (φ ⊃ ψ) ∨ (ψ ⊃ φ) | ⇒ (φ ⊃ ψ) ∨ (ψ ⊃ φ)
[⇒∨]

⇒ (φ ⊃ ψ) ∨ (ψ ⊃ φ)
[EC]

Proposition 1. [15, Theorems 1 and 2]

1. GLC admits cut elimination.23

2. Let H = Γ1 ⇒ δ1 | . . . | Γk ⇒ δk be a hypersequent, where, for each
1 ≤ i ≤ k, Γi = {γi

1, . . . , γ
i
ni

}. Then H is derivable in GLC if and only
if the following formula is a theorem of LC:

τLC(H) =
(
γ1
1 ⊃

(
γ1
2 ⊃ . . . ⊃ (γ1

n1 ⊃ δ1

)
. . .

)
∨ . . . ∨

(
γk
1 ⊃

(
γk
2 ⊃ . . . ⊃ (γk

nk
⊃ δk

)
. . .

)
.

21The rules in GLC are the multiplicative versions. The additive versions of the rules
are admissible, to see this, apply [IW] to the premises of the given rules, before deriving
the conclusion.

22The prime in the notation of this rule indicates that the rule (unlike, e.g., the rule
[⇒∨] of GLK in Figure 2) has two variations (see also similar rules in Figure 6 below).

23That is, cut elimination is admissible in GLC.
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Axioms: G | ψ ⇒ ψ

Logical rules:

[¬⇒]
G | Γ ⇒ ϕ

G | ¬ϕ, Γ ⇒ [⇒¬]
G | ϕ, Γ ⇒
G | Γ ⇒ ¬ϕ

[⊃⇒]
G1 | Γ1 ⇒ ϕ G2 | ψ, Γ2 ⇒ δ

G1 | G2 | Γ1, Γ2, ϕ ⊃ ψ ⇒ δ
[⇒⊃]

G | Γ, ϕ ⇒ ψ

G | Γ ⇒ ϕ ⊃ ψ

[∧⇒]
G | Γ, ϕ, ψ ⇒ δ

G | Γ, ϕ ∧ ψ ⇒ δ
[⇒∧]

G1 | Γ1 ⇒ ϕ G2 | Γ2 ⇒ ψ

G1 | G2 | Γ1, Γ2 ⇒ ϕ ∧ ψ

[∨⇒]
G1 | Γ1, ϕ ⇒ δ G2 | Γ2, ψ ⇒ δ

G1 | G2 | Γ1, Γ2, ϕ ∨ ψ ⇒ δ
[⇒∨′]

G | Γ ⇒ ϕ

G | Γ ⇒ ϕ ∨ ψ

G | Γ ⇒ ψ

G | Γ ⇒ ϕ ∨ ψ
22

Structural rules:

[EC]
G | s | s

G | s
[EW]

G
G | s

[IC]
G | Γ, ϕ, ϕ ⇒ δ

G | Γ, ϕ ⇒ δ
[IW]

G | Γ ⇒ δ

G | Γ, ϕ ⇒ δ

G | Γ ⇒
G | Γ ⇒ ϕ

[SI]
G | Γ1, Γ2 ⇒ φ

G | Γ1 ⇒ φ | Γ2 ⇒ φ
[Com]

G1 | Γ1 ⇒ φ1 G2 | Γ2 ⇒ φ2

G1 | G2 | Γ1 ⇒ φ2 | Γ2 ⇒ φ1

[Cut]
G | Γ1 ⇒ ϕ G | ϕ, Γ2 ⇒ δ

G | Γ1, Γ2 ⇒ δ

Figure 4. The proof system GLC

Lemma 1. �LC γ1 ⊃ (γ2 ⊃ (. . . (γn ⊃ φ) . . .)) iff {γ1, . . . , γn} �LC φ.

Proof. Follows from the deduction theorem, which is valid in LC.

Corollary 1. Let Γ = Γ1, . . . ,Γn and φ = φ1 ∨ . . . ∨ φn.

1. �LC φ iff ⇒ φ is provable in GLC (that is, GLC is weakly adequate
for LC),

2. if H = Γ1 ⇒ φ1 | . . . | Γn ⇒ φn is provable in GLC, then Γ �LC φ
(that is, GLC is premise-abiding sound for LC),

3. if Γ �LC φ, then there is a (hyper)sequent H provable in GLC such that⋃
Supp(H) = Γ and Conc(H) = φ (that is, GLC is premise-abiding

complete for LC).

Proof. Let Γ = Γ1, . . . ,Γn and φ = φ1 ∨ . . . ∨ φn
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1. Suppose that �LC φ. By Proposition 1 (Item 2) there is an H = ⇒ φ1 |
· · · | ⇒ φn derivable in GLC. By applying [⇒∨] multiple times we can
derive ⇒ φ | · · · | ⇒ φ and via [EC] we get ⇒ φ. Suppose now ⇒ φ is
derivable in GLC. By Proposition 1 (Item 2), �LC φ.

2. Let H = Γ1 ⇒ φ1 | . . . | Γn ⇒ φn, where Γi = γi
1, . . . , γ

i
mi

, and assume
that H is provable in GLC. Then, by [IW] (Figure 4), Γ1, . . . ,Γn ⇒ φ1 |
. . . | Γ1, . . . ,Γn ⇒ φn is derivable in GLC. Now, by [⇒∨], Γ1, . . . ,Γn ⇒
φ | . . . | Γ1, . . . ,Γn ⇒ φ is also derivable in GLC. Hence, by external con-
traction, Γ ⇒ φ is derivable in GLC as well. By Item 2 of Proposition 1,
�LC τLC(Γ ⇒ φ) and hence by Lemma 1, Γ �LC φ.

3. Suppose that Γ �LC φ where Γ = {γ1, . . . , γn}. Hence, by Lemma 1,
�LC γ1 ⊃ (γ2 ⊃ . . . ⊃ (γn ⊃ φ)). By Item 2 of Proposition 1, there
is some hypersequent H that is provable in GLC such that τLC(H) =
γ1 ⊃ (γ2 ⊃ . . . ⊃ (γn ⊃ φ)). Therefore, H = Γ ⇒ φ and so the claim
follows.

By the claims above, GLC is premise-abiding adequate for LC, and so
hypersequential argumentation frameworks may be built on top of them.
The next examples illustrate such frameworks.

Example 13. Let AFL,AR(S) = 〈ArgL(S), A〉 be an argumentation frame-
work like that of Example 10 (i.e., where S = {p, q, ¬p∨¬q, r} and DefeatH

is the attack rule), but now L = LC is the base logic. Note that the arguments
and attacks as depicted in Figure 3, can be derived in this framework as well.
Moreover, it can be shown that, like for L = CL, it holds that S |∼∩

L,H,sem r

but S |�∼∩
L,H,sem q for sem ∈ {grd, cmp, prf, stb}.

Example 14. The differences between hypersequential frameworks that are
based on LC and CL are evident already when, e.g., S = {¬¬p} and
UndercutH is the sole attack rule. In this case, for every completeness-based
semantics sem, we have that S |∼∪

CL,sem p, since ¬¬p ⇒ p is derivable. On
the other hand, S |�∼∪

LC,sem p, since there is no argument a ∈ ArgLC(S) with
Conc(a) = p.24

As noted in the beginning of this section LC is, among others, one of
the best known fuzzy logics. Fuzzy argumentation (e.g., by taking a fuzzy
knowledge-base or defining attack rules as a fuzzy relation) has also been
explored in the literature (see, e.g., [60,77,80,85]). In this paper we take LC
as an example to show that the resulting hypersequent-based argumentation

24Indeed, arguments like ¬¬p ⇒ p (unlike p ⇒ ¬¬p) are not derivable in GLC.
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framework has some desirable properties. This will be further explained in
Sections 7 and 8, where we discuss common properties of entailment relations
that are induced by hypersequential frameworks. Some related issues, like
how to interpret the different strengths of formulas and how to incorporate
this in the arguments and/or the attacks, are left for future work.

5.2. S5-Based Hypersequential Frameworks

The second family of hypersequential argumentation frameworks that we
consider here is based on the modal logic S5. This logic also lacks a cut-free
sequent calculus, but has hypersequent calculi, one of them is defined below.

The obvious advantage of incorporating modal languages and logics is
that they allow to qualify statements (such as ‘it is necessary that ψ’)
by means of modal operators. In particular, this allows to express alethic
arguments (about necessity and possibility), epistemic ones (about knowl-
edge and belief ) [46,59] and deontic phrases (about obligation and permis-
sion) [51,84].

Most of the important systems in propositional modal logic (like K, K4, T,
and S4) have ordinary, cut-free Gentzen-type formulations.25 The sequential
system for S4, for example, is obtained from that of classical logic by adding
to it the following two rules for �:26

Notation 1. Let �Γ = {�γ | γ ∈ Γ}. Then:

Γ, φ ⇒ Δ
Γ, �φ ⇒ Δ

[�⇒]
�Γ ⇒ φ

�Γ ⇒ �φ
[⇒�]

In the usual formulation of S5, the rule [⇒�] of S4 is strengthened to
the following rule:

�Γ ⇒ φ,�Δ
�Γ ⇒ �φ,�Δ

.

It is easy to see, however, that p ⇒ �¬�¬p is derivable in this system using
a cut on �¬p, but it has no cut-free proof.27 As shown in [15,19] and [69],
the problem of providing a cut-free formulation for S5 can be solved with

25The logic K is obtained by adding the axiom �(p ⊃ q) ⊃ (�p ⊃ �q) and the rule
φ / �φ to the Hilbert axiomatization of classical propositional logic. For K4 we further
add �p ⊃ ��p to K, for T we add �p ⊃ p to K, and for S4 we add both. The logic S5
further strengthens these systems with the axiom ¬�p ⊃ �¬�p. See e.g., [61, §2.5].

26For simplicity we deal only with � (representing in the alethic interpretation neces-
sity), taking ♦ (intuitively representing possibility) as a defined connective.

27Only analytic cut (on subformulas of the proved sequent) suffice for the proof.
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[�⇒]
G | Γ, ϕ ⇒ Δ

G | Γ,�ϕ ⇒ Δ
[⇒�]

G | �Γ ⇒ ϕ

G | �Γ ⇒ �ϕ

[MS]
G | �Γ1, Γ2 ⇒ �Δ1, Δ2

G | �Γ1 ⇒ �Δ1 | Γ2 ⇒ Δ2

Figure 5. The additional rules of GS5

the help of hypersequents. Below we recall the hypersequential calculus GS5,
introduced in [15].28

Definition 15. The hypersequent calculus GS5 contains:

• all the rules from Figure 2, except for [Sp];

• the rules from Figure 5.29

Example 15. Below is a proof in GS5 of ¬�ψ ⊃ �¬�ψ (known as Axiom
5):

�ψ ⇒ �ψ

�ψ, ¬�ψ ⇒ [¬⇒]

�ψ ⇒ | ¬�ψ ⇒ [MS]

⇒ ¬�ψ | ¬�ψ ⇒ [⇒¬]

⇒ �¬�ψ | ¬�ψ ⇒ [⇒�]

¬�ψ ⇒ �¬�ψ | ¬�ψ ⇒ �¬�ψ
[IW ×2]

¬�ψ ⇒ �¬�ψ
[EC]

⇒ ¬�ψ ⊃ �¬�ψ
[⇒⊃]

Proposition 2. [15, Theorems 1 and 2]

1. GS5 admits cut elimination.

2. A hypersequent H = Γ1 ⇒ Δ1 | . . . | Γn ⇒ Δn is provable in GS5 iff
the following formula is a theorem of S5:

τS5(H) = �
(∧

Γ1 ⊃
∨

Δ1

)
∨ . . . ∨ �

(∧
Γn ⊃

∨
Δn

)
.

Lemma 2. It holds that: (i) �S5 �φ iff �S5 φ and (ii) �S5 �(
∧

Γ ⊃ φ) iff
Γ �S5 φ.

28Other hypersequential calculi for S5 are available, e.g., in [19,25] and [32].
29In the presence of [MS] the rule [⇒�] can be strengthened to the usual rule of S5,

in a hypersequential form: G|�Γ⇒�Δ,A
G|�Γ⇒�Δ,�A

.
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Proof. By the axiom �p ⊃ p, the necessitation rule φ / �φ, and Modus Po-
nens (see Footnote 25). For Item (ii) we also need the deduction
theorem.

Corollary 2. Let Γ = Γ1, . . . ,Γn and φ = φ1 ∨ . . . ∨ φn. Then:

1. �S5 φ iff ⇒ φ is provable in GS5 (that is, GS5 is weakly adequate for
S5),

2. if Γ1 ⇒ φ1 | . . . | Γn ⇒ φn is provable in GS5, then Γ �S5 φ (that is,
GS5 is premise-abiding sound for S5),

3. if Γ �S5 φ, then there is a hypersequent H provable in GS5, such that⋃
Supp(H) = Γ and Conc(H) = φ (that is, GS5 is premise-abiding

complete for S5).

Proof. Let Γ = Γ1, . . . ,Γn and φ = φ1 ∨ . . . ∨ φn.

1. By Item 2 of Proposition 2, ⇒ φ is provable in GS5 iff �S5 �φ. The
latter holds by Lemma 2 iff �S5 φ.

2. Assume that Γ1 ⇒ φ1 | . . . | Γn ⇒ φn is provable in GS5. By weakening
each component, we get Γ1, . . . ,Γn ⇒ φ1, . . . , φn | . . . | Γ1, . . . ,Γn ⇒
φ1, . . . , φn. By applying contraction and [⇒∨] we get Γ1, . . . ,Γn ⇒ φ1 ∨
. . . ∨ φn and thus Γ ⇒ φ is provable in GS5 as well. By Item 2 of
Proposition 2, �S5 �(

∧
Γ ⊃ φ). By Item (ii) of Lemma 2, Γ �S5 φ.

3. Suppose that Γ �S5 φ. By Lemma 2, �S5 �(
∧

Γ ⊃ φ). By Item 2 of
Proposition 2, Γ ⇒ φ is derivable in GS5.

Once again, by the claims above, GS5 is premise-abiding adequate for S5,
and so hypersequential argumentation frameworks may be built on top of
them. The next example illustrates such a framework.

Example 16. Recall the argumentation framework AFL,AR(S) from Exam-
ple 10, in which DefeatH and UndercutH are the attack rules, CL is the core
logic and S = {p, q, ¬p ∨ ¬q}. In the case that L = S5, the additional argu-
ments H10, H11 and H12 would not be derivable. Intuitively, this is due to
the fact that only boxed formulas can be split into different components. A
similar graph as the one in Figure 3 can be obtained when S is replaced by
S ′ = {�p, �q, �(¬p ∨ ¬q), �r}, since then every formula in the support of
an argument is boxed.

The logic S5 is sometimes considered to be the most important modal
logic [47, page 11]. It is applied in several fields, such as linguistics, computer
science (e.g., model checking and security) and game theory (see, e.g., [46,
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Part III] and [33, Part 4]). There have been some results on combining
modal logics with argumentation theory. For example, in [55,56] several
modal logical settings are defined to represent argumentation frameworks.30

A proof theoretical approach is taken in [42], to represent extensions by
means of different (modal) logics. Deontic logic is taken as the core logic
of an ordinary sequent-based argumentation system in [79] and several of
the well-known problems of deontic logic are discussed. Again, some useful
properties of modal hypersequential frameworks will be discussed in a more
general context in Sections 7 and 8.

5.3. RM-Based Hypersequential Frameworks

The last family of hypersequential frameworks that we consider in this
section is based on the relevance logic RM. This logic was introduced by
Dunn and McCall and later extensively studied by Dunn, Meyer [49] and
Avron [13,17] (see also [3,18,50]). In [50, p.81], RM is regarded as “by far
the best understood of the Anderson-Belnap style systems”.31 The basic idea
behind this logic (and relevance logics in general) is that the set of premises
should be ‘relevant’ to its conclusion. This way some problematic phenom-
ena of classical logic, such as the paradoxes of material implication, are
avoided. In addition, it was shown that RM is semi-relevant (i.e., it satisfies
the basic relevance criterion in Definition 23), paraconsistent, decidable and
has the Scroggs’ property [3, §29.4]. Furthermore, RM has a clear semantics
in terms of Sugihara matrices [3, §29.3] and sound and complete Hilbert-
and Gentzen-type proof systems (see, e.g., [13,17] and [18, Chapter 15]).
While an ordinary cut-free sequent calculus for RM is not known, it does
have sound and complete hypersequent calculi that admits cut elimination.
Such a calculus, called GRM [13], is presented in Figure 6.32,33

30These works actually aim at a rather different goal than ours, namely, to codify
reasoning about classical Dung-style argumentation in a specific modal logic.

31The logic RM is obtained by adding the mingle axiom (φ ⊃ (φ ⊃ φ)) to the Hilbert
axiomatization of the relevance logic R (see [3]). The consequence relation �RM is then de-
fined in terms of the Hilbert axiomatization, or semantically in terms of Sugihara matrices
(see Appendix A and [3, §29.3] for more details).

32Recall that apostrophes in rules notations indicates that the rules have two variations.
33A full justification of the advantages of taking RM as the core logic is beyond the

scope of this paper. We refer, e.g., to [17] and Part V of [18].
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Axioms: G | ψ ⇒ ψ

Logical rules:

[¬⇒]
G | Γ ⇒ Δ, ϕ

G | ¬ϕ, Γ ⇒ Δ
[⇒¬]

G | ϕ, Γ ⇒ Δ
G | Γ ⇒ Δ,¬ϕ

[⊃⇒]
G | Γ1 ⇒ Δ1, ϕ G | ψ, Γ2 ⇒ Δ2

G | Γ1, Γ2, ϕ ⊃ ψ ⇒ Δ1, Δ2
[⇒⊃]

G | Γ, ϕ ⇒ Δ, ψ

G | Γ ⇒ Δ, ϕ ⊃ ψ

[∧⇒′]
G | Γ, ϕ ⇒ Δ

G | Γ, ϕ ∧ ψ ⇒ Δ
G | Γ, ψ ⇒ Δ

G | Γ, ϕ ∧ ψ ⇒ Δ
[⇒∧]

G | Γ ⇒ Δ, ϕ G | Γ ⇒ Δ, ψ

G | Γ ⇒ Δ, ϕ ∧ ψ

[∨⇒]
G | Γ, ϕ ⇒ Δ G | Γ, ψ ⇒ Δ

G | Γ, ϕ ∨ ψ ⇒ Δ
[⇒∨′]

G | Γ ⇒ Δ, ϕ

G | Γ ⇒ Δ, ϕ ∨ ψ

G | Γ ⇒ Δ, ψ

G | Γ ⇒ Δ, ϕ ∨ ψ

Structural rules:

[EC]
G | s | s

G | s
[EW]

G
G | s

[IC]
G | Γ, ϕ, ϕ ⇒ Δ
G | Γ, ϕ ⇒ Δ

G | Γ ⇒ Δ, ϕ, ϕ

G | Γ ⇒ Δ, ϕ
[Sp]

G | Γ1, Γ2 ⇒ Δ1, Δ2

G | Γ1 ⇒ Δ1 | Γ2 ⇒ Δ2

[Mi]
G | Γ1 ⇒ Δ1 G | Γ2 ⇒ Δ2

G | Γ1, Γ2 ⇒ Δ1, Δ2
[Cut]

G | Γ1 ⇒ Δ1, ϕ G | ϕ, Γ2 ⇒ Δ2

G | Γ1, Γ2 ⇒ Δ1, Δ2

Figure 6. The proof system GRM

Example 17. Below is a proof in GRM of the mingle axiom φ ⊃ (φ ⊃ φ):

φ ⇒ φ φ ⇒ φ

φ, φ ⇒ φ, φ
[Mi]

φ, φ ⇒ φ
[IC]

φ ⇒ φ ⊃ φ
[⇒⊃]

⇒ φ ⊃ (φ ⊃ φ)
[⇒⊃]

Proposition 3. [13, Theorems II.9 and II.10]

1. GRM admits cut elimination.

2. If a formula φ is a theorem of RM then ⇒ φ is provable in GRM.

3. A hypersequent H = γ1
1 , . . . , γ

1
m1

⇒ δ11 , . . . , δ
1
k1

| . . . | γn
1 , . . . , γn

m1
⇒

δn
1 , . . . , δn

kn
is provable in GRM iff the following formula is a theorem of

RM:

τRM(H) = (¬γ1
1 + . . . + ¬γ1

m1
+ δ11 + . . . + δ1k1

) ∨ . . . ∨ (¬γn
1 + . . . + ¬γn

mn
+ δn1 + . . . + δnkn

).

where φ + ψ is defined as ¬φ ⊃ ψ.
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Proposition 4. [18, Theorem 15.71] Let Γ = {γ1, . . . , γn}. Then Γ �RM ψ
iff the hypersequent γ1 ⇒ ψ | . . . | γn ⇒ ψ | ⇒ ψ is provable in GRM.

Unlike the previous two case studies, premise-abiding soundness for the
underlying logic is not assured for GRM (see Example 19 below). However,
GRM is premise-abiding complete and weakly sound for RM. We first con-
sider a positive property of RM and GRM compared to CL and GLK.

Example 18. Let AFL,{DefH}(S) be a hypersequent-based argumentation
framework for S = {p, q, ¬p ∨ ¬q, r}, like in Examples 4 and 10. When
classical logic is the core logic, the argument a⊥ = p, q, ¬p ∨ ¬q ⇒ ¬r can
be derived. Hence the axiom r ⇒ r is attacked in AFCL,{DefH}(S). However,
it is also defended, since a� = ⇒ ¬(p ∧ q ∧ ¬p ∨ ¬q) is derivable in GLK.

Example 19. Consider the set S = {¬p, p ∨ q}. Then H = p ∨ q, ¬p ⇒ |
p ∨ q ⇒ q is provable in GRM. Indeed,

p ⇒ p q ⇒ q
p, q ⇒ p, q [Mi]

q ⇒ p | p ⇒ q
[Sp]

p ⇒ p

p ∨ q ⇒ p | p ⇒ q
[∨⇒]

q ⇒ q

p ∨ q ⇒ p | p ∨ q ⇒ q
[∨⇒]

p ∨ q, ¬p ⇒ | p ∨ q ⇒ q
[¬⇒]

Thus, H ∈ ArgRM(S). However, ¬p, p ∨ q � q, thus GRM is not premise-
abiding sound (but only premise-abiding complete) for RM.

To the best of our knowledge, relevance logics have never been consid-
ered as being core logics of logical argumentation system, though relevance
in argumentation frameworks has been discussed in the literature. For in-
stance, in [54] such issues are considered and paraconsistent logics are taken
to overcome trivialization, a weaker version of crash-resistance from [41].
Recently, in [37], properties of some well-known structured argumentation
systems (including sequent-based argumentation) that warrant several rel-
evance desiderata are investigated.34 In [9] similar problems are discussed
and resolved by introducing relevant attack rules.

34For instance, it is shown that given some basic requirements, if a base logic is semi-
relevant then the induced non-monotonic entailment relation is also semi-relevant.
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6. Properties of Hypersequent Calculi

Our next goal is to examine some general properties of hypersequent-based
argumentation frameworks and the entailment relations that are induced by
them. We will turn to this in Sections 7 and 8 below. For this, we first need
to consider some properties that are related to the hypersequent calculi on
which the argumentation frameworks are based. This is what we do in this
section.

We begin with some notations that will be important in what follows.
Since these notations will be applied to single- as well as to multiple-
conclusioned (hyper)sequent calculi, we shall use the following conventions:

• Π denotes a set of formulas which is empty when the underlying calculus
is single-conclusioned,

• Δ denotes a set of formulas which is a singleton when the underlying
calculus is single-conclusioned.

Definition 16. A hypersequent calculus H is called:

• cautiously reflexive, iff it admits35 the rule
φ ⇒ φ;

• trivialization absorptive, iff it admits of the following rule (for G �= ∅):

G | ⇒
G

• externally (respectively, internally) weakening iff it admits external (re-
spectively, internal) weakening (rule [EW], respectively [IW], from Fig-
ure 2);

• contractive, iff it admits external and internal contraction (rules [EC] and
[IC] from Figure 2);

• cut admitting, iff it admits [Cut] from Figure 4;

• two-sided splitting, iff it admits of [Sp] from Figure 6;36

35We say that a (hyper)sequent calculus H admits a rule if there are other rules in H
with which the sequent in the consequent of the rule is derivable from the sequent in the
premise of the rule.

36For single-conclusion calculi the coresponding rule would state that if G | Γ, Γ′ ⇒ δ
is derivable, so is G | Γ ⇒ δ | Γ′ ⇒.
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• support splitting, iff it admits of the following rule:37

G | Γ, Γ′ ⇒ Δ
G | Γ ⇒ Δ | Γ′ ⇒ Δ

[sSp]

• left-conjunctive, iff it admits [∧⇒′] from Figure 6;

• right conjunctive, iff it admits [⇒∧] from Figure 6;

• conjunction eliminating iff it admits at least one of the following rules:

G | Γ, φ ∧ ψ ⇒ Δ
G | Γ, φ ⇒ Δ | Γ, ψ ⇒ Δ

[Sp∧⇒] or
G | Γ, φ ∧ ψ ⇒ Δ
G | Γ, φ, ψ ⇒ Δ

[E∧⇒]

• right-disjunctive, iff it admits [⇒∨′] from Figure 6;

• left-negative, iff it admits [¬⇒] from Figure 6;

• right-negative, iff it admits [⇒¬] from Figure 6;

• deductive, iff it admits the following rules:

G | Γ, φ ⇒ ψ, Π
G | Γ ⇒ φ ⊃ ψ

and
G | Γ ⇒ φ ⊃ ψ

G | Γ, φ ⇒ ψ, Π
.

Note 7. In the presence of external weakening [EW], trivialization absorp-
tion implies non-triviality, that is, that the empty sequent “ ⇒ ” is not
derivable, since otherwise from the empty sequent one would be able to
derive any sequent, in contradiction to the non-triviality of the underlying
logic (see Definition 2).

Given a hypersequential calculus H we say that it is:

Normal iff it is cautiously reflexive, trivialization absorptive, externally
weakening, contractive, cut admitting, left-conjunctive, right-conjunctive,
conjunction eliminating, right-disjunctive, left-negative, right-negative,
and deductive.

Weakening normal iff it is normal and internally weakening.

Support splitting (weakening) normal: iff it is (weakening) normal and
support splitting.

Two-sided splitting (weakening) normal: iff it is (weakening) normal and
two-sided splitting.

37For single-conclusion calculi the coresponding rule is [SI] as in Figure 4.
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normal

support splitting normal

two-sided splitting normal
(Example: GRM)

weakening normal

support splitting weakening normal
(Example: GLC)

two-sided splitting weakening normal
(Example: GLK)

+ [sSp]

+ [Sp]

+ [IW]

+ [sSp]

+ [Sp]

+ [IW]

+ [IW]

Figure 7. Overview of the different normal calculi. In this paper we shall

refer to the three framed calculi. The calculi with a shaded background

are strongly normal

Strongly normal: if it is either support splitting weakening normal or two-
sided splitting normal.

A graphic representation of the different types of calculi is given in Fig-
ure 7. The next lemma considers some specific cases of these types. In par-
ticular, it shows that all the calculi discussed in the previous section are
normal.

Lemma 3. The calculi GLK, GLC, and GRM have the following properties:

1. GLK, GLC, and GRM are strongly normal calculi,

2. GLK and GRM are two-sided splitting normal, and

3. GLK and GLC are support splitting weakening normal.

Proof. Consider GRM. It is cautiously reflexive since ψ ⇒ ψ is an axiom
of it. It is externally weakening in view of the presence of [EW], and it
is contractive since [EC] and [IC] are among its rules. It is cut admitting
since [Cut] is part of it. It is left- and right-conjunctive, right-disjunctive,
and left- and right-negative due to the presence of [∧⇒′], [⇒∧], [⇒∨′], [¬⇒]
and [⇒¬]. It is trivialization absorptive in view of Proposition 3 (Item 3).
The following proof shows that GRM also admits [Sp∧⇒] and it is therefore
conjunction eliminating.
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ψ ⇒ ψ

ψ ⇒ ψ | φ ⇒ φ ∧ ψ
[EW]

φ ⇒ φ ψ ⇒ ψ

φ, ψ ⇒ φ, ψ
[Mi]

φ ⇒ ψ | ψ ⇒ φ
[Sp]

φ ⇒ φ

φ ⇒ φ | ψ ⇒ φ
[EW]

φ ⇒ φ ∧ ψ | ψ ⇒ φ
[⇒∧]

φ ⇒ φ ∧ ψ | ψ ⇒ φ ∧ ψ
[⇒∧]

G | φ ⇒ φ ∧ ψ | ψ ⇒ φ ∧ ψ
[EW]

�

G | Γ, φ ∧ ψ ⇒ Δ

G | Γ, φ ∧ ψ ⇒ Δ | ψ ⇒ φ ∧ ψ
[EW] �

G | Γ, φ ⇒ Δ | ψ ⇒ φ ∧ ψ
[Cut]

G | Γ, φ ∧ ψ ⇒ Δ

G | Γ, φ ⇒ Δ | Γ, φ ∧ ψ ⇒ Δ
[EW]

G | Γ, φ ⇒ Δ | Γ, ψ ⇒ Δ
[Cut]

Thus, GRM is normal. Since it contains [Sp], GRM is also two-sided split-
ting normal.

The cases of GLK and GLC are similar and left to the reader.

In the rest of this section we show properties of (normal) hypersequent
calculi that will be needed in what follows. This part of the paper may be
skipped on a first reading.

Lemma 4. Let H be a normal hypersequent calculus. The following proper-
ties hold for H:

1. φ ⇒ ¬¬φ is derivable38 for any formula φ.

2. [∧⇒] and [⇒∨] (the latter in the case of multiple conclusion calculi only)
are admissible.

3. Transitivity: if G1 | Γ1 ⇒ φ1, Π1 and G2 | Γ2, φ1 ⇒ φ2, Π2 are derivable,
then G1 | G2 | Γ1, Γ2 ⇒ φ2, Π1, Π2 is derivable.

4. For any Γ′ ⊆ Γ, if G | ⇒ φ ⊃ ¬
∧

Γ′, Π is derivable then G | ⇒ φ ⊃
¬

∧
Γ, Π is derivable.

5. For any Γ′ ⊆ Γ, if G | Θ ⇒ ¬
∧

Γ′ is derivable then G | Θ ⇒ ¬
∧

Γ is
also derivable.

6.
∧

Γ ⇒ φ is derivable in H for any finite set of formulas Γ for which
φ ∈ Γ.

Proof. Suppose that H is a normal hypersequent calculus.

38Here and in what follows, by ‘derivable’ we mean ‘derivable in H’.
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1. Let φ be an L-formula. Since H is cautiously reflexive, φ ⇒ φ is
derivable in H. Since H is left-negative and right-negative, the sequent
φ ⇒ ¬¬φ is derivable.

2. From G | Γ, φ, ψ ⇒ Δ we get G | Γ, φ ∧ ψ, ψ ⇒ Δ by [∧⇒′]. Again, by
[∧⇒′], G | Γ, φ∧ψ, φ∧ψ ⇒ Δ and by internal contraction, G | φ∧ψ ⇒
Δ. The case of [⇒∨] is similar.

3. Assume that G1 | Γ1 ⇒ φ1, Π1 and G2 | Γ2, φ1 ⇒ φ2, Π2 are derivable.
From this, since H is cut-admitting, G1 | G2 | Γ1, Γ2 ⇒ φ2, Π1, Π2 is
derivable.

4. Assume that Γ′ ⊆ Γ and that G | ⇒ φ ⊃ ¬
∧

Γ′, Π is derivable. Since H
is deductive, G | φ ⇒ ¬

∧
Γ′, Π is derivable and, since H is left-negative,

G | φ,¬¬
∧

Γ′ ⇒ Π is also derivable. By Item 1,
∧

Γ′ ⇒ ¬¬
∧

Γ′

is derivable in H and thus, by Item 3, G | φ,
∧

Γ′ ⇒ Π. Since H is
left conjunctive G | φ,

∧
Γ ⇒ Π is derivable in H. Hence, since H is

deductive and right-negative, G | ⇒ φ ⊃ ¬
∧

Γ, Π is derivable in H.

5. Assume that Γ′ ⊆ Γ and G | Θ ⇒ ¬
∧

Γ′ is derivable. By [¬⇒],
G | Θ, ¬¬

∧
Γ′ ⇒ is derivable. As in the proof of the previous item,

G | Θ,
∧

Γ ⇒ and by [⇒¬], G | Θ ⇒ ¬
∧

Γ is derivable.

6. Since H is cautiously reflexive, φ ⇒ φ is derivable in H. Let Γ be a set
of formulas for which φ ∈ Γ. Since H is left-conjunctive,

∧
Γ ⇒ φ is

derivable in H.

Lemma 5. Let H be a normal hypersequent calculus, Θ a finite set of formu-
las, and H be a hypersequent that is derivable in H. Then:

∧
Supp(H)∪Θ ⇒

Conc(H) |
∧

Supp(H) ∪ Θ ⇒ | ⇒ Conc(H) is derivable in H.

Proof. For Γ1, . . . ,Γn, Θ1, . . . ,Θm, Δ1, . . . ,Δk �= ∅ and n, m, k ≥ 0, H has
the following form (assuming that empty sequents have been removed by
trivialization absorption):

Γ1 ⇒ φ1 | . . . | Γn ⇒ φn | Θ1 ⇒ | . . . | Θm ⇒ | ⇒ Δ1 | . . . | ⇒ Δk.

In the following we assume that n, k, m ≥ 1. The other cases are similar
(sometimes external weakening is used here). Let Γ =

⋃n
i=1 Γi ∪

⋃m
i=1 Θi∪Θ.

Since H is left conjunctive and (external) contractive,
∧

Γ ⇒ φ1 | · · · |∧
Γ ⇒ φn |

∧
Γ ⇒ | ⇒ Δ1 | · · · | ⇒ Δk is derivable in H. Note that

Conc(H) =
∨

({φ1, . . . , φn} ∪
⋃k

i=1 Δi). Since H is right disjunctive and (ex-
ternal) contractive,

∧
Γ ⇒ Conc(H) |

∧
Γ ⇒ | ⇒ Conc(H) is derivable in

H.
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Lemma 6. Let H be a support splitting normal hypersequent calculus, Θ a
finite set of formulas, and H = Γ1 ⇒ | · · · | Γn ⇒ or H′ =

∧
Γ1 ⇒ | · · · |∧

Γn ⇒ is derivable in H. Then, in either case,
⋃n

i=1 Γi = {γ1, . . . , γm},
γ1 ⇒ | · · · | γm ⇒ is derivable as well.

Proof. This follows by multiple applications of support splitting and con-
junction elimination (in case of H′).

The following lemma shows that for both variants of a strongly normal
calculus, components of hypersequents can be combined. This will be useful
in the proofs of the rationality postulates in the next section.

Lemma 7. Let H be a strongly normal hypersequent calculus, Θ a finite set
of formulas, and H, H′ hypersequents that are derivable in H. Then:

• if H is two-sided splitting normal, the following hypersequents are derivable
in H:

∧
(
⋃
Supp(H) ∪ Θ) ⇒ | ⇒ Conc(H),∧

(
⋃
Supp(H) ∪

⋃
Supp(H′) ∪ Θ) ⇒ | ⇒ Conc(H) ∧ Conc(H′).

• if H is weakening normal, then the following hypersequents are derivable
in H:

⋃
Supp(H) ∪ Θ ⇒ Conc(H),∧
(
⋃
Supp(H) ∪ Θ) ⇒ Conc(H),∧

(
⋃
Supp(H) ∪

⋃
Supp(H′) ∪ Θ) ⇒ Conc(H) ∧ Conc(H′),⋃

Supp(H) ∪
⋃
Supp(H′) ∪ Θ ⇒ Conc(H) ∧ Conc(H′).

Proof. For Γ1, . . . ,Γn, Θ1, . . . ,Θm, Δ1, . . . ,Δk �= ∅ and n, m, k ≥ 0, H has
the following form (assuming that empty sequents have been removed by
trivialization absorption):

Γ1 ⇒ φ1 | . . . | Γn ⇒ φn | Θ1 ⇒ | . . . | Θm ⇒ | ⇒ Δ1 | . . . | ⇒ Δk.

In the following we assume that n, k, m ≥ 1. The other cases are similar.
Let Γ =

⋃n
i=1 Γi ∪

⋃m
i=1 Θi ∪ Θ. By Lemma 5,

∧
Γ ⇒ Conc(H) |

∧
Γ ⇒ | ⇒

Conc(H) is derivable in H. Now:

• If H is two-sided splitting, then by [Sp] and external contraction,
∧

Γ ⇒|
⇒ Conc(H) is derivable. Thus, by [∧⇒′], on H and H′, the hypersequents∧

(
⋃
Supp(H) ∪

⋃
Supp(H′) ∪ Θ) ⇒ | ⇒ Conc(H) and

∧
(
⋃
Supp(H) ∪⋃

Supp(H′) ∪ Θ) ⇒ | ⇒ Conc(H′) are respectively derivable in H. By
[⇒∧] the hypersequent

∧
(
⋃
Supp(H)∪

⋃
Supp(H′)∪Θ) ⇒|⇒ Conc(H)∧

Conc(H′) is also derivable in H.
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• If H is weakening normal, by weakening and external contraction
∧

Γ ⇒
Conc(H) is derivable. By [∧⇒′], on H and H′,

∧
Supp(H) ∪ Supp(H′) ∪

Θ ⇒ Conc(H) and
∧
Supp(H) ∪ Supp(H′) ∪ Θ ⇒ Conc(H′) are respec-

tively derivable. By [⇒∧],
∧
Supp(H) ∪ Supp(H′) ∪ Θ ⇒ Conc(H) ∧

Conc(H′) is also derivable. Similarly, by weakening and external con-
traction on H and H′,

⋃
Supp(H) ∪ Θ ⇒ Conc(H) and

⋃
Supp(H) ∪⋃

Supp(H′)∪Θ ⇒ Conc(H) and
⋃

Supp(H)∪
⋃
Supp(H′)∪Θ ⇒ Conc(H′)

are all derivable, and by [⇒∧], so is
⋃

Supp(H) ∪
⋃
Supp(H′) ∪ Θ ⇒

Conc(H′) ∧ Conc(H′).

Lemma 8. Let L= 〈L, �〉 be a logic and let H be a normal hypersequent cal-
culus for L that is premise-abiding adequate for L. We have: φ1, . . . , φn � ψ
iff

∧n
i=1 φi � ψ.

Proof.

(⇐) Suppose that
∧n

i=1 φi � ψ. Since H is premise-abiding complete, there
is a hypersequent H = Γ1 ⇒ γ1 | · · · | Γm ⇒ γm, derivable in H, with∨

{γi | i = 1, . . . , m} = ψ and
⋃m

i=1 Γi = {
∧n

i=1 φi}. By Lemma 5,∧n
i=1 φi ⇒ ψ |

∧n
i=1 φi ⇒ | ⇒ ψ is derivable. Furthermore, since H is

normal, it is conjunction eliminating, and so either of the conjunction
elimination rules is admitted by H. By [Sp∧⇒] [resp. [E∧⇒]] we can
derive φ1 ⇒ ψ | · · · | φn ⇒ ψ | φ1 ⇒ | · · · | φn ⇒ | ⇒ ψ [resp.
φ1, . . . , φn ⇒ ψ | φ1, . . . , φn ⇒ | ⇒ ψ]. Since H is premise-abiding
sound, φ1 . . . , φn � ψ.

(⇒) Suppose now that φ1, . . . , φn � ψ. By the premise-abiding complete-
ness of H, there is an H derivable in H, for which Conc(H) = ψ and⋃

Supp(H) = {φ1, . . . , φn}. By Lemma 5,
∧n

i=1 φi ⇒ ψ |
∧n

i=1 φi ⇒ |
⇒ ψ is derivable. By the premise-abiding adequacy of
H,

∧n
i=1 φi � ψ.

Recall that our requirements for a logic L according to Definition 2 were
rather minimal: we only required structurality and non-triviality. A natural
question to ask is whether a logic with an adequate normal hypersequential
calculus is Tarskian (Definition 1). Clearly, since the calculus only deals with
finite sets of formulas, we cannot answer the question for the full consequence
relation �, but we can answer it positively for its finitary restriction �fin,
which we define next.

Definition 17. Let ℘fin(L) = {Λ ⊆ L | Λ is finite}. Given a logic L= 〈L, �〉,
its finitary restriction is the pair Lfin = 〈L, �fin〉, where �fin is the same as �
on ℘fin(L) × L, and if T ∈ ℘(L) \ ℘fin(L), �fin is defined by: T �fin φ iff there
is a finite Γ ⊆ T for which Γ � φ.
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Since arguments have finite support sets, if Lfin is a logic, every valid
entailment of it can be represented by an argument. By the following lemma
we can use the properties of a Tarskian consequence relation for normal,
premise-abiding adequate calculi.

Lemma 9. Let L= 〈L, �〉 be a logic with a normal and premise-abiding ade-
quate calculus H, and let Lfin = 〈L, �fin〉 be the finite reduction of L. Then:

• H is also premise-abiding adequate for Lfin.

• �fin is a compact, monotonic and reflexive consequence relation.

• if H is strongly normal, �fin is a Tarskian consequence relation (Defini-
tion 1).

Proof. Clearly �fin is compact. H is premise-abiding adequate for Lfin since
it is premise-abiding adequate for L and �fin is the same as � on ℘fin(L) × L
(Definition 17). We now show that �fin is monotonic, reflexive and transitive.

• Monotonicity Suppose that T �fin ψ. If T is infinite, by the definition of
�fin there is a finite Γ ⊆ T for which Γ � ψ and T ′ �fin ψ for any T ′ ⊇ T .
Suppose now that T is finite and Θ is a finite set of formulas. Thus,
T � ψ. By the premise-abiding completeness of H and by Lemma 5,∧

T ∪ Θ ⇒ ψ |
∧

T ∪ Θ ⇒ | ⇒ ψ is derivable in H. By the premise-
abiding soundness of H,

∧
T ∪Θ � ψ. By Lemma 8, T ∪Θ � ψ. Similarly,

by the definition of �fin, for any infinite T ′ ⊃ T , T ′ �fin ψ.

• Reflexivity Let T be an arbitrary set of formulas and φ ∈ T . Since H is
cautiously reflexive, φ ⇒ φ is derivable in H. Thus, by premise-abiding
soundness φ � φ and thus φ �fin φ. By monotonicity (Item 1), T �fin φ.

• Transitivity Suppose that H is strongly normal. Suppose that T �fin φ
and T ′, φ �fin ψ. Then, by the compactness (see above) and monotonic-
ity of �fin there are finite Γ ⊆ T and Γ′ ⊆ T ′ such that Γ �fin φ and
Γ′, φ �fin ψ. Hence, Γ � φ and Γ′, φ � ψ. Since H is premise-abiding
complete and by Lemma 7, either

∧
Γ ⇒ | ⇒ φ and

∧
Γ′ ∧ φ ⇒ | ⇒ ψ,

or
∧

Γ ⇒ φ and
∧

Γ′ ∧ φ ⇒ ψ are derivable in H. By conjunction
elimination on

∧
Γ′ ∧ φ ⇒ ψ, we have that

∧
Γ′ ⇒ | φ ⇒ | ⇒ ψ (by

[Sp∧⇒]) or
∧

Γ′, φ ⇒ | ⇒ ψ (by [E∧⇒]), respectively
∧

Γ′, φ ⇒ ψ (by
[E∧⇒]) or

∧
Γ′ ⇒ ψ | φ ⇒ ψ (by [Sp∧⇒]) is derivable. Thus, by Item 3

of Lemma 4 (transitivity) and trivialization absorption one of the se-
quents

∧
Γ′ ⇒|

∧
Γ ⇒|⇒ ψ or

∧
Γ′,

∧
Γ⇒|⇒ ψ, respectively, we have

that
∧

Γ′,
∧

Γ ⇒ ψ or
∧

Γ′ ⇒ ψ |
∧

Γ ⇒ ψ, is derivable in H. By the
premise-abiding soundness of H for L it follows that Γ, Γ′ � ψ. Thus,
Γ, Γ′ �fin ψ and by monotonicity (Item 1) T , T ′ �fin ψ.
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Lemma 10. Let L= 〈L, �〉 be a logic with a normal and premise-abiding ade-
quate hypersequent calculus H. If � ¬(ψ1∧· · ·∧ψn∧ψ) then ψ1 . . . , ψn � ¬ψ.

Proof. Suppose that � ¬(ψ1 ∧ · · · ∧ψn ∧ψ). Then �fin ¬(ψ1 ∧ · · · ∧ψn ∧ψ),
and by the monotonicity of �fin (Lemma 9), (ψ1 ∧ · · · ∧ ψn ∧ ψ) �fin ¬(ψ1 ∧
· · · ∧ψn ∧ψ). Thus, (ψ1 ∧ · · · ∧ψn ∧ψ) � ¬(ψ1 ∧ · · · ∧ψn ∧ψ). By Lemma 8,
ψ1, . . . , ψn, ψ � ¬(ψ1 ∧ · · · ∧ ψn ∧ ψ).

Since H is premise-abiding complete, there is a G = Γ1 ⇒ γ1 | · · · |
Γm ⇒ γm derivable in H for which Γ1 ∪ · · · ∪ Γm = {ψ1, . . . , ψn, ψ} and
{γ1, . . . , γm} = {¬(ψ1 ∧· · ·∧ψn ∧ψ)}.39 By [¬⇒], Γ1, γ

′
1 ⇒| · · · | Γm, γ′

m ⇒
is derivable in H where {γ′

1, . . . , γ
′
m} = {¬¬(ψ1 ∧ · · · ∧ ψn ∧ ψ)}. By Item 1

of Lemma 4, ψ1 ∧ · · · ∧ψn ∧ψ ⇒ ¬¬(ψ1 ∧ · · · ∧ψn ∧ψ) is derivable in H. By
[Cut], Γ1, γ

′′
1 ⇒ | · · · | Γm, γ′′

m ⇒ is derivable in H for which {γ′′
1 , . . . , γ′′

m} =
{(ψ1∧· · ·∧ψn ∧ψ)}. By [⇒¬], Γ1 \{ψ}, γ′′

1 ⇒ δ1 | · · · | Γm \{ψ}, γ′′
m ⇒ δm is

derivable in H where δi = ¬ψ if ψ ∈ Γi and δi is the empty string otherwise.
Note that {δ1, . . . , δm} = {¬ψ}. Since H is premise-abiding sound, {(ψ1 ∧
· · ·∧ψn∧ψ)}∪

⋃m
i=1 Γi\{ψ} � ¬ψ. By Lemma 8 and [IC], ψ1, . . . , ψn, ψ � ¬ψ.

Since H is premise-abiding complete, there is a Θ1 ⇒ φ1 | · · · | Θk ⇒ φk

derivable in H for which Θ1 ∪ · · · ∪Θk = {ψ1, . . . , ψn, ψ} and {φ1, . . . , φk} =
{¬ψ}. By [¬⇒], Θ1, φ

′
1 ⇒| · · · | Θk, φ′

k ⇒ is derivable in H where φ′
i = ¬¬ψ

if φi = ¬ψ, else φ′
i is the empty string. By Item 1 of Lemma 4, ψ ⇒ ¬¬ψ is

derivable in H. Thus, also Θ1, φ
′′
1 ⇒ | · · · | Θk, φ′′

k ⇒ is derivable in H where
φ′′

i = ψ if φi = ¬ψ, else φ′′
i is the empty string. By [⇒¬], Θ′

1 ⇒ φ′′′
1 | · · · |

Θ′
k ⇒ φ′′′

k is derivable in H where φ′′′
i = ¬ψ and Θ′

i = Θi \ {ψ} if γi = ¬ψ,
else γ′′′

i is the empty string and Θ′
i = Θi. Since H is premise-abiding sound,

ψ1, . . . , ψn � ¬ψ.

7. Properties of the Frameworks and of the Induced Entailments

In this section we consider some useful properties of hypersequent-based
argumentation frameworks and their entailments. First, we consider some
properties of the entailment relations from Definition 14, including relations

39Since ψ1, . . . , ψn, ψ � ¬(ψ1 ∧ . . .∧ψn ∧ψ), Conc(G) = ¬(ψ1 ∧ . . .∧ψn ∧ψ), that is why
the sequents in G are all single-conclusion and at least one γi must be ¬(ψ1 ∧ . . .∧ψn ∧ψ),
so for each i ∈ {1, . . . , m}, γi is the empty string (the conclusion of sequent i is empty) or
γi = ¬(ψ1 ∧ . . . ∧ ψn ∧ ψ). For instance, if G | Γ1 ⇒ | Γ2 ⇒ ¬(ψ1 ∧ · · · ∧ ψn ∧ ψ) | Γ3 ⇒ |
Γ4 ⇒ ¬(ψ1 ∧ · · · ∧ ψn ∧ ψ), then {γ1, . . . , γ4} = {¬(ψ1 ∧ · · · ∧ ψn ∧ ψ)}, where γ1 and γ3

are the empty string and γ2 = γ4 = ¬(ψ1 ∧ · · · ∧ ψn ∧ ψ).



204 A. Borg et al.

to the core logic (Section 7.1), paraconsistency, and non-monotonicity (Sec-
tion 7.2). Then, in Section 7.3, we show that in many cases hypersequent-
based argumentation overcomes a shortcoming of some other frameworks
(including sequent-based ones), namely that under some completeness-based
semantics extensions may not always be consistent (see also [2,43], Exam-
ple 10 and Note 6). In Section 7.4 we consider two properties that concern
a non-trivializing handling of inconsistent data: crash-resistance and non-
interference [41].

In the rest of this section we suppose that AFL,AR(S) is a hypersequent-
based argumentation framework, induced by a set of formulas S, a logic
L= 〈L, �〉 with corresponding normal calculus H (Definition 16), and the
attack rules AR = {ConUcutH}∪R, where ∅ �= R ⊆ {DefH , UcutH}. We will
consider any semantics sem in {cmp, grd, prf, stb}.

Note 8. A justification of the choice of the above-mentioned setting is in
order here. Concerning the underlying logic, we believe that those with nor-
mal calculi cover the majority of the underlying formalisms that one would
like to consider. The argumentation semantics in our setting cover the most
common Dung-style extensions in the literature (although there exist other
options; see e.g. the surveys in [21–23]. As for the attack rules, DefH and
UcutH are hypersequential versions of two of the most investigated attack
rules, namely Defeat and Undercut (respectively). In turn, the latter two
generalize several other common rules (for instance, Direct Undercut is a
special case of Undercut). As we indicate in what follows, Defeat/Undercut
are known for being problematic when it comes to some of the rationality
postulates (Definition 21), in particular the consistency postulate. In our
setting these problems are resolved.

Concerning ConUcutH , as we show below, this rule turns out to be very
useful in generalizing known results and obtaining new ones (see, e.g., The-
orem 3 on non-interference). As for the other rules mentioned in this paper,
it can be easily shown that Rebuttal causes even more problems when it
comes to rationality postulates.40

40As an illustration of problems that Rebuttal may cause, consider a sequent-based
argumentation framework based on S = {p ∧ s, ¬p ∧ t}, classical logic (with LK), and
Rebuttal as the attack rule. Absent (ConUcut)-attacks, arguments with the inconsistent
support S will contaminate the framework. But even in the presence of (ConUcut) we have
problems with closure: while p ∧ s ⇒ p and ¬p ∧ t ⇒ ¬p rebut each other and so never
occur in the same extension, p ∧ s ⇒ s and ¬p ∧ t ⇒ t will occur in the same extension.
Note, however, that any argument with conclusion s ∧ t will have an inconsistent support
and be ConUcut-attacked by ⇒ ¬((p ∧ s) ∧ (¬p ∧ t)).
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7.1. Relations to the Core Logic

For showing the relations between the consequence relation of the core logic L
and the entailment relation induced by AFL,AR(S), we first recall the notion
of a conflict-dependent attack relation [1] (adjusted here to hypersequents),
which will be useful also in Section 8.

Definition 18. An attack relation R is called conflict-dependent, if for all
arguments G, H ∈ ArgL(S) such that G attacks H,

⋃
Supp(G) ∪

⋃
Supp(H)

is �-inconsistent.

Lemma 11. If H is normal and weakly adequate for L, the attack relations
defined by the sequent elimination rules DefH , UcutH and ConUcutH are
conflict-dependent.

Proof. Let G, H ∈ ArgL(S) such that G attacks H. Note that, by Defini-
tion 3 and since H is weakly adequate for L= 〈L, �〉, a set of L-formulas T
is �-inconsistent, iff � ¬

∧
Γ for some finite Γ ⊆ T , iff ⇒ ¬

∧
Γ is derivable in

H for some finite Γ ⊆ T . We now consider each of the elimination rules at
our disposal:

• DefH . In this case, the fact that G defeats H means that ⇒ Conc(G) ⊃
¬

∧
Θ, for Θ ∈ Supp(H). Since H is deductive, Conc(G)⇒¬

∧
Θ is deriv-

able. By applying Lemma 5 to G we have that,
∧ ⋃

Supp(G) ⇒ Conc(G) |∧ ⋃
Supp(G) ⇒ | ⇒ Conc(G) is derivable in H. By [Cut], it follows that∧ ⋃
Supp(G) ⇒ ¬

∧
Θ |

∧ ⋃
Supp(G) ⇒ | ⇒¬

∧
Θ is derivable. By [¬⇒],

Item 1 of Lemma 4 and [Cut],
∧ ⋃

Supp(G),
∧

Θ ⇒ |
∧ ⋃

Supp(G) ⇒ |∧
Θ ⇒ is derivable. By [⇒∧′] and external contraction,

∧ ⋃
Supp(G) ∧∧

Θ ⇒ is derivable in H. Thus, by [⇒¬], ⇒¬(
∧⋃

Supp(G)∧
∧

Θ) is also
derivable in H. Since H is weakly sound, � ¬(

∧⋃
Supp(G) ∧

∧
Θ) and

thus,
⋃
Supp(G) ∪ Θ is �-inconsistent. Hence,

⋃
Supp(G) ∪

⋃
Supp(H) is

�-inconsistent as well.

• UcutH . In this case, the fact that G undercuts H means that ⇒ Conc(G) ↔
¬

∧
Θ′ is derivable for Θ′ ⊆ Θ ∈ Supp(H). By similar considerations as

in the case of DefH , it follows that
⋃

Supp(G)∪Θ′ is �-inconsistent, and
thus that

⋃
Supp(G) ∪

⋃
Supp(H) is �-inconsistent as well.

• ConUcutH . In this case, the fact that H is consistency undercut means
that ⇒ ¬

∧ ⋃
Supp(H) is derivable in H. Since H is weakly adequate,

� ¬
∧

Supp(H). Thus,
⋃

Supp(H) is �-inconsistent.

Proposition 5. If H is normal and premise-abiding adequate for L, � is
compact, and S is �-consistent, then �, |∼∩

L,sem and |∼∪
L,sem coincide for every

sem ∈ {cmp, grd, prf, stb}.
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Proof. Suppose that S is a �-consistent set of formulas. By Lemma 11,
ArgL(S) is conflict-free. Thus, Extsem(AFL,AR(S)) = {ArgL(S)} for every
sem ∈ {cmp, grd, prf, stb}. Suppose first that H ∈ ArgL(S). Since H is
premise-abiding sound for L,

⋃
Supp(H) � Conc(H). Assume for a contra-

diction that S � Conc(H). Thus, by the monotonicity of �fin (Lemma 9)
and the compactness of �,

⋃
Supp(H) � Conc(H) which is a contradiction.

Thus, S � Conc(H). Thus, |∼∩
L,sem ⊆ � and |∼∪

L,sem ⊆ �. Suppose now that
S � φ. Since H is premise-abiding complete for L and � is compact, there is
an H ∈ ArgL(S) for which Conc(H) = φ. Thus, � ⊆ |∼∪

L,sem = |∼∩
L,sem.

Note 9. The property in Proposition 5 does not hold for L = RM. To see this,
recall Example 19, where S = {p ∨ q, ¬p}. Clearly S is consistent. However,
although S |∼∩

L,sem q and S |∼∪
L,sem q for every sem ∈ {cmp, grd, prf, stb}, still

S �RM q. This shows that the condition in Proposition 5, that H should be
premise-abiding adequate for the underlying core logic, is indeed necessary.

7.2. Paraconsistency and Non-monotonicity

We turn now to two basic properties of |∼∪
L,sem and |∼∩

L,sem – paraconsistency
and non-monotonicity.

Definition 19. Let |∼ be an entailment relation and H a hypersequential
calculus.

• We say that |∼ is paraconsistent, if it is not trivialized in the presence of
inconsistency: for all atoms p �= q it holds that p, ¬p |�∼ q.

• We say that |∼ is non-monotonic, if there are S1, S2 and φ such that S1 |∼φ
but S1 ∪ S2 |�∼ φ.

• We say that H is literal-separating, if for all literals41 l and l′, if l �= l′

there is no (hyper)sequent H, derivable in H, with (i) Conc(H) = l′ and⋃
Supp(H) ⊆ {l}, or (ii)

⋃
Supp(H) = {l} and Conc(H) is empty.42

Note 10. Each of the hypersequent calculi from Section 5 is literal-separating.
Furthermore, when a calculus H for a logic L= 〈L, �〉 is weakening, it imme-
diately follows that it is literal-separating, because of the properties of the
¬-operator and the non-triviality of L.

Proposition 6. If H is normal and literal-separating then |∼∪
L,sem and |∼∩

L,sem

are paraconsistent for every sem ∈ {cmp, grd, prf, stb}.

41That is, atoms or their negations.
42Thus, when H is literal-separating, hypersequents like q ⇒ p, p ⇒ ¬p and ¬p ⇒|⇒ q

are not derivable (for distinct atoms p and q).
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Proof. Let S = {p, ¬p}. Note first that since H is literal-separating, there
is no H ∈ ArgL({p}) ∪ ArgL({¬p}) with Conc(H) = q. So, if there is an
argument H with conclusion q it is such that

⋃
Supp(H) = {p, ¬p}. Since

by [∧⇒], [¬⇒] and [⇒¬], ⇒ ¬(p∧¬p) is derivable, any such H is ConUcutH-
attacked by a sequent that has no attackers. This shows that {p, ¬p} |�∼∪

q
and {p, ¬p} |�∼∩

q.

Proposition 7. If H is normal, weakly adequate and literal-separating, then
|∼ is non-monotonic for |∼ = |∼∩

L,sem and every sem ∈ {cmp, grd, prf, stb}.

Proof. Let S1 = {p} and S2 = {¬p}. We first note that S1 |∼p: Assume for
a contradiction that {p} is not �-consistent. Then � ¬p and thus, since H is
weakly complete for L, ⇒ ¬p is derivable which contradicts the fact that H
is literal-separating. Since H is cautiously reflexive, p ⇒ p is derivable in H
and hence S1 |∼ p.

We now show that S1 ∪ S2 |�∼ p. Note that S2 = {¬p} is also consistent.
Suppose it is not, then ⇒ ¬¬p is derivable. By the cautious reflexivity of
H ¬p ⇒ ¬p is derivable, and, since H is left-negative, so is ¬¬p, ¬p ⇒ ,
by [Cut], ¬p ⇒ is derivable, a contradiction with the assumption that H
is literal-separating. Note that {p, ¬p} is inconsistent since ⇒ ¬(p ∧ ¬p)
is derivable in H (by application of [∧⇒], [¬⇒] and [⇒¬]) and since H
is weakly sound, we have: � ¬(p ∧ ¬p). Since ¬p ⇒ ¬¬p is not derivable
in H either (this follows since otherwise, by [¬⇒], Lemmas 4.1 and 4.3
and contraction, ¬p ⇒ would be derivable), and ¬p ⇒ ¬p defeats any
argument in ArgL({p}) \ ArgL(∅), it is easy to see that ArgL({¬p}) is a
complete extension of AFL,AR(S1 ∪ S2). Since ¬p ⇒ p is not derivable in H
(as H is literal-separating), this suffices to show that S1 ∪ S2 �|∼ p.

The entailment relation for the credulous counterpart is actually mono-
tonic:

Proposition 8. If H is normal and premise-abiding adequate, then |∼ is
monotonic for |∼ = |∼∪

sem and every sem ∈ {cmp, prf, stb}.

Proof. To show the proposition we need to incorporate some results that
are shown later in the paper, so we postpone the proof to Appendix B.

7.3. Rationality Postulates

In this section we consider the rationality postulates from [1,40] for
hypersequent-based argumentation frameworks, based on several core logics
and with a set of attack rules AR such that AR = {ConUcutH} ∪ R, where
∅ �= R ⊆ {DefH , UcutH}. First, we define some useful notions.
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Definition 20. Let L= 〈L, �〉 be a logic and let T be a set of L-formulas.

• FreeL(T ) is the set of formulas in T that are not in any ⊆-minimally
�-inconsistent subset of T .

• Let AFL(S) = 〈ArgL(S), A〉 be a hypersequent-based argumentation
framework and let H, H′ ∈ ArgL(S). We say that H′ is a sub-argument of
H iff for each Γ′ ∈ Supp(H′) there is a Γ ∈ Supp(H) for which Γ′ ⊆ Γ.
The set of sub-arguments of H is denoted by Sub(H).

Definition 21. Let AFL(S) = 〈ArgL(S), A〉 be an argumentation frame-
work for the logic L= 〈L, �〉, S – a set of L-formulas, sem a fixed semantics
for AFL(S), and E – a sem-extension of AFL(S). Below are some postulates
that AFL(S) may satisfy:43

• closure of extensions: for all E ∈ Extsem(AFL(S)), CNL(Concs(E)) ⊆
Concs(E).44

• closure under sub-arguments: for all E ∈ Extsem(AFL(S)) if H ∈ E then
Sub(H) ⊆ E .

• consistency: for all E ∈ Extsem(AFL(S)), Concs(E) is �-consistent.

• exhaustiveness: for all E ∈ Extsem(AFL(S)), for all H ∈ ArgL(S) such that⋃
Supp(H) ∪ {Conc(H)} ⊆ Concs(E), H ∈ E .

• support exhaustiveness: for all arguments E ∈ Extsem(AFL(S)), for all
H ∈ ArgL(S) for which

⋃
Supp(H) ⊆ Concs(E), H ∈ E .

• free precedence: for all E ∈ Extsem(AFL(S)), ArgL(Free(S)) ⊆ E .

Next, we examine what rationality postulates from Definition 21 hold
in hypersequential argumentation frameworks, and under which conditions.
For instance, recall from Example 10 and Note 6 that the sequent-based
argumentation framework for CL as core logic with corresponding calculus
LK and Defeat as attack rule does not satisfy the consistency postulate. We
will show below that the consistency of the extensions in the hypersequent-
based setting in that example is not a coincidence.

In (most of) the lemmas below we suppose that H is a strongly normal
(that is, H is either support splitting weakening normal or two-sided split-
ting normal) hypersequent calculus for the core logic L= 〈L, �〉 and that
AFL,AR(S) = 〈ArgL(S), A〉 is an argumentation framework for a set S of L-
formulas where AR = {ConUcutH} ∪ R and ∅ �= R ⊆ {DefH , UcutH}. Also,

43For the postulates we use the notations in Definition 3.
44Recall from Definition 3 that CN(T ) is defined as the finitary �-closure of T .
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E denotes a sem-extension of AFL,AR(S) for some sem ∈ {cmp, grd, prf, stb}.
Furthermore, in what follows when saying that a hypersequent G attacks a
hypersequent H in Γ, we mean that the set Γ contains the formulas that are
the ‘reason’ for the attack. For instance, a statement that G UcutH-attacks
H in Γ means that there is some Γ′ ∈ Supp(H) such that Γ ⊆ Γ′, and the se-
quent ⇒ Conc(G) ↔ ¬

∧
Γ (that is, the condition for the attack) is provable

in the underlying calculus.

Lemma 12. (Closure under sub-arguments) Suppose that H is normal. If
H ∈ E then Sub(H) ⊆ E.

Proof. Suppose that H ∈ E and H′ ∈ Sub(H). Assume first for a contra-
diction that H′ is ConUcutH-attacked. Then ⇒ ¬

∧
Supp(H′) is derivable

in H. By Item 5 of Lemma 4, ⇒ ¬
∧
Supp(H) is derivable in H and so H is

ConUcutH-attacked, which contradicts that H ∈ E .
We now show that any attacker of H′ is attacked by an argument in E

which by the completeness of E implies that H′ ∈ E . We consider only the
attack rules DefH and UcutH , since we have already shown that H′ is not
ConUcutH-attacked:

• DefH . Assume that G ∈ ArgL(S) defeats H′. Then ⇒ Conc(G) ⊃ ¬
∧

Γ′

for some Γ′ ∈ Supp(H′) is derivable in H. Since H′ ∈ Sub(H) there is a
Γ ∈ Supp(H) for which Γ′ ⊆ Γ. By Item 4 of Lemma 4, ⇒ Conc(G) ⊃
¬

∧
Γ is derivable in H. Thus G also defeats H. Since H ∈ E , there is a

G′ ∈ E that attacks G.

• UcutH . Assume that G ∈ ArgL(S) undercuts H′. Thus ⇒ Conc(G) ↔
¬

∧
Γ′ is derivable in H for some Γ′ ⊆ Γ′′ ∈ Supp(H′). Since H′ ∈ Sub(H),

there is a Γ ∈ Supp(H) for which Γ′′ ⊆ Γ. Thus, G undercuts also H.
Since H ∈ E , there is a G′ ∈ E that attacks G.

Lemma 13. Suppose that H is support splitting normal and weakly complete.
Then

⋃
Supps(E) is �-consistent.

Proof. Assume for a contradiction that Supps(E) is �-inconsistent. Then
there are H1, . . . ,Hn ∈ E , such that Supp(Hi) = {Γi

1, . . . ,Γ
i
mi

}, with Γi
j =

{γi,j
1 , . . . , γi,j

ki,j
} and � ¬

∧
Θ for some Θ ⊆

⋃n
i=1

⋃
Supp(Hi). By the mono-

tonicity of �fin (Lemma 9) � ¬
∧

(
⋃

Supp(H1) ∪ . . . ∪
⋃

Supp(Hn)). Hence,
by the weak completeness of H, G = ⇒¬

∧
(
⋃
Supp(H1)∪ . . .∪

⋃
Supp(Hn))

is derivable in H. Since G has an empty support, G ∈ E .
Now, by applying [¬⇒], and Items 1 and 3 of Lemma 4 on double nega-

tion introduction and transitivity respectively to G,
∧

(
⋃
Supp(H1) ∪ . . . ∪⋃

Supp(Hn)) ⇒ is derivable as well. Therefore, by Lemma 6, we have that
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H = γ1,1
1 ⇒ | . . . | γ1,1

k1,1
⇒ | . . . | γ1,m1

1 ⇒ | . . . | γ1,m1
k1,m1

⇒ | . . . | γn,1
1 ⇒ |

. . . | γn,1
kn,1

⇒ | . . . | γn,mn

1 ⇒ | . . . | γn,mn

kn,mn
⇒ is derivable in H. Note that

any attacker of H is an attacker of some Hi for i ∈ {1, . . . , n}. Therefore
H ∈ E . However,

⋃
Supp(H) =

⋃
Supp(H1) ∪ . . . ∪

⋃
Supp(Hn), thus H is

ConUcutH-attacked by G. This is a contradiction to the conflict freeness
of E .

Lemma 14. (Closure) Suppose that H is strongly normal and premise-
abiding complete. Then CN(Concs(E)) ⊆ Concs(E).

Proof. Suppose that φ ∈ CN(Concs(E)). Then there are arguments
H1, . . . ,Hn ∈ E such that Conc(Hi) = φi for 1 ≤ i ≤ n and φ1, . . . , φn � φ.
Let Hi = Γi

1 ⇒ ψi
1 | . . . | Γi

mi
⇒ ψi

mi
such that Conc(Hi) = φi and

Γi
j = {γi,j

1 , . . . , γi,j
ki,j

}. By Lemma 7, from H1, . . . ,Hn, we derive H′ =
∧n

l=1

∧ml

j=1

∧
Γl

j ⇒ | ⇒ φ1 ∧ . . . ∧ φn or
∧n

l=1

∧ml

j=1

∧
Γl

j ⇒ φ1 ∧ . . . ∧ φn.
Now, since φ1, . . . , φn � φ, by the premise-abiding completeness of H,

there is a G with
⋃

Supp(G) = {φ1, . . . , φn} and Conc(G) = φ derivable in H.
From G, by Lemma 7, we can derive φ1 ∧ . . .∧φn ⇒|⇒ φ or φ1 ∧ . . .∧φn ⇒
φ. Hence, by transitivity (Item 3 of Lemma 4), from H′, it follows that∧n

l=1

∧ml

j=1

∧
Γl

j ⇒|⇒ φ or
∧n

l=1

∧ml

j=1

∧
Γl

j ⇒ φ is derivable. With splitting,
the sequent H = γ1,1

1 ⇒ | . . . | γ1,1
k1,1

⇒ | . . . | γn,1
kn,1

⇒ | . . . | γn,mn

kn,mn
⇒ | ⇒ φ

or H = γ1,1
1 ⇒ φ | . . . | γ1,1

k1,1
⇒ φ | . . . | γn,1

kn,1
⇒ φ | . . . | γn,mn

kn,mn
⇒ φ is

derivable in H.
Note that Supp(H) ⊆ Supps(E), hence, by Lemma 13, H cannot be

ConUcutH-attacked. Moreover, any attacker of H is an attacker of one of
the arguments H1, . . . ,Hn. Therefore, H ∈ E , and so φ ∈ Concs(E).

Lemma 15. (Consistency) If H is strongly normal, premise-abiding complete
and weakly sound, then Concs(E) is �-consistent.

Proof. Suppose that Concs(E) is �-inconsistent. Thus, there are φ1, . . . , φn ∈
Concs(E) for which � ¬

∧n
i=1 φi. Since H is premise-abiding complete, G =⇒

¬
∧n

i=1 φi is derivable in H. Hence, there are arguments H1, . . . ,Hn ∈ E with
Conc(Hi) = φi for each i = 1, . . . , n. By Lemma 7 from H1, . . . ,Hn we derive
H =

∧ ⋃n
i=1

⋃
Supp(Hi) ⇒ | ⇒

∧n
i=1 φi or

∧⋃n
i=1

⋃
Supp(Hi) ⇒

∧n
i=1 φi.

Suppose first that
⋃

Supp(H) = ∅. Since H satisfies trivialization absorp-
tion, ⇒

∧n
i=1 φi is derivable in H and with [¬⇒] also G′ = ¬

∧n
i=1 φi ⇒ . By

applying cut with G and G′, the empty sequent is derivable, which contra-
dicts the non-triviality of H (recall Note 7). So,

⋃
Supp(H) �= ∅. By [¬⇒],∧ ⋃

Supp(H) ⇒| ¬
∧n

i=1 φi ⇒ or
∧⋃

Supp(H), ¬
∧n

i=1 φi ⇒ is derivable in
H. With G, [Cut] and trivialization absorption,

∧ ⋃
Supp(H) ⇒ is derivable
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in H. By [⇒¬], ⇒ ¬
∧ ⋃

Supp(H) is derivable in H. By the weak soundness
of H, � ¬

∧⋃
Supp(H). This is in contradiction with Lemma 13.

Lemma 16. (Free precedence) If H is normal and weakly adequate, ArgL
(Free(S)) ⊆ E.

Proof. Let G ∈ ArgL(Free(S)). Then
⋃

Supp(G) ⊆ Free(S). Assume that
some H ∈ ArgL(S) attacks G. By Lemma 11,

⋃
Supp(G) ∪

⋃
Supp(H) is

�-inconsistent. Since
⋃

Supp(G) ⊆ Free(S), it follows that
⋃

Supp(H) is �-
inconsistent. By Definition 3 and the weak soundness of H for L, H′ = ⇒
¬

∧
Supp(H) is derivable in H. Thus, H′ ConUcutH-attacks H. Since H′ has

an empty support, it follows that it cannot be attacked, hence H′ ∈ E .
Therefore, any attacker of G is attacked by an argument from E , it follows
since E is complete that G ∈ E . Thus ArgL(Free(S)) ⊆ E .

Lemma 17. Let H be a normal (hyper)sequent calculus for L and let H, G ∈
ArgL(S). If H UcutH-attacks G then H defeats G.

Proof. Suppose that H UcutH-attacks G. Then ⇒ Conc(H) ↔ ¬
∧

Γ′

where Γ′ ⊆ Γ for some Γ ∈ Supp(G). By [∧⇒] and the cautious reflexivity of
H (see also Footnote 12), Conc(H) ↔ ¬

∧
Γ′ ⇒ Conc(H) ⊃ ¬

∧
Γ′ is derivable

in H. By [Cut], ⇒ Conc(H) ⊃ ¬
∧

Γ′ is derivable in H. By Lemma 4.4, it
follows that ⇒ Conc(H) ⊃ ¬

∧
Γ is derivable in H. Thus, H defeats G as

well.

Lemma 18. (Support Exhaustiveness) Let H be strongly normal, premise-
abiding complete and weakly sound. For every H ∈ ArgL(S), if

⋃
Supp(H) ⊆

Concs(E) then H ∈ E.

Proof. Suppose that H ∈ ArgL(S) and
⋃

Supp(H) ⊆ Concs(E). Let
{δ1, . . . , δn} =

⋃
Supp(H). Suppose also that some G ∈ ArgL(S) attacks

H. Assume first that it is a ConUcutH-attack. Then � ¬
∧
Supp(H). But

Supp(H) ⊆ Concs(E), thus Concs(E) is �-inconsistent, a contradiction with
Lemma 15.

Suppose now that G defeats H (note that by Lemma 17 the case in
which G undercuts H is also covered in this case). In case that Supp(G) is
�-inconsistent, G is ConUcutH-attacked by E . Suppose then that Supp(G)
is consistent. Then ⇒ Conc(G) ⊃ ¬

∧
Γ is derivable in H for some Γ ∈

Supp(H). Since H is deductive, Conc(G) ⇒ ¬
∧

Γ is derivable in H. From G,
by Lemma 7,

∧ ⋃
Supp(G) ⇒ | ⇒ Conc(G) or

∧ ⋃
Supp(G) ⇒ Conc(G) is

derivable. Thus, by [Cut],
∧⋃

Supp(G) ⇒|⇒ ¬
∧

Γ or
∧⋃

Supp(G) ⇒ ¬
∧

Γ
is derivable.
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Then, by [¬⇒], Lemma 4.1, [∧⇒′] and external contraction, or by [¬⇒]
and [∧⇒],

∧ ⋃
Supp(G) ∧

∧
Γ ⇒ is derivable in H. Hence, by Lemma 6 for⋃

Supp(G) = {φ1, . . . , φm} and Γ = {γ1, . . . , γl}, H′ = φ1 ⇒ | . . . | φm ⇒
| γ1 ⇒ | . . . | γl ⇒ is derivable in H. Since

⋃
Supp(H) ⊆ Concs(E) and

Γ ∈ Supp(H), there are arguments H1, . . . ,Hl ∈ E , with Conc(Hi) = γi. By
Lemma 7, for each i ∈ {1, . . . , l} we derive H′

i =
∧⋃

Supp(Hi) ⇒ | ⇒ γi or
H′

i =
∧⋃

Supp(Hi) ⇒ γi. Then, by [Cut] and since H satisfies trivialization
absorption, φ1 ⇒ | . . . | φm ⇒ |

∧ ⋃
Supp(H1) ⇒ | . . . |

∧ ⋃
Supp(Hl) ⇒ is

derivable in H.
Suppose first for a contradiction that

⋃
Supp(H1)∪ . . .∪

⋃
Supp(Hl) = ∅.

Thus, by trivialization absorption, external contraction and [∧⇒′],∧
Supp(G) ⇒ is derivable and by [⇒¬], ⇒ ¬

∧
Supp(G). By the premise-

abiding soundness of H, � ¬
∧

Supp(G). Thus, the support of G is inconsis-
tent which is a contradiction.

Therefore we suppose, without loss of generality, that
⋃

Supp(H1) �= ∅.
Let

⋃
Supp(Hi) = {γi

1, . . . , γ
i
ki

}. Then, H′ = φ1 ⇒ | . . . | φm ⇒ | γ1
1 ⇒ | . . . |

γ1
k1

⇒ | . . . | γl
1 ⇒ | . . . | γl

kl
⇒ and, by [⇒¬], also H∗ = φ1 ⇒ | . . . | φm ⇒

| ⇒ ¬γ1
1 | γ1

2 ⇒ | . . . | γ1
k1

⇒ | . . . | γl
1 ⇒ | . . . | γl

kl
⇒ is derivable. Thus, an

argument H∗ is derivable with Conc(H∗) = ¬γ1
1 , for γ1

1 ∈ Γ1 ∈ Supp(H1).
Note that H∗ attacks H1 ∈ E , since ⇒ ¬γ1

1 ⊃ ¬
∧

Γ1 is derivable in
H. To see this note that by Item 6 of Lemma 4,

∧
Γ1 ⇒ γ1

1 is derivable
in H. By [¬⇒] and [⇒¬], also ¬γ1

1 ⇒ ¬
∧

Γ1, and since H is deductive
also ⇒ ¬γ1

1 ⊃ ¬
∧

Γ1. Hence, there is some H′′ ∈ E which attacks H∗.
Since

⋃
Supp(H∗) \

⋃
Supp(G) ⊆ Supps(E), it follows that H′′ attacks H∗

in φ1, . . . , φm, since otherwise E would not be conflict-free. Therefore H′′

attacks G and since H′′ ∈ E , E attacks G. This shows that E defends H and
by the completeness of E , H ∈ E as required.

Lemma 19. (Exhaustiveness) Let H be strongly normal, premise-abiding com-
plete and weakly sound. For every H ∈ ArgL(S), if

⋃
Supp(H) ∪

{Conc(H)} ⊆ Concs(E) then H ∈ E.

Proof. Follows from Lemma 18 and the fact that if
⋃
Supp(H) ∪

{Conc(H)} ⊆ Concs(E) then in particular
⋃
Supp(H) ⊆ Concs(E).

An overview of the given results can be found in Table 1. In view of the
lemmas above we have the following theorem.

Theorem 1. Any argumentation framework AFL,AR(S) based on a logic
L= 〈L, �〉 with a fixed strongly normal hypersequent calculus H that is premise-
abiding complete and weakly sound, with attack relations AR = {ConUcutH}∪
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Table 1. Overview of the results for premise-abiding complete and

weakly sound calculi

Type of calculus Property Lemma

Normal calculus Closure under sub-arguments Lemma 12

Free precedence Lemma 16

Strongly normal calculus Closure Lemma 14

Consistency Lemma 15

Support exhaustiveness Lemma 18

Exhaustiveness Lemma 19

R, where ∅ �= R ⊆ {DefH ,UcutH}, under any completeness-based semantics,
satisfies closure of extensions, closure under sub-arguments, consistency, free
precedence and exhaustiveness.

Example 20. Classical logic CL with the calculus GLK from Figure 2 and
LC with the calculus GLC from Figure 4 fulfill the requirements of the above
theorem. Moreover, since we do not require the logic to be premise-abiding
sound, only weakly sound, the theorem holds for RM with the calculus GRM
from Figure 6 as well. On the other hand, CL with its standard sequent-
calculus LK does not fulfill the theorem, since LK is not support splitting
and thus not a strongly normal hypersequent calculus. This demonstrates
the importance of choosing an appropriate calculus when formulating a
hypersequent-based argumentation framework.

Note that the logic S5 is not covered by Theorem 1, since it does not have
a support splitting normal hypersequent calculus.45 Despite the fact that the
hypersequent calculus GS5 for S5 is not (support) splitting, it does admit the
weaker rule [MS]. As we show in what follows, this implies that some weaker
versions of the postulates still hold for hypersequent-based argumentation
frameworks induced by S5 and similar logics. This is demonstrated in the
next example.

Example 21. Consider the set S = {�p, �q, �(¬p ∨ ¬q), �r}. Let
AFS5,{ConUcutH ,DefH}(S) = 〈ArgS5(S), A〉 be a hypersequent-based argu-
mentation framework. Some of the arguments in ArgS5(S) are the following:

45As pointed out in Example 16, some of the arguments in Example 10 cannot be
derived in S5 to recover the consistency problem.
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a1

a7 a4

a5a2

a6

H8 H10 H9

a3

a⊥

a�

Figure 8. Part of the hypersequent-based argumentation graph for

S = {�r, �p, �q, �(¬p ∨ ¬q)}, with core logic S5 and ConUcutH and

DefeatH as attack rules from Example 21. For reasons of clarity, the at-

tacks on a⊥ are omitted, except for the one from a�. The dashed graph

is the graph of the ordinary sequent-based framework, the solid nodes

and arrows become available when generalizing to the hypersequent

setting

a1 = �r ⇒ �r a6 = �(p ∨ q), �¬p ⇒ ¬�(p ∨ ¬q)
a2 = �(p ∨ q) ⇒ �(p ∨ q) a7 = �(p ∨ q), �(p ∨ ¬q) ⇒ ¬�¬p
a3 = �(p ∨ ¬q) ⇒ �(p ∨ ¬q) H8 = �(p ∨ ¬q) ⇒ ¬�(p ∨ q) | �¬p ⇒ ¬�(p ∨ q)
a4 = �¬p ⇒ �¬p H9 = �(p ∨ q) ⇒ ¬�(p ∨ ¬q) | �¬p ⇒ ¬�(p ∨ ¬q)
a5 = �(p ∨ ¬q), �¬p ⇒ ¬�(p ∨ q) H10 = �(p ∨ q) ⇒ ¬�¬p | �(p ∨ ¬q) ⇒ ¬�¬p
a⊥ = �p, �q, �(¬p ∨ ¬q) ⇒ ¬�r a� = ⇒ ¬(�p ∧ �q ∧ �(¬p ∨ ¬q))

See Figure 8 for a graphical representation of the above arguments and the
attacks between them. As in Figured 3 we omit the attacks from a5, a6, a7,
H8, H9 and H10 to a⊥ to avoid clutter. For this set of premises, no incon-
sistent extensions exist. Moreover, in every complete extension, a1 is one of
the arguments.

Instead of the full consistency and closure postulate, we will consider
modular versions here. These will formally justify the results from the ex-
ample above.

Notation 2. Let AFL(S) = 〈ArgL(S), A〉 be an argumentation framework
for the logic L= 〈L, �〉 and set S of L-formulas. Let E ∈ Extsem(AFL(S)).
We denote:

• Γ� = {�γ | �γ ∈ Γ};

• E� = {H ∈ E | H = �Γ1 ⇒ φ1 | . . . | �Γn ⇒ φn}.
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Definition 22. Let AFL(S) = 〈ArgL(S), A〉 be a hypersequent-based ar-
gumentation framework for the logic L= 〈L, �〉. We say that AFL(S) satis-
fies:

• modal closure: for each E ∈ Extsem(AFL(S)), Concs(E�)=CNL(Concs(E�));

• modal consistency: for each E ∈ Extsem(AFL(S)), Concs(E�) is consistent.

Instead of a general logic L= 〈L, �〉, we will consider a logic L� = 〈L�, �〉
with a modal language and its corresponding hypersequent calculus H�. We
say that H� is modal normal if it is weakening normal and the rules [MS],
[�⇒] and [⇒�] are admissible in it.

With that, we get the following lemma, in addition to Lemma 4:

Lemma 20. Let H� be modal normal. If G | Γ ⇒ �φ, Π | H is derivable,
then so is G | Γ ⇒ φ, Π | H.

Proof. Suppose that G | Γ ⇒ �φ, Π | H is derivable. By [�⇒], from the
sequent φ ⇒ φ (derivable in H since it is cautiously reflexive) we derive
�φ ⇒ φ. Then, by transitivity (Lemma 4.3) it follows that G | Γ ⇒ φ, Π | H
is derivable in H� as well.

In what follows, we let AFAR,L�(S) be a hypersequent-based argumenta-
tion framework for a modal logic L� = 〈L�, �〉 with a fixed modal normal
calculus H�, a set of formulas S, attack rules AR = {ConUcutH} ∪R where
∅ �= R ⊆ {DefH , UcutH}, and E ∈ Extcmp(AFAR,L�(S)).

Lemma 21. (Modal Closure) If H� is modal normal and premise-abiding
complete, AFAR,L�(S) satisfies modal closure: Concs(E�) = CN(Concs(E�)).

Proof. Obviously, CNL�(Concs(E�)) ⊇ Concs(E�). Suppose now that φ ∈
CNL�(Concs(E�)). Then there are arguments H1, . . . ,Hn ∈ E� with φi =
Conc(Hi) and φ1, . . . , φn � φ. Since H� is premise-abiding complete, there is
some H′ derivable in H with

⋃
Supp(H′) = {φ1, . . . , φn} and Conc(H′) = φ.

By Lemma 7,46 φ1 ∧ · · · ∧ φn ⇒ φ is derivable in H.
By Lemma 7,

⋃n
i=1

⋃
Supps(Hi) ⇒ φi is derivable for each i = 1, . . . , n.

By applying [⇒∧] multiple times,
⋃n

i=1

⋃
Supp(Hi) ⇒

∧n
i=1 φi is derivable.

By [Cut],
⋃n

i=1

⋃
Supp(Hi) ⇒ φ is derivable as well. Applying [⇒�] results

in
⋃n

i=1

⋃
Supp(Hi) ⇒ �φ. (Note that each ψi is preceeded by � since

Hi ∈ E�.) By multiple applications of [MS], G′ = ψ1 ⇒ | · · · | ψm ⇒

46Note that, since we assume H to be weakening normal we only have to consider one
case of Lemma 7.
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�φ is derivable in H�, where {ψ1, . . . , ψm} =
⋃n

i=1

⋃
Supp(Hi). Now, by

Lemma 20, G = ψ1 ⇒ | . . . | ψm ⇒ φ is derivable in H� as well. Since
every attacker of G is also an attacker of some Hi, G ∈ E�. Thus, φ ∈
Concs(E�).

Lemma 22. (Modal Consistency) If H� is modal normal and premise-
abiding complete, then Concs(E�) is consistent.

Proof. Assume for a contradiction that Concs(E�) is �-inconsistent. Thus,
� ¬

∧n
i=1 φi for some φ1, . . . , φn ∈ Concs(E�). Since H� is weakly complete,

⇒ ¬
∧n

i=1 φi is derivable in H�. By Lemma 21, there is a H ∈ E� with
Conc(H) =

∧n
i=1 φi. By Lemma 7,

∧⋃
Supp(H) ⇒

∧n
i=1 φi is derivable in

H�. By [¬⇒] and [⇒¬], ¬
∧n

i=1 φi ⇒ ¬
∧⋃

Supp(H) is derivable in H�.
By [Cut], ⇒ ¬

∧ ⋃
Supp(H) is derivable in H�, which means that H is

ConUcutH-attacked. This is impossible, since then H cannot be defended
and be in E� at the same time.

We therefore obtain the following theorem:

Theorem 2. Let L� = 〈L�, �〉 be a modal logic with a corresponding modal
normal, premise-abiding complete and weakly sound calculus H�, and let
AR = {ConUcutH} ∪ R, where ∅ �= R ⊆ {DefH ,UcutH}. Then AFAR,L�(S)
satisfies modal closure, closure under sub-arguments, modal consistency and
free precedence under any completeness-based semantics from Definition 5.

7.4. Crash-Resistance and Non-interference

In [41], Caminada, Carnielli and Dunne consider two postulates that are con-
cerned with the ‘collapsing’ (or trivialization) of formalisms in the presence
of inconsistent information. In this section we examine these properties for
entailment relations that are induced by hypersequent-based frameworks.
For that, we first give some definition and notations.

• We denote by Atoms(S) the set of atoms that occur in the formulas in S
and by Atoms(L) the set of all the atoms of the language.

• The sets S, T of formulas are syntactically disjoint, if Atoms(S) ∩Atoms
(T ) = ∅.

Definition 23. A logic L= 〈L, �〉 satisfies the basic relevance criterion [16]
if for every two sets of L-formulas S1, S2 and a formula φ, if S1, S2 � φ and S2

and S1∪{φ} are syntactically disjoint (that is, Atoms(S2)∩Atoms(S1∪{φ}) =
∅)), then S1 � φ.

In what follows we will call logics that satisfy the basic relevance criterion
semi-relevant.
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Example 22. To see the difference between RM and CL in view of the
relevance criterion consider the following example: let S1 = {p1, p2, p1 ⊃ p2}
and S2 = {q1, q2, ¬q1 ∨ ¬q2}. Note that S1 and S2 are syntactically disjoint.
It can be shown that there is no Γ ⊆ S1 ∪S2 such that Γ ⇒ ¬p2 is derivable
in GRM. On the other hand, in GLK for Γ = S2, Γ ⇒ ¬p2 is derivable.
However Γ is inconsistent and thus Γ ⇒ ¬p2 will be ConUcutH attacked. If
we would take one formula out of S2, say q1, then S2 is consistent and no
such Γ exists anymore.

Definition 24. A logic L= 〈L, �〉 is said to be uniform [63,81] if for every
two sets of L-formulas S1, S2 and a formula φ, if S1, S2 � φ and S2 is a
�-consistent set of formulas that is syntactically disjoint from S1∪{φ}, then
S1 � φ.

Note 11. Clearly, a logic that satisfies the basic relevance criterion is uni-
form, but the converse does not hold (as can be shown by considering CL).

Definition 25. Let |∼ be an entailment relation for L. A set S of L-
formulas is called contaminating (with respect to |∼) if: (i) Atoms(S) ⊂
Atoms(L), and (ii) for any set S∗ ⊆ L, such that S and S∗ are syntacti-
cally disjoint, and for every L-formula φ, it holds that S |∼ φ if and only if
S ∪ S∗ |∼ φ.

Example 23. We recall Examples 10 and 11, but this time we consider
AFCL,{DefH}(S) and AFCL,{DefH}(S ′) (leaving out ConUcutH), where S ′ =
{r} and S = {p, q, ¬p ∨ ¬q, r} (as before). We then have S ′ |∼∩

CL,grd r while
S |�∼∩

CL,grd r (cf. Example 11). The reason is that arguments for r such as
a1 = r ⇒ r are attacked by arguments with inconsistent supports, such
as p ⇒ | q ⇒ | ¬p ∨ ¬q ⇒ | ⇒ ¬r. As a consequence, the only grounded
arguments in AFCL,{DefH}(S) will be those with empty supports. In view
of this, the additional premises {p, q, ¬p ∨ ¬q} contaminate our set S ′ rela-
tive to |∼∩

CL,grd. (Note that the additional premises are syntactically disjoint
to S ′.)

The two postulates from [41], in our notations, are then the following:

Definition 26. Let L be a language and |∼ ⊆ ℘(L) × L an entailment
relation. We say that |∼ satisfies:

• non-interference, if for every syntactically disjoint sets S1, S2 of L-formulas,
and any L-formula φ such that Atoms(φ) ⊆ Atoms(S1), S1 |∼φ if and only
if S1 ∪ S2 |∼ φ;

• crash-resistance, if there is no set S of L-formulas that is contaminating
with respect to |∼.
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In what follows we assume a hypersequent-based argumentation frame-
work AFL,AR(S) = 〈ArgL(S), A〉 for a uniform logic L= 〈L, �〉 with corre-
sponding support splitting normal and premise-abiding adequate calculus H,
a set of L-formulas S and attack rules AR for which AR∩{DefH , UcutH} �= ∅.
If L does not satisfy the basic relevance criterion we assume ConUcutH to
be part of AR.

Example 24. Logics with calculi that satisfy the requirements above are
for instance CL with GLK and LC with GLC. At the end of Section 8 we
motivate the introduction of the logic RM∗ = 〈L, �∗

RM〉, associated with RM,
and in Appendix A, we show that this logic has a premise-abiding adequate
calculus. For this logic with the corresponding calculus GRM, the results in
this section hold as well.

Theorem 3. (Non-Interference) Let AFL,AR(S) = 〈ArgL(S), A〉 be a
hypersequent-based argumentation framework for a set of L-formulas S,
where AR ∩ {DefH ,UcutH} �= ∅ and L is a uniform logic with a fixed cor-
responding support splitting normal and premise-abiding adequate calcu-
lus H. Suppose further that either L is semi-relevant or that ConUcutH is
part of AR. Then |∼∩

sem and |∼∪
sem satisfy non-interference for every sem ∈

{cmp, prf, grd}.

To show this theorem in the above-mentioned and other cases, we first
prove some lemmas. For the first lemma, we need the following definition.

Definition 27. Given a hypersequent H = Γ1 ⇒ Δ1 | · · · | Γn ⇒ Δn we
say that a hypersequent G = φ1 ⇒ Θ1 | · · · | φm ⇒ Θm is in splitting normal
form of H iff it fulfills the following requirements:

(i) Supp(G) =

{{
{φ} | φ ∈

⋃
Supp(H)

}
∪ {∅} if ∅ ∈ Supp(H),

{
{φ} | φ ∈

⋃
Supp(H)

}
otherwise

(ii) Θi ∈ {∅, {Conc(H)}} for each i = 1, . . . , m

(iii) Conc(G) = Conc(H).

Example 25. Consider the arguments from Example 4. The arguments
a1, a2, a3, a4, a5 and a6 are already in splitting normal form. The splitting
normal forms of the arguments a7, a8 and a9 are, respectively, the arguments
H12, H10 and H11, from Example 10.

Lemma 23. Let H be a support splitting normal hypersequent calculus and
H a hypersequent derived in H. Then there is a hypersequent G, derivable in
H, that is in splitting normal form of H.
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Proof. Let H = Γ1 ⇒ Δ′
1 | · · · | Γn ⇒ Δ′

m. By [⇒∨′] and [⇒∨] (which is
available by Item 2 of Lemma 4. Note that in the case of single-conclusion
calculi, applying [⇒∨] is not necessary), we can derive H′ = Γ1 ⇒ γ1 | · · · |
Γm ⇒ γm, where γi = Conc(H) if Δ′

i �= ∅ (note that this applies at least
for one i = 1, . . . , m) and otherwise γi is the empty string. We can now
transform H′ by multiple applications of support splitting into a G which
has the wanted properties (i)–(iii) of Definition 27.

In the next lemmas we suppose that S ′ = S1 ∪ S2, where S1 and S2 are
syntactically disjoint sets of formulas.

Lemma 24. If H and G are derivable in a normal hypersequent calculus
H, and H is in the splitting normal form of G (see Definition 27), then
every DefH/UcutH/ConUcutH attacker of H is a DefH/UcutH/ConUcutH
attacker of G.

Proof. For UcutH this is trivial. Consider H′ to be a DefH-attacker of H.
Thus, there is a {γ} ∈ Supp(H) for which ⇒ Conc(H′) ⊃ ¬γ is derivable in
H. Hence, there is a Γ ∈ Supp(G) for which γ ∈ Γ. By Item 4 of Lemma 4,
⇒ Conc(H′) ⊃ ¬

∧
Γ is derivable as well. Thus, H′ DefH-attacks G. The

case of ConUcutH is similar and left to the reader.

Lemma 25. Let H ∈ ArgL(S ′) where Atoms(Conc(H)) ⊆ Atoms(Si) for i ∈
{1, 2}. In case that L is not semi-relevant we suppose further that

⋃
Supp(H)

is consistent. Then there is an H� for which the following hold:

(i)
⋃

Supp(H�) =
⋃
Supp(H) ∩ Si,

(ii) Conc(H�) = Conc(H),

(iii) every G ∈ ArgL(S ′) that attacks H� also attacks H,

(iv) for every E ∈ Extcmp(AFL,AR(S ′)), if H ∈ E also H� ∈ E.

Proof. Let H ∈ ArgL(S ′) with conclusion φ for which Atoms(φ) ⊆ Atoms
(Si). Since H is premise-abiding sound,

⋃
Supp(H) � φ. By the semi-relevance

of L (alternatively, by the uniformity of L and the consistency of
⋃
Supp(H)),

we have that
⋃
Supp(H)∩Si � φ. Now, since H is premise-abiding complete

and by Lemmas 23 and 24, we can derive an H� in splitting normal form of
H for which

⋃
Supp(H�) =

⋃
Supp(H) ∩ Si and every DefH-, every UcutH-,

and every ConUcutH-attacker of H� is also an attacker of H. By the com-
pleteness of E , we get H� ∈ E .

Lemma 26. Let sem ∈ {cmp, prf} and i ∈ {1, 2}. If E ∈ Extsem(AFL,AR(Si))
then there is an E� ∈ Extsem(AFL,AR(S ′)) for which E = E� ∩ ArgL(Si).
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Proof. We first show the case where sem = cmp and i = 1 (the case i = 2
is analogous). Let E ∈ Extsem(AFL,AR(S1)), E2 ∈ Extcmp(AFL,AR(S2)) and
let E� be the set of all arguments that are defended by E ∪E2. We show that
E� is complete in AFL,AR(S ′).

Assume for a contradiction to the conflict-freeness of E�, that there are
H, G ∈ E� such that H attacks G. Thus, there is an H′ ∈ E ∪ E2 that
attacks H. Since both E and E2 are complete extensions of AFL,AR(Si),
without loss of generality suppose that H′ ∈ E . Thus, there is an argument
H∗ ∈ E ∪ E2 that DefH/UcutH-attacks H′ in some Γ′ ∈ Supp(H′) or by
ConUcutH . In the latter case,

⋃
Supp(H�) = ∅ and hence H� ∈ E which

contradicts the conflict-freeness of E . Thus, H� DefH- or UcutH-attacks H′.
Since H′ ∈ E , Atoms(Γ′) ⊆ Atoms(S1) and, for both DefeatH and UndercutH

⇒ Conc(H∗) ⊃ ¬
∧

Γ′ is derivable in H. Since H is deductive, Conc(H∗) ⇒
¬

∧
Γ′ is derivable as well. By Lemmas 23 and 24 and [Cut], we can derive

an H′′ in splitting normal form of H� for which Conc(H′′) = ¬
∧

Γ′ and
every attacker of H′′ is an attacker of H�. Hence H′′ ∈ E ∪ E2.

Thus, for both DefeatH and UndercutH , there is a H′′ ∈ E ∪ E2 with
Atoms(Conc(H′′)) ⊆ Atoms(S1). Let H′′′ ∈ ArgL(S1) be the argument that
is related to H′′ according to Lemma 25. Then H′′′ also attacks H′ and
H′′′ ∈ E ∪ E2. If H′′′ ∈ E2, then

⋃
Supp(H′′′) = ∅ and hence H′′′ has no

attacker and so H′ cannot be defended, a contradiction to H′ ∈ E . Thus
H′′′ ∈ E , but this also leads to a contradiction, this time to the conflict-
freeness of E . It follows, then, that E� is conflict-free.

Since E� by definition also includes all arguments it defends,
E� ∈ Extcmp(AFL,AR(S ′)). We now show that indeed E = E� ∩ ArgL(S1).
Let H ∈ E� ∩ ArgL(S1). Suppose G ∈ ArgL(S1) attacks H. Thus, there is an
H′ ∈ E ∪ E2 that attacks G. Let H′′ be based on H′ as in Lemma 25. Thus,
also H′′ ∈ E ∪ E2. If H′′ ∈ E2,

⋃
Supp(H′) = ∅ and hence H′′ ∈ E since it

has no attackers. So, in any case H′′ ∈ E and thus E defends H and by the
completeness of E , H ∈ E , therefore E� ∩ ArgL(S1) ⊆ E .

Now, suppose that H ∈ E ⊆ ArgL(S1), since E ∈ Extcmp(AFL,AR(S1)), H
is defended by E . It follows immediately that H ∈ E� ∩ ArgL(S1), and so
E ⊆ E� ∩ ArgL(S1). Altogether, then, E = E� ∩ ArgL(S1).

The case where sem = prf (and i = 1) is similar to the previous case,
where sem = cmp. As before, we get an extension E† ∈ Extcmp(AFL,AR(S ′))
for which E† ∩ ArgL(S1) = E . Thus, there is an E� ⊇ E† for which E� ∈
Extprf(AFL,AR(S ′)). Since E is a ⊂-maximal complete extension, also E� ∩
ArgL(S1) = E .

Lemma 27. Let sem ∈ {cmp, prf} and E ∈ Extsem(AFL,AR(S ′)). Then:
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(i) Ei = E ∩ ArgL(Si) ∈ Extsem(AFL,AR(Si)) for i = 1, 2, and

(ii) E = Defended(E1∪E2, AFL,AR(S ′)) where Defended(E1∪E2, AFL,AR(S ′))
is the set of arguments in ArgL(S ′) defended by E1 ∪ E2.

Proof. We first show (i) for the case sem = cmp and i = 1 (the case
for i = 2 is analogous). Let E1 = E ∩ ArgL(S1). Clearly, E1 is conflict-
free since E is conflict-free. For completeness, suppose that E1 defends H ∈
ArgL(S1) in AFL,AR(S1), we shall show that H ∈ E1. Suppose that some
G ∈ ArgL(S ′) attacks H in AFL,AR(S ′). Let G� ∈ ArgL(S1) be the argument
from Lemma 25 that attacks H in AFL,AR(S1). Thus, there is an H′ ∈ E1 that
attacks G� in AFL,AR(S1). The same argument also attacks G in AFL,AR(S ′).
Hence, E defends H, and so H ∈ E . Since H ∈ ArgL(S1), this implies that
indeed H ∈ E1.

For (ii), suppose that some H ∈ E is attacked by some G ∈ ArgL(S ′)
for which

⋃
Supp(G) = {γ1, . . . , γm}. Let G′ be in splitting normal form of

G as in Lemma 23. Clearly G′ also attacks H. Thus, some H′ ∈ E attacks
G′ in some γj ∈ S1 ∪ S2. Without loss of generality, suppose that γj ∈ S1.
Hence, Atoms(Conc(H′)) ⊆ Atoms(S1). By Lemma 25, there is an H′′ ∈ E1

that attacks G′ and hence also G. Thus H is defended by E1 and so by
E1 ∪ E2. Hence, E ⊆ Defended(E1 ∪ E2, AFL,AR(S ′)) and since E1 ∪ E2 ⊆ E
(by Item (i)) and E ⊇ Defended(E , AFL,AR(S ′)) (since E is complete), E =
Defended(E1 ∪ E2, AFL,AR(S ′)).

Let now sem = prf and i = 1. Consider Item (i) (the proof of Item (ii) car-
ries over). We have shown that E1 = E∩ArgL(S1) ∈ Extcmp(AFL,AR(S1)). As-
sume for a contradiction that there is an E ′ ∈ Extcmp(AFL,AR(S1)) for which
E1 ⊂ E ′. Note that since E1 = E ∩ArgL(S1), E ′ \ E �= ∅. As shown above, E ∩
ArgL(S2) ∈ Extcmp(AFL,AR(S2)). Let E� be the set of arguments in ArgL(S ′)
defended by E ′ ∪E2. By items (i) and (ii) above we know that E1 ∪E2 = E =
Defended(E1 ∪ E2, AFL,AR(S ′)) and E� = Defended(E ′ ∪ E2, AFL,AR(S ′)) ⊇
E ′∪E2 and since E ′\E �= ∅ and Defended(E1∪E2, AFL,AR(S ′)) ⊆ Defended(E ′∪
E2, AFL,AR(S ′)) ⊇ E ′, E ⊂ E�. This is a contradiction to the ⊆-maximality
of E .

We now turn to the proof of Theorem 3.

Proof. Let sem ∈ {cmp, prf}. Note that, by Definition 14, S |∼∩
cmp φ iff

there is some H with Conc(H) such that H ∈
⋂

Extcmp(AFL,AR(S)) =
Extgrd(AFL,AR(S)). Hence, the case of sem = grd is covered by the dis-
cussion of |∼∩

cmp. As before, we assume that S ′ = S1 ∪ S2, where S1 and S2
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are syntactically disjoint. We also assume that φ is an L-formula such that
Atoms(φ) ⊆ Atoms(S1).

Suppose that S ′ |�∼∪
sem φ [S ′ |�∼∩

sem φ]. Thus, for all [some] E ∈ Extsem
(AFL,AR(S ′)) there is no H ∈ E with conclusion φ. By Lemma 26 [Lemma
27], for all [some (namely E ∩ ArgL(S1))] E1 ∈ Extsem(AFL,AR(S1)) there is
no H ∈ E with conclusion φ. Thus, S1 �|∼∪

sem φ[S1 �|∼∩
sem φ].

Suppose that S1 �|∼∩
sem φ. Thus, for some E ∈ Extsem(AFL,AR(S1)) there is

no H ∈ E with conclusion φ. By Lemma 26 there is an E� ∈ Extsem(AFL,AR(S ′))
for which E = E� ∩ ArgL(S1). Assume for a contradiction that there is an
H ∈ E� for which Conc(H) = φ. By Lemma 25, there is an H� ∈ E∩ArgL(S1),
with conclusion φ, which is a contradiction to the assumption that there is
no H ∈ E with conclusion φ. Thus, S ′ �|∼∩

sem φ.

Suppose that S ′ |∼∪
sem φ. Thus, there is an E ∈ Extsem(AFL,AR(S ′)) for

which there is an H ∈ E with conclusion φ. By Lemma 27, E ∩ ArgL(S1) ∈
Extsem(AFL,AR(S1)). By Lemma 25, there is a H′ ∈ E ∩ ArgL(S1) with con-
clusion φ. Thus, S1 |∼∪

sem φ.

Theorem 4. (Crash-Resistance) Let AFL,AR(S) = 〈ArgL(S), A〉 be a
hypersequent-based argumentation framework for a set of L-formulas S,
where AR ∩ {DefH ,UcutH} �= ∅ and L is a uniform logic with a fixed cor-
responding support splitting normal, literal-separating and premise-abiding
adequate calculus H. Suppose further that either L is semi-relevant or that
ConUcutH is part of AR. Then |∼∩

sem and |∼∪
sem are crash-resistant for every

sem ∈ {cmp, prf, grd}.

Proof. We show the cases for ∩ and ∪ simultaneously, and so we let π ∈
{∩, ∪}. Assume for a contradiction that S is a contaminating set. Then,
by Definition 25(i), there is a p ∈ Atoms(L) \ Atoms(S). If S |∼π

sem p would
hold, by Non-Interference (Theorem 3), also ∅ |∼π

sem p. However, since H is
literal-separating ∅ ⇒ p is not derivable in H. Thus, there is no argument
H ∈ ArgL(∅) with conclusion p, thus ∅ |�∼π

sem p, and so S �|∼π
sem p. On the

other hand, as demonstrated in the proof of Proposition 7, p |∼π
sem p. By

non-interference, since {p} and S are syntactically disjoint, S ∪ {p} |∼π
sem p

as well.

Thus S |�∼π
sem p but S ∪{p}|∼π

sem p. A contradiction to the assumption that
S is a contaminating set. It follows that no such set exists, thus |∼∩

sem and
|∼∪

sem satisfy crash-resistance for every sem ∈ {grd, cmp, prf}.
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8. Reasoning with Maximally Consistent Subsets

A well-known method for handling inconsistent sets of formulas is by taking
the maximally consistent subsets of such a set [74]. In this section we study
the relations between this approach and the semantics of hypersequential
argumentation frameworks.

Definition 28. For a logic L= 〈L, �〉 and a set T of L-formulas, we denote
by MCSL(T ) the set of all the ⊆-maximally �-consistent subsets of T .

The next lemma implies, in particular, that a formula in
⋂
MCSL(S) does

not belong to any ⊆-minimally inconsistent subset of S.

Lemma 28. For any logic L= 〈L, �〉 and set of L-formulas S, FreeL(S) =⋂
MCSL(S).

Proof. Let φ ∈ S.

• If φ /∈
⋂
MCSL(S), then there is some T ∈ MCSL(S), such that φ /∈ T .

Thus, there is a ⊆-minimal Γ ⊆ T for which � ¬(
∧

Γ∧φ). Since Γ∪{φ}
is minimally �-inconsistent, φ /∈ FreeL(S) as well.

• If φ /∈ FreeL(S), then there is some Γ ⊆ S such that Γ is minimally
�-inconsistent in S and φ ∈ Γ. By Definition 3, Γ \ {φ} is consistent.
Hence, there is some T ∈ MCSL(S) with Γ \ {φ} ⊆ T and φ /∈ T . Thus
φ /∈

⋂
MCSL(S).

Entailment relations for reasoning with maximally consistent subsets of
premises may be defined as follows:

Definition 29. Let L= 〈L, �〉 be a logic and S a set of L-formulas. Then:

• S |∼∩
L,mcs ψ if and only if ψ ∈ CNL(

⋂
MCSL(S));

• S |∼∪
L,mcs ψ if and only if ψ ∈

⋃
T ∈MCSL(S) CNL(T ).

Example 26. Consider the set of formulas S = {p, q, ¬p ∨ ¬q} and let
L ∈ {CL, LC,S5,RM}. Then MCSL(S) = {{p, q}, {p, ¬p ∨ ¬q}, {q, ¬p ∨ ¬q}}
and thus

⋂
MCSL(S) = ∅. By letting S ′ = S ∪ {r} (see Example 4), we

have that MCSL(S ′) = {{p, q, r}, {p, ¬p ∨ ¬q, r}, {q, ¬p ∨ ¬q, r}} and thus⋂
MCSL(S) = {r}. Therefore S ′ |∼∩

L,mcs r while S ′ |�∼∩
L,mcs φ for any φ ∈ S.

The close relations between structured argumentation and reasoning with
maximally consistent subsets have been identified in a number of works,
including [2,8,43,58,82], see [5] for a survey. In particular, it has been
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shown that sequent-based argumentation is a useful platform for reason-
ing with maximally consistency [6,8]. Here we will extend these results to
the hypersequent-based setting.

Theorem 5. Let AFL,AR(S) be a hypersequent-based argumentation frame-
work for a logic L= 〈L, �〉 with a fixed corresponding normal hypersequent
calculus H that is premise-abiding adequate for L, a set S of L-formulas, and
a set of attack rules AR = {ConUcutH}∪R, where ∅ �= R ⊆ {DefH ,UcutH}.
Then, for every L-formula ψ, it holds that:

1. S |∼L,grd ψ iff S |∼∩
L,prf ψ iff S |∼∩

L,stb ψ iff S |∼∩
L,mcs ψ.

2. S |∼∪
L,prf ψ iff S |∼∪

L,stb ψ iff S |∼∪
L,mcs ψ.

In what follows we omit the subscript L from the notations of the entail-
ment relations.

The next lemma is needed for the proof of Theorem 5. In what follows
we shall assume that AFL,AR(S) is a hypersequent-based argumentation
framework that satisfies the conditions in the theorem.

Lemma 29. If T ∈ MCSL(S) then ArgL(T ) ∈ Extstb(AFL,AR(S)).

Proof. Suppose that T ∈ MCSL(S) and let E = ArgL(T ). Assume, towards
a contradiction, that there are arguments H, H′ ∈ E such that H attacks
H′. Then, by Lemma 11,

⋃
Supp(H) ∪

⋃
Supp(H′) is �-inconsistent. But⋃

Supp(H) ∪
⋃

Supp(H′) ⊆ T ∈ MCSL(S) which is a contradiction. Hence
E is conflict-free.

Now, assume that there is some H = Γ1 ⇒ φ1 | . . . | Γn ⇒ φn ∈
ArgL(S) \ E . Therefore, there is a formula ψ ∈

⋃
Supp(H) \ T . Let ψ ∈ Γi

for some 1 ≤ i ≤ n. By the maximal consistency of T , and by Definition 3,
there are ψ1, . . . , ψm ∈ T such that � ¬(ψ1 ∧ . . . ∧ ψm ∧ ψ).

By Lemma 10, ψ1, . . . , ψm � ¬ψ. Since H is premise-abiding complete,
there is a G = Θ1 ⇒ γ1 | · · · | Θk ⇒ γk for which

⋃
Supp(G) = {ψ1, . . . , ψm}

and Conc(G) = ¬ψ. Thus, {γ1, . . . , γk} = {¬ψ}47 and
⋃k

i=1 Θi = {ψ1, . . . , ψk}.
By [¬⇒], G′ = Θ1, γ

′
1 ⇒| . . . | Θk, γ′

k ⇒ is derivable in H, where {γ′
1, . . . , γ

′
k} =

{¬¬ψ}. By Item 1 of Lemma 4, ψ ⇒ ¬¬ψ is derivable in H, thus by [Cut],
G′′ = Θ1, γ

′′
1 ⇒ | . . . | Θk, γ′′

k ⇒ is derivable in H, where {γ′′
1 , . . . , γ′′

k} = {ψ}.
By [∧⇒′], G′′′ = Θ1, γ

′′′
1 ⇒ | . . . | Θk, γ′′′

k ⇒ is derivable in H, where
γ′′′

j =
∧

Γi if γ′′
j = ψ and γ′′′

j is empty otherwise. By [⇒¬], G� = Θ1 ⇒
¬γ′′′

1 | . . . | Θk ⇒ ¬γ′′′
k is derivable in H. Note that Conc(G�) = ¬

∧
Γi and⋃

Supp(G�) ⊆ T , hence G� ∈ E attacks H. Thus, E attacks H.

47That is, for every 1 ≤ j ≤ k, γj is either empty or ¬ψ.



Logical Argumentation Based on Hypersequents 225

Altogether, this shows that E attacks every argument in ArgL(S) \ E .
Thus, E is stable.

We now turn to the proof of Theorem 5:

Proof. Let AFL,AR(S) be a hypersequent-based argumentation framework
for the logic L= 〈L, �〉 with a corresponding normal hypersequent calculus H
that is premise-abiding adequate for L. Let S be a set of L-formulas and let
AR = {ConUcutH} ∪ R where ∅ �= R ⊆ {DefH , UcutH} be the set of attack
rules. Let ψ be an L-formula.

1. (⇒) Note that S |∼grd ψ implies S |∼∩
prf ψ implies S |∼∩

stb ψ, so for the
proof of this direction it is sufficient to assume the latter. Suppose then
that S |∼∩

stb ψ. Then there is an argument G ∈
⋂

Extstb(AFL,AR(S)) with⋃
Supp(G) ⊆ S and Conc(G) = ψ. By Lemma 29, for each T ∈ MCSL(S),

G ∈ ArgL(T ). Hence
⋃
Supp(G) ⊆

⋂
MCSL(S). Since H is premise-

abiding complete,
⋃

Supp(G) � ψ. Therefore, S |∼∩
mcs ψ.

(⇐) Let S |∼∩
mcs ψ, then there is a finite Γ ⊆

⋂
MCSL(S) such that

Γ � ψ. Since H is premise-abiding complete, there is an argument
G ∈ ArgL(

⋂
MCSL(S)) such that

⋃
Supp(G) = Γ and Conc(G) = ψ.

By Lemma 28 and Lemma 16, G ∈ Extgrd(AFL,AR(S)). It follows that
S |∼grd ψ and thus S |∼∩

prf ψ and S |∼∩
stb ψ.

2. (⇒) Suppose that S |�∼∪
mcs ψ but S |∼∪

sem ψ, for sem ∈ {prf, stb}. Then
there is an argument H ∈ E and an E ∈ Extsem(AFL,AR(S)), such that
Conc(H) = ψ. However, since S |�∼∪

mcs ψ, it follows that there is no T ∈
MCSL(S) such that ψ ∈ CNL(T ). Since H is premise-abiding sound, for
each T ∈ MCSL(S) there is no G ∈ ArgL(T ) with Conc(G) = ψ. There-
fore,

⋃
Supp(H) is �-inconsistent. Thus, there is a finite Θ ⊆

⋃
Supp(H)

for which � ¬
∧

Θ. Since H is premise-abiding complete, there is an
H′ = ∅ ⇒ γ1 | · · · | ∅ ⇒ γk derivable for which Conc(H′) = ¬

∧
Θ.

So, every γi is either the empty string or ¬
∧

Θ. By Item 5 of Lemma 4,
H′′ is derivable with

⋃
Supp(H′′) = ∅ and Conc(H′′) = ¬

∧⋃
Supp(H).

Note that H′′ ConUcut-attacks H and E cannot defend H, therefore
H /∈ E , which is a contradiction.
(⇐) Suppose that S |∼∪

mcs ψ. Then there is a T ∈ MCSL(S) such that
ψ ∈ CNL(T ). By Lemma 29, ArgL(T ) ∈ Extstb(AFL,AR(S)). Moreover,
since H is premise-abiding complete, there is an argument H ∈ ArgL(T )
such that

⋃
Supp(H) ⊆ T and Conc(H) = ψ. Therefore S |∼∪

stb ψ and so
S |∼∪

prf ψ as well.
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While in view of examples such as Example 10, both directions of
Lemma 29 cannot be established, for support splitting normal calculi we
get both directions, as is shown in the following proposition.

Proposition 9. Let AFL,AR(S) be a hypersequent-based argumentation
framework for a logic L= 〈L, �〉 with a fixed corresponding support splitting
normal hypersequent calculus H that is premise-abiding adequate for L. It
holds that: Extstb(AFL,AR(S)) = {ArgL(T ) | T ∈ MCSL(S)}.
Proof. The “⊇”-direction is Lemma 29. For “⊆” let E ∈ Extstb(AFL,AR(S)).
By Lemma 13,

⋃
Supps(E) is �-consistent. Thus, there is a T ∈ MCSL(S)

for which
⋃

Supps(E) ⊆ T . By Lemma 29, ArgL(T ) ∈ Extstb(AFL,AR(S)).
Thus, ArgL(T ) = E .

Note 12. The conditions of Theorem 5 concerning the base logic and its
calculus are necessary. Indeed, as shown in Example 19, GRM is not premise-
abiding sound for RM, and as shown in the next example, Theorem 5 does
not hold for RM.

Example 27. Let S = {¬p, p∨q}. Then
⋂

MCSRM(S) = {¬p, p∨q} and thus
S|∼∩

mcsφ iff φ ∈ CNRM(S). As mentioned in Example 19, q /∈ CNRM(S), and so
S �|∼∩

mcs q. However, as mentioned in the same example, H = p ∨ q, ¬p ⇒| p ∨
q ⇒ q ∈ ArgRM(S). Moreover, H is not attacked, since there is no argument
G ∈ ArgRM(S) such that ⇒ Conc(G) ⊃ ¬(p ∨ q) or ⇒ Conc(G) ⊃ ¬¬p is
derivable. Hence, H is in the grounded extension of AFRM(S) for DefeatH

and/or UndercutH as the attack rule(s), and so S |∼π
semq for every π ∈ {∩, ∪}

and sem ∈ {grd, cmp, prf, stb}.

Below are two possible directions to obtain results similar to that of
Theorem 5 in the context of RM:

1. Adjust the notion of an argument.
One way of doing so would be as follows: ArgRM(S) contains all hyper-
sequents derivable in GRM of the form ψ1 ⇒ ψ | . . . | ψn ⇒ ψ | ⇒ ψ,
where {ψ1, . . . , ψn} ⊆ S. The motivation is that in [18, Thm. 15.71] it
has been shown that {ψ1, . . . , ψn} �RM ψ iff ψ1 ⇒ ψ | . . . | ψn ⇒ ψ |⇒ ψ
is provable in GRM. Despite the fact that GRM is not premise-abiding
adequate for RM, the re-defined ArgRM(S) picks out exactly those deriv-
able sequents such that the bi-conditional in Definition 12 holds where
the right side is restricted to the sequents in ArgRM(S).

2. Adjust the consequence relation �RM for RM.
For instance, one may define: Γ �∗

RM φ iff there is some H ∈ ArgRM(S)
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with
⋃

Supp(H) ⊆ Γ and Conc(H) = φ (Thus, this H is provable in
GRM). This enforces by definition that GRM is premise-abiding ade-
quate for the associated logic RM∗ = 〈L, �∗

RM〉. Note, however, that �∗
RM

is a consequence relation that is significantly stronger than �RM. For
instance, ¬p, p ∨ q �∗

RM q although ¬p, p ∨ q �RM q.48

9. Summary, Related Work and Future Research

In this paper we have presented a generalization of sequent-based argumen-
tation [9], in which hypersequents represent the arguments of a framework.
Like sequent-based argumentation, this approach avoids certain limitations
of some other approaches to logic-based argumentation (e.g., those in [31]),
where the support set of an argument has to be consistent and ⊆-minimal.
The use of hypersequents allows us to incorporate base logics that lack cut-
free calculi, like the ones considered in Section 5. In such cases, the search
for (hypersequent-based) arguments and counter-arguments is more effective
than in the sequent-based counterparts. Moreover, hypersequent-based ar-
gumentation allows a great flexibility in the specification of the attack rules
and in some cases it also allows us to construct argumentation frameworks
with desirable properties that are not available otherwise (see, e.g., Exam-
ple 10 and Note 6). Indeed, it was shown that frameworks for logics like
CL, LC and RM satisfy the logic-based rationality postulates from [1,40] and
thus that a problem raised in [43] (and further discussed in [2]), in which
complete extensions may not be consistent, is avoided. For logics with a
modal language, like S5, some modifications to two of the rationality pos-
tulates were necessary in order to prove them. Additionally, for yet another
set of assumptions on the calculus of the core logic, non-interference and
crash-resistance from [41] were shown.

Hypersequent calculi are just one of a variety of sequent calculi intro-
duced to formulate cut-free calculi for logics like S5. Other calculi are dis-
play calculi [26], nested sequents [39] and labeled sequents [67]. Although
hypersequent calculi are not among the most expressive ones (e.g., by def-
inition any hypersequent is a nested sequent and it has been shown that

48Note that �∗
RM � �CL. For example, �CL p ⊃ (q ⊃ p), but �GRM p ⊃ (q ⊃ p).

Also, RM∗ is neither paraconsistent nor does it satisfy the basic relevance criterion. For
instance, p, ¬p �∗

RM q since p ⇒ | ¬p ⇒ |⇒ q is derivable in GRM. To see this, take the
axiom p ⇒ p, apply [¬⇒] to obtain p, ¬p ⇒, [Sp] to obtain p ⇒ | ¬p ⇒, and finally [EW]
to get p ⇒ | ¬p ⇒ | ⇒ q.
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they can be embedded into display calculi [73]) due to its intuitive inter-
pretation as a disjunction of ordinary sequents, and since the system is still
expressive enough to capture interesting logics such as the three discussed
here, we believe that hypersequent-based argumentation is a useful general-
ization of ordinary sequent-based argumentation. Moreover, hypersequents
have been shown useful for the proof theory of fuzzy logics [65], and because
of their disjunctive nature, they have also been linked to parallel process-
ing [12]. These relations suggest that there may be useful applications of
hypersequent-based argumentation frameworks in these areas and for simi-
lar purposes.

In the literature there are several approaches to proving non-interference
and crash-resistance. For example, in [86] all the inconsistent arguments are
filtered out of the argumentation framework. As a result non-interference,
and thus crash-resistance, is shown for complete semantics. Other semantics
are not considered because it is necessary that at least one extension would
exist, and this is not always the case for stable semantics in their framework.
Instead of proving full crash-resistance, in [54] a weaker version is proven,
called non-triviality. By doing so, any completeness-based semantics can be
used for the framework. Recently, in [37] a general framework is defined,
in which several well-known structured argumentation frameworks can be
represented. It is shown that for this general framework and under a few fur-
ther assumptions, both crash-resistance and non-interference are obtained
for many completeness-based semantics. Here we were able to prove full
non-interference and crash-resistance for grounded, complete and preferred
semantics, for logics with a corresponding calculus that fulfills several re-
quirements. Among those logics are CL with GLK and LC with GLC (as long
as Consistency Undercut is part of the attack rules) and RM∗ with GRM
(because it satisfies the basic relevance criterion).

Reasoning with maximally consistent subsets (MCS) has been studied
since its introduction in [74] (see, e.g., [28,29,38]) and applied in different
areas of artificial intelligence. Connections between Dung-style argumenta-
tion and reasoning with maximally consistent subsets have been investigated
e.g., in [2,43,82], though [43,82] only discuss classical logic as the core logic of
the system and in [2,82] the support set of an argument has to be consistent
and ⊆-minimal. In [6,8] it is shown that ordinary sequent-based argumen-
tation is useful to represent reasoning with maximally consistent subsets. In
this paper we have generalized to hypersequent-based frameworks some of
the results from [8] that relate reasoning with MCS and the entailment rela-
tions |∼∩

mcs and |∼∪
mcs. The proof theoretical discussion here is more general

than that in [8] also in the sense that less is assumed about the base logic.
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As mentioned at the beginning of this section, sequent-based and
hypersequent-based argumentation have several advantages over other ap-
proaches to structured argumentation. In addition, ordinary sequent-based
argumentation is equipped with a dynamic proof theory [11], which pro-
vides a proof-theoretic approach to formal argumentation. Dynamic proof
theories allow for the automatic derivation of arguments and attacks and it
turns out that Dung-style semantics are related to notions of derivability.
These dynamic derivations benefit from the availability of cut-free calculi,
as they rely on the proof-theoretic properties of the calculus. When mov-
ing to first-order level, where classical logic is no longer decidable, dynamic
proof theory can still be applied and help obtaining approximations of, e.g.,
maximally consistent subsets. In future work we plan to extend the dynamic
proof theory for sequent-based argumentation to the hypersequent setting.

Additional future research directions include investigations of further ar-
gumentation semantics and hypersequential attack rules, the integration of
priorities among arguments (extending [7] to the hypersequent setting), and
we plan to examine the use of assumptions, such as default assumptions [64]
and assumptions taken in adaptive logics [24,78], for further extending the
expressive power of hypersequent-based argumentation. Concerning applica-
tion considerations, it would be interesting to see how argumentation theory
benefits from frameworks with core logics like S5, for which a huge amount
of research on, e.g., dynamic epistemic logic and agent-based settings is
available, and whether LC, which among others is known to be a central
fuzzy logic [57], can be successfully incorporated as a base logic for fuzzy
argumentation.
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A Uniformity of RM∗

The results for non-interference (Theorem 3) and crash-resistance (Theo-
rem 4) suppose that the given hypersequent-calculus is premise-abiding ad-
equate for a uniform logic. In the following we show that although GRM
is not premise-abiding sound for RM it is premise-abiding adequate for
RM∗ = 〈L, �∗

RM〉 (see Item 2 at the end of Section 8), which is a uniform
logic.49

Definition 30. We denote RM∗ = 〈L, �∗
RM〉, where L is the standard propo-

sitional language over {¬, ∨, ∧, ⊃}, and �∗
RM is defined by Γ �∗

RM ψ iff there
is a hypersequent H that is derivable in GRM, for which

⋃
Supp(H) ⊆ Γ and

Conc(H) = ψ.

It is not difficult to verify that �∗
RM is a Tarskian consequence relation,

thus RM∗ is a logic. To show that RM∗ is uniform we first recall the semantics
of RM (see, e.g., [17,18]).

Definition 31. A Sugihara chain is a triple: 〈V, ≤, −〉 where:

• V contains at least two elements,

• ≤ is a linear order on V, and

• − is an involution for ≤ on V.

Definition 32. Let S = 〈V, ≤, −〉 be a Sugihara chain and let a, b ∈ V.
Then:

• a < b if a ≤ b and a �= b,

• |a| = max(−a, a), and

• a �+ b if and only if either |a| < |b| or |a| = |b| and a < b.

49For the material in this appendix we assume familiarity with propositional matrices
and their basic theory (see Chapter 3 of [18]).

http://creativecommons.org/licenses/by/4.0/
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Definition 33. Let S = 〈V, ≤, −〉 be a Sugihara chain. Then:

• The multiplicative Sugihara matrix based on S is the matrix Mm(S) =
〈V, D, O〉 for {¬, ⊃} in which D = {a ∈ V | −a ≤ a}, ¬̌a = −a and
a⊃̌b = max	+(−a, b).

• The Sugihara matrix M(S) based on S is the extension of Mm(S) to LR

in which a∧̌b = min(a, b) and a∨̌b = max(a, b).

• A matrix M for LR (for {¬, ⊃}) is a (multiplicative) Sugihara matrix if for
some Sugihara chain S, M is the (multiplicative) Sugihara matrix which
is based on S.

Definition 34. The Sugihara Matrix M(Z) with the domain of integers
Z, where ≤ is the usual order relation and −a is the additive inverse of a,
has the following operations:

∨̌(a, b) = max(a, b) ∧̌(a, b) = min(a, b)

¬̌(a) = −a ⊃̌(a, b) =

{
max(−a, b) if a ≤ b

min(−a, b) otherwise.

The next lemma is shown in [17, Corollary 5.15].

Lemma 30. M(Z) is weakly characteristic for RM.

Lemma 31. φ1, . . . , φn �∗
RM ψ iff �RM ¬

∧n
i=1 φi ∨ ψ.

Proof. Suppose that φ1, . . . , φn �∗
RM ψ. Thus, there are Γ1, Δ1, . . . Γk, Δk ⊆

L for which Γ1 ⇒ Δ1 | · · · | Γk ⇒ Δk is derivable in GRM, {φ1, . . . φn} =
⋃k

i=1 Γi, and ψ =
∨⋃k

i=1 Δi. By multiple applications of [Sp] and possibly
[EC], φ1 ⇒| · · ·φn ⇒|⇒ ψ is derivable in GRM. By Proposition 3 (Item 3),
�RM

∨
i=1 ¬φi ∨ φ. The rest follows by the validity of de Morgan’s laws for

RM.
Suppose now that �RM ¬

∧
i=1 φi ∨ φ and thus by de Morgan laws, �RM∨

i=1 ¬φi ∨φ. By Proposition 3 (Item 3), φ1 ⇒| · · · | φn ⇒|⇒ ψ is derivable
in GRM. Thus, by Definition 30, φ1, . . . , φn �∗

RM ψ.

Proposition 10. RM∗ is uniform.

Proof. Let φ1, . . . , φn, ψ1, . . . , ψm, γ ∈ L such that

1. Atoms({φ1, . . . , φn, γ}) ∩ Atoms({ψ1, . . . , ψm}) = ∅,

2. φ1, . . . , φn, ψ1, . . . , ψm �∗
RM γ

3. φ1, . . . , φn �∗
RM γ

4. �∗
RM ¬

∧
Γ for all Γ ⊆ {ψ1, . . . , ψm}.
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By Item 2 and Lemma 31, �RM ¬ (
∧n

i=1 φi ∧
∧m

i=1 ψi) ∨ φ. By de Morgan
laws, (†) �RM ¬

∧n
i=1 φi ∨ ¬

∧m
i=1 ψi ∨ γ. By Lemma 30 and Items 3 and

4 there are valuations v1, v2 ∈ M(Z) for which v1 (¬
∧n

i=1 φi ∨ γ) < 0 and
v2 (¬

∧m
i=1 ψi) < 0. In view of Item 1 we can define the valuation v as follows:

v : p �→

⎧
⎪⎨

⎪⎩

v1(p) if p ∈ Atoms({φ1, . . . , φn, γ}),
v2(p) if p ∈ Atoms({ψ1, . . . , ψm}),
arbitrary otherwise.

Then v (¬
∧n

i=1 φi ∨ γ) = v1 (¬
∧n

i=1 φi ∨ γ) < 0 and v (¬
∧m

i=1 ψi) = v2
(¬

∧m
i=1 ψi) < 0. It follows that v (¬

∧n
i=1 φi ∨ ¬

∧m
i=1 ψi ∨ γ) = max

({v (¬
∧n

i=1 φi ∨ γ) , v (¬
∧m

i=1 ψi)}) < 0. This is in contradiction with (†).
We have shown that Items 1–4 cannot hold together. Therefore, Items 1,2,4
imply that Item 3 does not hold. This shows that RM∗ is uniform.

B Proof of Proposition 8

Proposition 8 1. If H is normal and premise-abiding adequate, then |∼ is
monotonic for |∼ = |∼∪

sem and every sem ∈ {cmp, prf, stb}.

Proof. Suppose S |∼∪
cmp φ. Thus, there is an E ∈ Extcmp(AFL(S)) and an

H ∈ E for which Conc(H) = φ. By Lemma 12, T =
⋃
Supps(E) is a �-

consistent subset of S. Let now S ′ ⊃ S. Thus, T is a �-consistent subset
of S ′. Hence, there is a T ′ ⊇ T such that T ′ ∈ MCSL(S ′). By Lemma 29,
ArgL(T ′) ∈ Extstb(AFL(S ′)). Since H ∈ ArgL(T ′), S ′ |∼∪

stb φ. Note that
S |∼∪

stb φ implies that S |∼∪
prf φ implies that S |∼∪

cmp φ, and so S ′ |∼∪
sem φ for

any sem ∈ {stb, prf, cmp}.
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