
Kobe University Repository : Kernel

PDF issue: 2024-04-26

On Inclusions Between Quantified Provability
Logics

(Citation)
Studia Logica,110(1):165-188

(Issue Date)
2022-02

(Resource Type)
journal article

(Version)
Accepted Manuscript

(Rights)
This version of the article has been accepted for publication, after peer review (when
applicable) and is subject to Springer Nature's AM terms of use, but is not the
Version of Record and does not reflect post-acceptance improvements, or any
corrections. The Version of Record is available online at:…
https://doi.org/10.1007/s11225-021-09957-y(URL)
https://hdl.handle.net/20.500.14094/90009586

Kurahashi, Taishi



On inclusions between quantified provability

logics

Taishi Kurahashi*�

Abstract

We investigate several consequences of inclusion relations between
quantified provability logics. Moreover, we give a necessary and suffi-
cient condition for the inclusion relation between quantified provability
logics with respect to Σ1 arithmetical interpretations.

1 Introduction

The notion of provability is a kind of modality, and modal logical studies of
formalized provability have been extensively proceeded by many authors. Such
studies have had many successes, especially in the framework of propositional
modal logic. Solovay’s arithmetical completeness theorem [13] is one of them.
For every recursively enumerable extension T of Peano Arithmetic PA, let
PrT (x) be a usual provability predicate of T . A T -arithmetical interpretation is
a mapping fT from the set of all propositional modal formulas to the set of sen-
tences of arithmetic such that fT commutes with each propositional connective
and fT maps □A to PrT (⌜fT (A)⌝). Let PL(T ) be the set of all propositional
modal formulas A such that T ⊢ fT (A) for every T -arithmetical interpreta-
tion fT . This set is called the propositional provability logic of T . Solovay’s
arithmetical completeness theorem states that if T is a Σ1-sound recursively
enumerable extension of PA, then PL(T ) is exactly the propositional modal
logic GL. Thus PL(T ) is recursive, but does not contain any elements specific
to the theory T .

Formalized provability is also studied in the framework of quantified modal
logic. The main target of this study is the quantified provability logic QPL(T )
of T , which consists of quantified modal sentences verifiable in T under any T -
arithmetical interpretation. Boolos [3] asked if QPL(PA) is recursively enumer-
able or not, and in contrast to the propositional case, Vardanyan [14] proved that
QPL(PA) is Π0

2-complete. Hence the analogue of Solovay’s arithmetical com-
pleteness theorem never holds in the case of quantified modal logic. Moreover,

*Email: kurahashi@people.kobe-u.ac.jp
�Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-

8501, Japan.

1



Montagna [12] showed that some results which hold in the case of propositional
logic are not inherited in the quantified case. Among other things, he proved
that QPL(PA) is not a subset of QPL(BG), where BG is the Bernays–Gödel
set theory. Thus QPL(T ) can vary depending on the theory T .

Artemov [1] showed that the quantified provability logic QPL(T ) of T can
be different depending on the choice of a formula defining T . More precisely, we
say that a formula τ(v) is a definition of a theory T if for any natural number
n, τ(n) is true if and only if n is the Gödel number of an axiom of T . For each
Σ1 definition τ(v) of T , we can construct a Σ1 provability predicate Prτ (x) of T
saying that “x is (the Gödel number of a formula) provable in the theory defined
by τ(v)”. The notion of τ -arithmetical interpretations is introduced as well by
using Prτ (x) instead of PrT (x). Then, the quantified provability logic QPLτ (T )
of τ(v) is defined to be the set of all quantified modal sentences provable in T
under all τ -arithmetical interpretations. Artemov proved that for any Σ1-sound
recursively enumerable extension T of PA and any Σ1 definition τ0(v) of T ,
there exists a Σ1 definition τ1(v) of T such that QPLτ0(T ) ⊈ QPLτ1(T ).

The results of Montagna and Artemov seem to indicate that inclusion rela-
tions between quantified provability logics are rarely established. Indeed, Kura-
hashi [9] proved that for any natural numbers i and j with 0 < i < j, there exists
a Σ1 definition σi(v) of the theory IΣi such that for all Σ1 definitions σj(v) of
IΣj, QPLσi

(IΣi) ⊈ QPLσj
(IΣj) and QPLσj

(IΣj) ⊈ QPLσi
(IΣi). The situation

of the inclusion relation between quantified provability logics is completely dif-
ferent from that of propositional case: it is known that for any theories T0 and
T1, at least one of PL(T0) ⊆ PL(T1) and PL(T1) ⊆ PL(T0) holds (cf. Visser [15]).

From this point of view, in the present paper, we investigate several conse-
quences of the inclusion QPLτ0(T0) ⊆ QPLτ1(T1) between quantified provability
logics. Among other things, we prove that if QPLτ0(T0) ⊆ QPLτ1(T1), then

1. T0 +Conτ0 is a subtheory of T1 +Conτ1 ;

2. T0 is Σ1-conservative over T1;

3. Conτ0 and Conτ1 are provably equivalent over T1; and

4. For any formula φ(x⃗),

T1 ⊢ ∀x⃗
(
Prτ0(⌜Conτ0 → φ(⃗̇x)⌝) ↔ Prτ1(⌜Conτ1 → φ(⃗̇x)⌝)

)
.

Thus from our results, we certify that the inclusion relation between quantified
provability logics holds only under limited situations. Moreover, our results also
show that the quantified provability logic QPLτ (T ) is not only complex, but also
possesses much information about the theory T and the provability predicate
Prτ (x).

We also investigate provability logics with respect to Σ1 arithmetical inter-
pretations. In the propositional case, a T -arithmetical interpretation fT is called
Σ1 if for any propositional variable p, fT (p) is a Σ1 sentence. Let PLΣ1(T ) be
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the set of all propositional modal formulas A such that T ⊢ fT (A) for every T -
arithmetical interpretation fT which is Σ1. Visser proved that PLΣ1(PA) is also
recursive and exactly the propositional modal logic GLV (see Boolos [4]). In
the quantified case, Berarducci [2] also proved that QPLΣ1(PA) is Π0

2-complete.
Thus, the situations of Σ1 provability logics do not seem to be different from
those of usual provability logics.

On the other hand, there is an advantage to dealing with Σ1 arithmetical
interpretations for our purposes, which allows us to improve Artemov’s Lemma
used in the proof of Vardanyan’s theorem. Then, we can give a necessary and
sufficient condition for the inclusion relation between quantified provability log-
ics with respect to Σ1 arithmetical interpretations. Namely, we prove that
QPLΣ1

τ0 (T0) ⊆ QPLΣ1
τ1 (T1) if and only if T0 is a subtheory of T1 and for any

formula φ(x⃗), T1 ⊢ ∀x⃗(Prτ0(⌜φ(⃗̇x)⌝) ↔ Prτ1(⌜φ(⃗̇x)⌝)).

2 Preliminaries

Let LA = {0, S,+,×, <,=} be the language of first-order arithmetic. We call
a set of LA-sentences simply a theory. Peano Arithmetic PA is the theory
consisting of basic axioms for LA and induction axioms for LA-formulas. IΣ1

is the theory obtained from PA by restricting induction axioms to Σ1 formu-
las. Throughout the present paper, T , T0 and T1 always denote recursively
enumerable extensions of IΣ1

1. In the present paper. Let Th(T ) be the set
of all LA-sentences provable in T . Also, for each class Γ of formulas, let
ThΓ(T ) := Th(T ) ∩ Γ. The standard model of arithmetic is denoted by N.
We say that T is Σ1-sound if every element of ThΣ1

(T ) is true in N. Notice that
Σ1-soundness implies consistency.

For each natural number n, the numeral for n is denoted by n. We fix some
natural Gödel numbering, and for each LA-formula φ, let ⌜φ⌝ be the numeral
for the Gödel number of φ. We say a formula τ(v) is a definition of a theory
T if for any natural number n, N |= τ(n) if and only if n is the Gödel number
of some axiom of T . Hereafter, we assume that τ(v), τ0(v) and τ1(v) always
denote Σ1 definitions of T , T0 and T1, respectively. Then, we can construct a
Σ1 formula Prτ (x) saying that “x is (the Gödel number of a formula) provable
in the theory defined by τ(v)”. The following fact is well-known.

Fact 2.1 (Derivability conditions (see Boolos [4] and Lindström [11])). For any
formulas φ(x⃗) and ψ(x⃗),

1. If T ⊢ φ(x⃗), then IΣ1 ⊢ Prτ (⌜φ(⃗̇x)⌝);

2. IΣ1 ⊢ Prτ (⌜φ(⃗̇x) → ψ(⃗̇x)⌝) → (Prτ (⌜φ(⃗̇x)⌝) → Prτ (⌜ψ(⃗̇x)⌝));

3. If φ(x⃗) is a Σ1 formula, then IΣ1 ⊢ φ(x⃗) → Prτ (⌜φ(⃗̇x)⌝).
1Based on the result of de Jonge [5] that Artemov’s Lemma (Fact 2.8) holds for the theory

IΣ1, we adopted IΣ1 as the base theory in this paper. See the paragraph immediately
following Fact 2.10.
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Here ⌜φ(⃗̇x)⌝ is an abbreviation for ⌜φ(ẋ1, . . . , ẋn)⌝ that is a primitive recur-
sive term corresponding to a primitive recursive function calculating the Gödel
number of φ(k1, . . . , kn) from k1, . . . , kn.

Let Conτ be the Π1 sentence ¬Prτ (⌜0 = 1⌝) stating that the theory defined
by τ(v) is consistent. For each sentence φ, let (τ + φ)(v) be the Σ1 definition
τ(v) ∨ v = ⌜φ⌝ of T + φ. Then it is known that the formalized version of the
deduction theorem holds: IΣ1 ⊢ ∀x(Prτ+φ(x) ↔ Prτ (⌜φ⌝→̇x)). Here u→̇v
is a primitive recursive term corresponding to a primitive recursive function
calculating the Gödel number of φ→ ψ from the Gödel numbers of φ and ψ.

The language of quantified modal logic is the language of first-order predicate
logic without function and constant symbols equipped with the unary modal
operators □ and ♢. We may assume that the languages of quantified modal
logic and first-order arithmetic have the same variables.

Definition 2.2. A mapping f from the set of all atomic formulas of quanti-
fied modal logic to the set of LA-formulas satisfying the following condition is
called an arithmetical interpretation : For each atomic formula P (x1, . . . , xn),
f(P (x1, . . . , xn)) is an LA-formula φ(x1, . . . , xn) with the same free variables,
and moreover f(P (y1, . . . , yn)) is φ(y1, . . . , yn) for any variables y1, . . . , yn.

Definition 2.3. Each arithmetical interpretation f is uniquely extended to a
mapping fτ from the set of all quantified modal formulas to the set of LA-
formulas inductively as follows:

1. fτ (⊥) is 0 = 1;

2. fτ commutes with each propositional connective and quantifier;

3. fτ (□A(x1, . . . , xn)) is the formula Prτ (⌜fτ (A(ẋ1, . . . , ẋn))⌝).

Notice that any quantified modal formula A has the same free variables as
fτ (A). We are ready to introduce the quantified provability logic of τ(v).

Definition 2.4. The quantified provability logic QPLτ (T ) of τ(v) is the set

{A | A is a sentence and for all arithmetical interpretations f, T ⊢ fτ (A)}.

The main purpose of the present paper is to investigate the inclusion relation
QPLτ0(T0) ⊆ QPLτ1(T1) between quantified provability logics. For this purpose,
we heavily use Artemov’s Lemma (Fact 2.8) that is used in the proof of Var-
danyan’s theorem on the Π2-completeness of the quantified provability logic of
PA. To state Artemov’s Lemma, we prepare some definitions.

Definition 2.5. We prepare predicate symbols PZ(x), PS(x, y), PA(x, y, z),
PM (x, y, z), PL(x, y) and PE(x, y) corresponding to members 0, S, +, ×, < and
= of LA, respectively. For each LA-formula φ, let φ∗ be a logically equivalent
LA-formula where each atomic formula is one of the forms x = 0, S(x) = y,
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x + y = z, x × y = z, x < y and x = y. Let φ◦ be a relational formula
obtained from φ∗ by replacing each atomic formula with the corresponding
relation symbol in {PZ , PS , PA, PM , PL, PE} adequately. Then φ◦ is a quantified
modal formula.

Let Seq(s) be the formula naturally expressing that “s is a finite sequence”.
Also let lh(s) and (s)x be primitive recursive terms corresponding to primi-
tive recursive functions calculating the length and x-th component of a finite
sequence s, respectively.

Definition 2.6. For each arithmetical interpretation f , let Rf (x, y) be the
formula

∃s(Seq(s)∧lh(s) = x+1∧(s)x = y∧f(PZ((s)0))∧∀z < x f(PS((s)z, (s)z+1))).

Let Rf (x⃗, y⃗) denote a conjunction Rf (x0, y0) ∧Rf (x1, y1) ∧ · · · ∧Rf (xn, yn).

The formula Rf (x, y) means that y represents x under the interpretation that
f(PZ(u)) and f(PS(u, v)) say “u represents 0” and “v represents the successor
of a number represented by u”, respectively.

We introduce the modal sentence D asserting the completeness of PK and
¬PK for every newly introduced predicate symbol PK .

Definition 2.7. Let D be the modal sentence∧
K∈{Z,S,A,M,L,E}

(
∀x⃗(PK(x⃗) → □PK(x⃗)) ∧ ∀x⃗(¬PK(x⃗) → □¬PK(x⃗))

)
.

We are ready to state Artemov’s Lemma. In the statement of the lemma,
the LA-sentence χ is a conjunction of several basic sentences of arithmetic such
as ∀x∃y(S(x) = y) and ∀x(x + 0 = x), which serves to incorporate a structure
of arithmetic into a set.

Fact 2.8 (Artemov’s Lemma (see [4, p.232])). There exists an LA-sentence χ
such that IΣ1 ⊢ χ and for any arithmetical interpretation f and LA-formula
φ(x⃗),

IΣ1 ⊢ Conτ ∧ fτ (D) ∧ fτ (χ◦) ∧Rf (x⃗, y⃗) →
(
φ(x⃗) ↔ fτ (φ

◦(y⃗))
)
.

We give a short outline of a proof of Artemov’s Lemma based on the pre-
sentation in [8]. Let M be a model of IΣ1 + Conτ ∧ fτ (D) ∧ fτ (χ◦). By the
aid of fτ (χ

◦), fτ (PE(x, y)) defines an equivalence relation ∼ on M . Let [a] be
the equivalence class of a ∈ M with respect to ∼. Then, the relations on M
defined by the formulas PK(x⃗) for K ∈ {Z, S,A,M,L} induce an LA-structure
Mf with the domain {[a] | a ∈ M}. For instance, Mf |= [a] + [b] = [c] ⇐⇒
M |= fτ (PA(a, b, c)). The sentence fτ (χ

◦) guarantees that Mf is well-defined
and indeed an LA-structure satisfying a sufficiently strong fragment of IΣ1, and

5



that for any a⃗ ∈ M , Mf |= φ([⃗a]) ⇐⇒ M |= fτ (φ
◦(⃗a)). Also M is isomorphic

to an initial segment of Mf via an embedding defined by the formula Rf (x, y).
Moreover, from the sentence Conτ ∧ fτ (D), we obtain the equivalences

fτ (PK(x⃗)) ↔ Prτ (⌜fτ (PK(⃗̇x))⌝) and ¬fτ (PK(x⃗)) ↔ Prτ (⌜¬fτ (PK(⃗̇x))⌝)

in M for each K ∈ {Z, S,A,M,L,E}. Then both fτ (PK(x⃗)) and ¬fτ (PK(x⃗))
are equivalent to Σ1 formulas in M . By applying a proof of Tennenbaum’s
theorem (see Kaye [7]), we obtain that M and Mf are in fact isomorphic, and

hence are elementarily equivalent. Therefore, if M |= Rf (⃗a, b⃗), then M |= φ(⃗a)

is equivalent to Mf |= φ([⃗b]). Hence M |= φ(⃗a) ↔ fτ (φ
◦(⃗b)).

In the proof of Artemov’s Lemma, the following facts are also used.

Fact 2.9 (See Boolos [4, Lemma 17.6]). For any Σ1 formula φ(x⃗) and arith-
metical interpretation f ,

IΣ1 ⊢ fτ (χ◦) ∧Rf (x⃗, y⃗) →
(
φ(x⃗) → fτ (φ

◦(y⃗))
)
.

Fact 2.10 (See Boolos [4, Lemma 17.8]). For any arithmetical interpretation
f ,

IΣ1 ⊢ Conτ ∧ fτ (D) ∧ fτ (χ◦) → ∀y∃xRf (x, y).

Facts 2.9 and 2.10 follow from the observations that M is isomorphic to
an initial segment of Mf and Rf (x, y) defines a surjection from M onto Mf ,
respectively. In Boolos [4], these facts including Artemov’s Lemma are stated
in the forms that the corresponding formulas are proved in PA, and de Jonge
[5] proved that PA can be replaced by IΣ1 (see also [8]).

Definition 2.11. An arithmetical interpretation f is natural if for each K ∈
{Z, S,A,M,L,E}, f maps PK(x⃗) to the intended atomic formula (for example,
f(PA(x, y, z)) is x+ y = z).

For every quantified modal formula A, let ⊡A be an abbreviation for A∧□A.
Proposition 2.12. Let f be any natural arithmetical interpretation.

1. For any LA-formula φ(x⃗), IΣ1 ⊢ ∀x⃗(fτ (φ◦(x⃗)) ↔ φ(x⃗));

2. IΣ1 ⊢ fτ (⊡D) ∧ fτ (⊡χ◦).

Proof. 1. By induction on the construction of φ(x⃗).
2. For each K ∈ {Z, S,A,M,L,E}, since fτ (PK(x⃗)) is ∆0, it follows from

Fact 2.1.3 that IΣ1 proves fτ (PK(x⃗)) → Prτ (⌜fτ (PK(⃗̇x))⌝) and ¬fτ (PK(x⃗)) →
Prτ (⌜¬fτ (PK(⃗̇x))⌝). Thus IΣ1 ⊢ fτ (D). By Fact 2.1.1, IΣ1 ⊢ Prτ (⌜fτ (D)⌝),
and hence IΣ1 ⊢ fτ (⊡D).

Also by Clause 1, IΣ1 ⊢ fτ (χ
◦) ↔ χ. Since IΣ1 proves χ, IΣ1 ⊢ fτ (χ

◦).
As above, IΣ1 ⊢ fτ (⊡χ◦) also holds.
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Artemov’s Lemma is used to prove Vardanyan’s theorem, but what is im-
portant to us is the following observation by Visser and de Jonge.

Fact 2.13 (Visser and de Jonge [16, Theorem 3]). For any LA-sentence φ, the
following are equivalent:

1. T +Conτ ⊢ φ.

2. ♢⊤ ∧D ∧ χ◦ → φ◦ ∈ QPLτ (T ).

We give a proof of Visser and de Jonge’s fact.

Proof. (1 ⇒ 2): Suppose T + Conτ ⊢ φ. By Artemov’s Lemma, for any arith-
metical interpretation f ,

T ⊢ Conτ ∧ fτ (D) ∧ fτ (χ◦) → fτ (φ
◦).

Thus T ⊢ fτ (♢⊤ ∧D ∧ χ◦ → φ◦). Hence ♢⊤ ∧D ∧ χ◦ → φ◦ ∈ QPLτ (T ).
(2 ⇒ 1): Suppose ♢⊤∧D∧χ◦ → φ◦ ∈ QPLτ (T ). For a natural arithmetical

interpretation f ,

T ⊢ Conτ ∧ fτ (D) ∧ fτ (χ◦) → fτ (φ
◦).

By Proposition 2.12, T +Conτ ⊢ φ.

Visser and de Jonge’s fact states that QPLτ (T ) has the complete information
about Th(T + Conτ ). Then we obtain some corollaries concerning inclusions
between quantified provability logics.

Corollary 2.14.

1. If QPLτ0(T0) ⊆ QPLτ1(T1), then Th(T0 +Conτ0) ⊆ Th(T1 +Conτ1);

2. If QPLτ0(T0) = QPLτ1(T1), then Th(T0 +Conτ0) = Th(T1 +Conτ1).

Proof. 1. Suppose QPLτ0(T0) ⊆ QPLτ1(T1). Let φ be any LA-sentence with
T0 + Conτ0 ⊢ φ. Then from Fact 2.13, ♢⊤ ∧ D ∧ χ◦ → φ◦ ∈ QPLτ0(T0).
By the supposition, ♢⊤ ∧ D ∧ χ◦ → φ◦ ∈ QPLτ1(T1). From Fact 2.13 again,
T1 +Conτ1 ⊢ φ. Therefore Th(T0 +Conτ0) ⊆ Th(T1 +Conτ1).

Clause 2 follows from Clause 1.

The following corollary is an immediate consequence of Corollary 2.14.2.

Corollary 2.15. If QPLτ0(T0) = QPLτ1(T1) and Th(T0) ⊆ Th(T1), then T1 ⊢
Conτ0 ↔ Conτ1 .

3 On inclusions between quantified provability
logics

Inspired by Visser and de Jonge’s fact, we explore further consequences of in-
clusion relationships between quantified provability logics that result from Arte-
mov’s Lemma.
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3.1 Variations of Fact 2.13 and its consequences

In this subsection, we prove variations of Visser and de Jonge’s Fact 2.13 and its
consequences. The following proposition is a variation of Fact 2.13 with respect
to Σ1 sentences.

Proposition 3.1. For any Σ1 sentence φ, the following are equivalent:

1. T ⊢ φ.

2. χ◦ → φ◦ ∈ QPLτ (T ).

Proof. (1 ⇒ 2): Suppose T ⊢ φ. By Fact 2.9, for any arithmetical interpretation
f , IΣ1 ⊢ fτ (χ◦) ∧ φ → fτ (φ

◦). Hence T ⊢ fτ (χ◦ → φ◦). We have χ◦ → φ◦ ∈
QPLτ (T ).

(2 ⇒ 1): This is trivial by considering a natural arithmetical interpretation.

Then we obtain a variation of Corollary 2.14 by a similar proof.

Corollary 3.2.

1. If QPLτ0(T0) ⊆ QPLτ1(T1), then ThΣ1
(T0) ⊆ ThΣ1

(T1);

2. If QPLτ0(T0) = QPLτ1(T1), then ThΣ1
(T0) = ThΣ1

(T1).

By applying Fact 2.9, Corollary 2.15 is strengthened as follows.

Proposition 3.3. If QPLτ0(T0) ⊆ QPLτ1(T1), then T1 ⊢ Conτ0 ↔ Conτ1 .

Proof. Suppose QPLτ0(T0) ⊆ QPLτ1(T1). Then, T1 ⊢ Conτ1 → Conτ0 by Corol-
lary 2.14.1, and so it suffices to prove T1 ⊢ Conτ0 → Conτ1 . Let f be any
arithmetical interpretation. Since ¬Conτ0 is a Σ1 sentence, by Fact 2.9,

IΣ1 ⊢ fτ0(χ◦) → (¬Conτ0 → fτ0(¬Con
◦
τ0)).

Hence T0 ⊢ fτ0(χ
◦ ∧ □⊥ → ¬Con◦τ0), and thus χ◦ ∧ □⊥ → ¬Con◦τ0 is in

QPLτ0(T0). From the supposition, χ◦ ∧ □⊥ → ¬Con◦τ0 ∈ QPLτ1(T1). By
considering a natural arithmetical interpretation, we obtain that T1 proves
¬Conτ1 → ¬Conτ0 . Therefore T1 ⊢ Conτ0 → Conτ1 .

Corollary 3.4. If T1 is consistent and T1 ⊢ Conτ0 , then QPLτ0(T0) ⊈ QPLτ1(T1).

Proof. Assume that T1 is consistent and T1 ⊢ Conτ0 . If QPLτ0(T0) ⊆ QPLτ1(T1),
then by Proposition 3.3, T1 ⊢ Conτ0 ↔ Conτ1 . From the supposition, T1 ⊢
Conτ1 and this contradicts Gödel’s second incompleteness theorem. Therefore
we get QPLτ0(T0) ⊈ QPLτ1(T1).

The following corollary is a refinement of the result of Artemov [1].
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Corollary 3.5. Suppose that T is Σ1-sound. Then, for any Σ1 definition τ(v)
of T , there exists a Σ1 definition τ ′(v) of T such that QPLτ (T ) ⊈ QPLτ ′(T ) and
QPLτ ′(T ) ⊈ QPLτ (T ).

Proof. Let τ(v) be any Σ1 definition of T . Since ¬Conτ is Σ1, by Fact 2.1.3,
T ⊢ ¬Conτ → Prτ (⌜¬Conτ⌝). Equivalently, T ⊢ Conτ+Conτ

→ Conτ . Since T
is Σ1-sound, Conτ+Conτ

is a true Π1 sentence. Then, it is known that there exists
a Σ1 definition τ ′(v) of T such that T ⊢ Conτ ′ ↔ Conτ+Conτ (cf. Lindström
[11, Theorem 2.8.(b)]).

Suppose, towards a contradiction, T ⊢ Conτ → Conτ ′ . Then, T proves
Conτ → Conτ+Conτ

and Prτ (⌜¬Conτ⌝) → ¬Conτ . By Löb’s theorem, T also
proves ¬Conτ . This contradicts the Σ1-soundness of T . Thus T ⊬ Conτ →
Conτ ′ .

Moreover, T ⊬ Conτ ↔ Conτ ′ . It follows from Proposition 3.3 that QPLτ (T ) ⊈
QPLτ ′(T ) and QPLτ ′(T ) ⊈ QPLτ (T ).

3.2 On provable equivalences of provability predicates

In this subsection, we investigate further consequences of inclusions between
quantified provability logics via Artemov’s Lemma. In particular, we show that
some provable equivalences of provability predicates are derived from inclusion.
First, we prepare the following lemma.

Lemma 3.6. Let f be any arithmetical interpretation.

1. PA ⊢ fτ (D) → (Rf (x, y) → Prτ (⌜Rf (ẋ, ẏ)⌝));

2. If f(PZ(x)) and f(PS(x, y)) are Σ1 formulas, then IΣ1 ⊢ Rf (x, y) →
Prτ (⌜Rf (ẋ, ẏ)⌝).

Proof. 1. By the definition of D, fτ (PZ(x)) → Prτ (⌜fτ (PZ(ẋ))⌝) and fτ (PS(x, y)) →
Prτ (⌜fτ (PS(ẋ, ẏ))⌝) are provable in PA+ fτ (D). Also if PA ⊢ φ0 → Prτ (⌜φ0⌝)
and PA ⊢ φ1 → Prτ (⌜φ1⌝), then PA ⊢ φ0 ∧ φ1 → Prτ (⌜φ0 ∧ φ1⌝) and
T ⊢ ∃sφ0 → Prτ (⌜∃sφ0⌝). Thus it suffices to show that PA+ fτ (D) proves

∀z < x fτ (PS((s)z, (s)z+1)) → Prτ (⌜∀z < ẋ fτ (PS((ṡ)z, (ṡ)z+1))⌝).

Let ψ(x) denote this formula. Since T ⊢ ∀z < 0 fτ (PS((s)z, (s)z+1)), by Fact
2.1.1, PA ⊢ Prτ (⌜∀z < 0 fτ (PS((ṡ)z, (ṡ)z+1))⌝). Thus PA ⊢ ψ(0). Also PA +
fτ (D) proves

ψ(x) ∧ ∀z < S(x) fτ (PS((s)z, (s)z+1))

→ ∀z < x fτ (PS((s)z, (s)z+1)) ∧ fτ (PS((s)x, (s)x+1)),

→ Prτ (⌜∀z < ẋ fτ (PS((ṡ)z, (ṡ)z+1)) ∧ fτ (PS((ṡ)ẋ, (ṡ)ẋ+1))⌝),
→ Prτ (⌜∀z < S(ẋ) fτ (PS((ṡ)z, (ṡ)z+1))⌝).

Hence PA+fτ (D) ⊢ ψ(x) → ψ(S(x)), and by the induction axiom, we conclude
PA+ fτ (D) ⊢ ∀xψ(x).

2. If f(PZ(x)) and f(PS(x, y)) are Σ1 formulas, then Rf (x, y) is also a Σ1

formula. Then the statement follows from Fact 2.1.3.
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We are ready to prove one of our main theorem of this subsection.

Theorem 3.7. Suppose Th(PA) ⊆ Th(T0). If QPLτ0(T0) ⊆ QPLτ1(T1), then
for any LA-formula φ(y⃗),

T1 ⊢ ∀y⃗
(
Prτ0(⌜Conτ0 → φ(⃗̇y)⌝) ↔ Prτ1(⌜Conτ1 → φ(⃗̇y)⌝)

)
.

Proof. Suppose Th(PA) ⊆ Th(T0) and QPLτ0(T0) ⊆ QPLτ1(T1). Let f be any
arithmetical interpretation. By Artemov’s Lemma,

IΣ1 ⊢ Conτ0 ∧ fτ0(D) ∧ fτ0(χ◦) ∧Rf (x⃗, y⃗) → (φ(x⃗) ↔ fτ0(φ
◦(y⃗))) .

Then T0 proves

fτ0(D)∧ fτ0(χ◦)∧Rf (x⃗, y⃗) → ((Conτ0 → φ(x⃗)) ↔ (Conτ0 → fτ0(φ
◦(y⃗)))) .

By Fact 2.1, we have

IΣ1 ⊢ fτ0(□D) ∧ fτ0(□χ◦) ∧ Prτ0(⌜Rf (⃗̇x, ⃗̇y)⌝)

→
(
Prτ0(⌜Conτ0 → φ(⃗̇x)⌝) ↔ fτ0(□(♢⊤ → φ◦(y⃗)))

)
. (1)

By Artemov’s Lemma again,

IΣ1 ⊢ Conτ0 ∧ fτ0(D) ∧ fτ0(χ◦) ∧Rf (x⃗, y⃗)

→
(
Prτ0(⌜Conτ0 → φ(⃗̇x)⌝) ↔ fτ0(Prτ0(⌜Conτ0 → φ(⃗̇y)⌝)◦)

)
. (2)

From Lemma 3.6.1, PA+fτ0(D) ⊢ Rf (x⃗, y⃗) → Prτ0(⌜Rf (⃗̇x, ⃗̇y)⌝). By combining
this with (1) and (2), we obtain

PA ⊢ Conτ0 ∧ fτ0(⊡D) ∧ fτ0(⊡χ◦) ∧Rf (x⃗, y⃗)

→
(
fτ0(Prτ0(⌜Conτ0 → φ(⃗̇y)⌝)◦) ↔ fτ0(□(♢⊤ → φ◦(y⃗)))

)
.

Since x⃗ does not appear in the consequent of the formula,

PA ⊢ Conτ0 ∧ fτ0(⊡D) ∧ fτ0(⊡χ◦) ∧ ∃x⃗Rf (x⃗, y⃗)

→
(
fτ0(Prτ0(⌜Conτ0 → φ(⃗̇y)⌝)◦) ↔ fτ0(□(♢⊤ → φ◦(y⃗)))

)
.

From Fact 2.10, IΣ1 ⊢ Conτ0 ∧ fτ0(D) ∧ fτ0(χ◦) → ∀y⃗∃x⃗Rf (x⃗, y⃗). Hence

PA ⊢ Conτ0 ∧ fτ0(⊡D) ∧ fτ0(⊡χ◦)

→
(
fτ0(Prτ0(⌜Conτ0 → φ(⃗̇y)⌝)◦) ↔ fτ0(□(♢⊤ → φ◦(y⃗)))

)
.

Since Th(PA) ⊆ Th(T0), we obtain that the sentence

∀y⃗
(
♢⊤ ∧⊡D ∧⊡χ◦ →

(
Prτ0(⌜Conτ0 → φ(⃗̇y)⌝)◦ ↔ □(♢⊤ → φ◦(y⃗))

))
10



is contained in QPLτ0(T0). By the supposition, this sentence is also in QPLτ1(T1).
By considering a natural arithmetical interpretation and by Proposition 2.12,

T1 +Conτ1 ⊢ ∀y⃗
(
Prτ0(⌜Conτ0 → φ(⃗̇y)⌝) ↔ Prτ1(⌜Conτ1 → φ(⃗̇y)⌝)

)
.

By Proposition 3.3, T1 ⊢ Conτ0 → Conτ1 . Thus T1 + ¬Conτ1 ⊢ ¬Conτ0 , and
hence

T1 + ¬Conτ1 ⊢ ∀y⃗
(
Prτ0(⌜Conτ0 → φ(⃗̇y)⌝) ↔ Prτ1(⌜Conτ1 → φ(⃗̇y)⌝)

)
.

Therefore we conclude

T1 ⊢ ∀y⃗
(
Prτ0(⌜Conτ0 → φ(⃗̇y)⌝) ↔ Prτ1(⌜Conτ1 → φ(⃗̇y)⌝)

)
.

In our proof of Theorem 3.7, Lemma 3.6 is used to replace the formula
Prτ0(⌜Rf (⃗̇x, ⃗̇y)⌝) with Rf (x⃗, y⃗) in the antecedent of a formula. If φ is a sentence,
then this procedure is no longer needed, and so the proof proceeds without using
Lemma 3.6. Then other parts of our proof of Theorem 3.7 work within IΣ1.
Thus we also obtain the following theorem.

Theorem 3.8. If QPLτ0(T0) ⊆ QPLτ1(T1), then for any LA-sentence φ,

T1 ⊢ Prτ0(⌜Conτ0 → φ⌝) ↔ Prτ1(⌜Conτ1 → φ⌝).

Using Fact 2.9, we prove a variation of Theorem 3.7 with respect to Π1

formulas.

Theorem 3.9. Suppose Th(PA) ⊆ Th(T0). If QPLτ0(T0) ⊆ QPLτ1(T1), then
for any Π1 formula φ(y⃗),

T1 ⊢ ∀y⃗(Prτ1(⌜φ(⃗̇y)⌝) → Prτ0(⌜φ(⃗̇y)⌝)).

Proof. Suppose Th(PA) ⊆ Th(T0) and QPLτ0(T0) ⊆ QPLτ1(T1). Let f be
any arithmetical interpretation and let φ(y⃗) be any Π1 formula. Since ¬φ(y⃗)
is Σ1, by Fact 2.9, IΣ1 ⊢ fτ0(χ

◦) ∧ Rf (x⃗, y⃗) ∧ ¬φ(x⃗) → fτ0(¬φ◦(y⃗)). Then,
T0 ⊢ fτ0(χ◦) ∧Rf (x⃗, y⃗) ∧ fτ0(φ◦(y⃗)) → φ(x⃗). By Fact 2.1,

IΣ1 ⊢ fτ0(□χ◦) ∧ Prτ0(⌜Rf (⃗̇x, ⃗̇y)⌝) ∧ fτ0(□φ◦(y⃗)) → Prτ0(⌜φ(⃗̇x)⌝). (3)

By Artemov’s Lemma, IΣ1 proves

Conτ0 ∧fτ0(D)∧fτ0(χ◦)∧Rf (x⃗, y⃗)∧Prτ0(⌜φ(⃗̇x)⌝) → fτ0(Prτ0(⌜φ(⃗̇y)⌝)◦). (4)

By combining Lemma 3.6 with (3) and (4), PA proves

Conτ0 ∧ fτ0(D)∧ fτ0(⊡χ◦)∧Rf (x⃗, y⃗)∧ fτ0(□φ◦(y⃗)) → fτ0(Prτ0(⌜φ(⃗̇y)⌝)◦).
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As in the proof of Theorem 3.7, Rf (x⃗, y⃗) is removed from the antecedent of the
formula, that is,

PA ⊢ Conτ0 ∧ fτ0(D) ∧ fτ0(⊡χ◦) ∧ fτ0(□φ◦(y⃗)) → fτ0(Prτ0(⌜φ(⃗̇y)⌝)◦).

Since Th(PA) ⊆ Th(T0),

∀y⃗
(
♢⊤ ∧D ∧⊡χ◦ ∧□φ◦(y⃗) → Prτ0(⌜φ(⃗̇y)⌝)◦

)
∈ QPLτ0(T0) ⊆ QPLτ1(T1).

By considering a natural arithmetical interpretation, we obtain

T1 +Conτ1 ⊢ ∀y⃗(Prτ1(⌜φ(⃗̇y)⌝) → Prτ0(⌜φ(⃗̇y)⌝)).

By Proposition 3.3, T1 + ¬Conτ1 ⊢ ¬Conτ0 , and in particular, T1 + ¬Conτ1
proves ∀y⃗Prτ0(⌜φ(⃗̇y)⌝). Therefore we conclude

T1 ⊢ ∀y⃗(Prτ1(⌜φ(⃗̇y)⌝) → Prτ0(⌜φ(⃗̇y)⌝)).

As above, we also obtain the following theorem.

Theorem 3.10. If QPLτ0(T0) ⊆ QPLτ1(T1), then for any Π1 sentence φ,

T1 ⊢ Prτ1(⌜φ⌝) → Prτ0(⌜φ⌝).

As consequences of theorems proved in this subsection, we obtain several
corollaries.

Corollary 3.11. If QPLτ0(T0) ⊆ QPLτ1(T1) and T1 is Σ1-sound, then

1. Th(T0 +Conτ0) = Th(T1 +Conτ1); and

2. ThΠ1
(T1) ⊆ ThΠ1

(T0).

Proof. Suppose QPLτ0(T0) ⊆ QPLτ1(T1) and T1 is Σ1-sound.
1. By Corollary 2.14.1, Th(T0+Conτ0) ⊆ Th(T1+Conτ1). On the other hand,

let φ be any LA-sentence φ with T1+Conτ1 ⊢ φ. Then, T1 ⊢ Prτ1(⌜Conτ1 → φ⌝)
by Fact 2.1.1. By Theorem 3.8,

T1 ⊢ Prτ0(⌜Conτ0 → φ⌝) ↔ Prτ1(⌜Conτ1 → φ⌝),

and hence T1 ⊢ Prτ0(⌜Conτ0 → φ⌝). Then, Prτ0(⌜Conτ0 → φ⌝) is true in N
because T1 is Σ1-sound. This means T0 ⊢ Conτ0 → φ. Therefore we conclude
Th(T1 +Conτ1) ⊆ Th(T0 +Conτ0).

2. Let φ be any Π1 sentence such that T1 ⊢ φ. Then T1 ⊢ Prτ1(⌜φ⌝)
by Fact 2.1.1. By Theorem 3.10, T1 ⊢ Prτ1(⌜φ⌝) → Prτ0(⌜φ⌝), and hence
T1 ⊢ Prτ0(⌜φ⌝). Since T1 is Σ1-sound, T0 ⊢ φ. Thus ThΠ1(T1) ⊆ ThΠ1(T0).
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In the next subsection, we will prove that the assumption of the Σ1-soundness
of T1 in the statement of Corollary 3.11 cannot be removed (see Propositions
3.21 and 3.22).

Remark 3.12. We say that a theory T1 is faithfully interpretable in a the-
ory T0 if there exists an interpretation I of T1 in T0 such that for any LA-
sentence φ, T1 ⊢ φ if and only if T0 ⊢ I(φ). Lindström [10] proved that
if T0 and T1 are consistent recursively enumerable extensions of PA, then
T1 is faithfully interpretable in T0 if and only if ThΠ1

(T1) ⊆ ThΠ1
(T0) and

ThΣ1
(T0) ⊆ ThΣ1

(T1). Therefore from Corollaries 3.11 and 3.2.1, we obtain
that if Th(PA) ⊆ Th(T0)∩Th(T1), QPLτ0(T0) ⊆ QPLτ1(T1) and T1 is Σ1-sound,
then T1 is faithfully interpretable in T0.

We show that if T1 is Σ1-sound and proves the Σ1-soundness of T0, then
QPLτ0(T0) and QPLτ1(T1) are incomparable in the following strong sense.

Corollary 3.13. Suppose that T0 is consistent, T1 is Σ1-sound and for some
Σ1 definition σ0(v) of T0, for all Σ1 sentences φ, T1 ⊢ Prσ0

(⌜φ⌝) → φ. Then,
for any respective Σ1 definitions τ0(v) and τ1(v) of T0 and T1, QPLτ0(T0) ⊈
QPLτ1(T1) and QPLτ1(T1) ⊈ QPLτ0(T0).

Proof. First, we show QPLτ0(T0) ⊈ QPLτ1(T1). By the supposition, T1 proves
Prσ0

(⌜0 = 1⌝) → 0 = 1 which is equivalent to Conσ0
. On the other hand,

T0 ⊬ Conσ0
by the second incompleteness theorem. Since Conσ0

is a Π1 sentence,
ThΠ1

(T1) ⊈ ThΠ1
(T0). Therefore QPLτ0(T0) ⊈ QPLτ1(T1) by Corollary 3.11

because T1 is Σ1-sound.
Secondly, we show QPLτ1(T1) ⊈ QPLτ0(T0). Since ¬Conτ0 is Σ1, T1 proves

Prσ0(⌜¬Conτ0⌝) → ¬Conτ0 , and also proves Conτ0 → Conσ0+Conτ0
. On the

other hand, assume, towards a contradiction, that T0 + Conτ0 proves the sen-
tence Conτ0 → Conσ0+Conτ0

. Then, T0 + Conτ0 proves its own consistency,
and hence it is inconsistent by the second incompleteness theorem. We have
T0 ⊢ ¬Conτ0 . By Fact 2.1.1, T1 ⊢ Prσ0

(⌜¬Conτ0⌝). Hence T1 ⊢ ¬Conτ0 , and
this contradicts the Σ1-soundness of T1. We obtain T0 + Conτ0 ⊬ Conτ0 →
Conσ0+Conτ0

. Therefore Th(T1) ⊈ Th(T0 + Conτ0). By Corollary 2.14.1, we
conclude QPLτ1(T1) ⊈ QPLτ0(T0).

Remark 3.14. Let i and j be any natural numbers with 0 < i < j. Then,
the theory IΣj is Σ1-sound and proves PrIΣi

(⌜φ⌝) → φ for all Σ1 sentences φ
(cf. Hájek and Pudlák [6, Corollary I.4.34]). From Corollary 3.13, for any respec-
tive Σ1 definitions σi(v) and σj(v) of IΣi and IΣj, QPLσi

(IΣi) ⊈ QPLσj
(IΣj)

and QPLσj
(IΣj) ⊈ QPLσi

(IΣi). This is a refinement of a result of Kurahashi
[9].

Lemma 3.15. Let σ(v) be any Σ1 definition of some theory. Suppose that

for all LA-formulas φ(x⃗), T ⊢ ∀x⃗(Prσ(⌜φ(⃗̇x)⌝) ↔ Prτ (⌜φ(⃗̇x)⌝)). Then, for any
quantified modal formula A and any arithmetical interpretation f , T ⊢ fσ(A) ↔
fτ (A).
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Proof. We prove the lemma by induction on the construction of A. We only
give a proof of the case that A is of the form □B. Assume that T proves
fσ(B) ↔ fτ (B). Then, by Fact 2.1, IΣ1 ⊢ Prτ (⌜fσ(B)⌝) ↔ fτ (□B). Since
T ⊢ fσ(□B) ↔ Prτ (⌜fσ(B)⌝) by the supposition, we obtain that fσ(□B) ↔
fτ (□B) is provable in T .

Corollary 3.16. If Th(PA) ⊆ Th(T0) and QPLτ0(T0) ⊆ QPLτ1(T1), then
QPLτ0+Conτ0

(T0 +Conτ0) ⊆ QPLτ1+Conτ1
(T1 +Conτ1).

Proof. Suppose Th(PA) ⊆ Th(T0) and QPLτ0(T0) ⊆ QPLτ1(T1). Let A be
any element of QPLτ0+Conτ0

(T0 + Conτ0) and f be an arbitrary arithmetical
interpretation. Then, T0 + Conτ0 ⊢ fτ0+Conτ0

(A). Since Th(T0 + Conτ0) ⊆
Th(T1 + Conτ1) by Corollary 2.14.1, T1 + Conτ1 ⊢ fτ0+Conτ0

(A). By Theorem
3.7, for any LA-formula φ(x⃗),

T1 ⊢ ∀x⃗
(
Prτ0+Conτ0

(⌜φ(⃗̇x)⌝) ↔ Prτ1+Conτ1
(⌜φ(⃗̇x)⌝)

)
.

Thus by Lemma 3.15, T1 + Conτ1 ⊢ fτ0+Conτ0
(A) ↔ fτ1+Conτ1

(A), and hence
T1+Conτ1 ⊢ fτ1+Conτ1

(A). Since f is arbitrary, A is contained in QPLτ1+Conτ1
(T1+

Conτ1).

Moreover, we strengthen Proposition 3.3 and Corollary 3.16.

Definition 3.17. We define a sequence (Conn
τ )n∈N of Π1 consistency statements

of T inductively as follows:

1. Con0τ :≡ 0 = 0; and

2. Conn+1
τ :≡ Conτ+Conn

τ
.

Since ¬Connτ is a Σ1 sentence, IΣ1 ⊢ ¬Connτ → Prτ (⌜¬Connτ ⌝) by Fact 2.1.3.
Equivalently, IΣ1 ⊢ Conn+1

τ → Connτ . Thus Connτ ∧ Conτ+Conn
τ
is provably

equivalent to Conn+1
τ over IΣ1.

Corollary 3.18. If Th(PA) ⊆ Th(T0) and QPLτ0(T0) ⊆ QPLτ1(T1), then for
any natural number n ≥ 1,

1. QPLτ0+Conn
τ0
(T0 +Connτ0) ⊆ QPLτ1+Conn

τ1
(T1 +Connτ1); and

2. T1 ⊢ Connτ0 ↔ Connτ1 .

Proof. Suppose Th(PA) ⊆ Th(T0) and QPLτ0(T0) ⊆ QPLτ1(T1).
1. By induction on n ≥ 1. For n = 1, the statement is exactly Corollary 3.16.

Suppose QPLτ0+Conn
τ0
(T0 +Connτ0) ⊆ QPLτ1+Conn

τ1
(T1 +Connτ1). As commented

above, Connτi ∧Conτi+Conn
τi

is equivalent to Conn+1
τi for i ∈ {0, 1}, and hence by

Corollary 3.16,

QPLτ0+Conn+1
τ0

(T0 +Conn+1
τ0 ) ⊆ QPLτ1+Conn+1

τ1
(T1 +Conn+1

τ1 ).

14



2. By induction on n ≥ 1. For n = 1, the statement is exactly Proposition
3.3. Suppose T1 ⊢ Connτ0 ↔ Connτ1 . By Clause 1,

QPLτ0+Conn
τ0
(T0 +Connτ0) ⊆ QPLτ1+Conn

τ1
(T1 +Connτ1).

Then by Proposition 3.3, T1 +Connτ1 proves Conτ0+Conn
τ0

↔ Conτ1+Conn
τ1
. This

means

T1 +Connτ1 ⊢ Conn+1
τ0 ↔ Conn+1

τ1 . (5)

We prove T1 ⊢ Conn+1
τ0 ↔ Conn+1

τ1 . Since T1 + Conn+1
τ1 ⊢ Connτ1 , it follows

from (5) that T1 + Conn+1
τ1 ⊢ Conn+1

τ0 . Conversely, since T1 + Conn+1
τ0 ⊢ Connτ0 ,

T1 + Conn+1
τ0 ⊢ Connτ1 by induction hypothesis. Then, T1 + Conn+1

τ0 ⊢ Conn+1
τ1

from (5).

Under certain suppositions, we give the following necessary and sufficient
condition for QPLτ0(T0) ⊆ QPLτ1(T1).

Corollary 3.19. Suppose that Th(T0) ⊆ Th(T1) and there exists a Π1 sentence
π satisfying the following two conditions:

� T0 ⊢ Conτ0 → ¬Prτ0(⌜π⌝);

� T1 ⊢ Prτ1(⌜π⌝).

Then, QPLτ0(T0) ⊆ QPLτ1(T1) if and only if T1 ⊢ ¬Conτ0 ∧ ¬Conτ1 .

Proof. (⇒): Suppose QPLτ0(T0) ⊆ QPLτ1(T1). Let π be a Π1 sentence satisfying
the two conditions stated above. By Theorem 3.10, Prτ1(⌜π⌝) → Prτ0(⌜π⌝) is
provable in T1, and hence T1 ⊢ Prτ0(⌜π⌝) by the choice of π. On the other hand,
by Corollary 2.14.1, Th(T0 + Conτ0) ⊆ Th(T1 + Conτ1), and thus T1 + Conτ1 ⊢
¬Prτ0(⌜π⌝). Therefore T1 + Conτ1 is inconsistent, and we obtain T1 ⊢ ¬Conτ1 .
By Proposition 3.3, T1 ⊢ Conτ0 → Conτ1 . Hence T1 ⊢ ¬Conτ0 .

(⇐): Assume that T1 proves ¬Conτ0 and ¬Conτ1 . Then, for any LA-

formula φ(x⃗), T1 ⊢ ∀x⃗(Prτ0(⌜φ(⃗̇x)⌝) ↔ Prτ1(⌜φ(⃗̇x)⌝)). Let A be any element of
QPLτ0(T0) and f be any arithmetical interpretation. Then, T0 ⊢ fτ0(A). Since
Th(T0) ⊆ Th(T1), T1 ⊢ fτ0(A). By Lemma 3.15, fτ0(A) ↔ fτ1(A) is provable
in T1, and hence T1 ⊢ fτ1(A). Therefore A ∈ QPLτ1(T1). We have proved
QPLτ0(T0) ⊆ QPLτ1(T1).

For example, for any Π1 sentence π satisfying T0 ⊢ Conτ0 → ¬Prτ0(⌜π⌝), the
theories T0 and T1 := T0+π satisfy the assumption of Corollary 3.19. Corollary
3.19 is used in the proof of Proposition 3.23 below.

3.3 Some counterexamples

In this subsection, we give some counterexamples to several statements. Before
giving them, we prepare a lemma.
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Lemma 3.20. For any LA-sentence φ with T ⊢ φ→ Prτ (⌜φ⌝),

QPLτ (T ) ⊆ QPLτ+φ(T + φ).

Proof. Suppose T ⊢ φ→ Prτ (⌜φ⌝). Let A be any element of QPLτ (T ) and f be
any arithmetical interpretation. Then, T ⊢ fτ (A). Since T+φ proves Prτ (⌜φ⌝),
for any LA-formula ψ(x⃗), it follows from Fact 2.1.2 that

T + φ ⊢ Prτ+φ(⌜ψ(⃗̇x)⌝) ↔ Prτ (⌜φ→ ψ(⃗̇x)⌝),
↔ Prτ (⌜ψ(⃗̇x)⌝).

Then by Lemma 3.15, T +φ ⊢ fτ (A) ↔ fτ+φ(A). Hence T +φ ⊢ fτ+φ(A). We
conclude QPLτ (T ) ⊆ QPLτ+φ(T + φ).

The following two propositions show that in the statement of Corollary 3.11,
the assumption of the Σ1-soundness of T1 cannot be omitted.

Proposition 3.21. There exist consistent recursively enumerable extensions
T0 and T1 of IΣ1 and respective Σ1 definitions τ0(v) and τ1(v) of T0 and T1
satisfying the following conditions:

1. QPLτ0(T0) ⊆ QPLτ1(T1);

2. T0 +Conτ0 and T1 +Conτ1 are consistent; and

3. Th(T1 +Conτ1) ⊈ Th(T0 +Conτ0).

Proof. Let T0 be any Σ1-sound recursively enumerable extension of IΣ1 and
τ0(v) be any Σ1 definition of T0. Also let φ be the Σ1 sentence ¬Con2τ0 . Then
N |= ¬φ. Let T1 := T0 + φ and τ1(v) be (τ0 + φ)(v).

1. Since φ is a Σ1 sentence, T0 ⊢ φ → Prτ0(⌜φ⌝) by Fact 2.1.3. Then by
Lemma 3.20, QPLτ0(T0) ⊆ QPLτ1(T1).

2. Since T0 is Σ1-sound, T0 + Conτ0 is consistent. Suppose, towards a
contradiction, that T1 + Conτ1 is inconsistent. Then T0 + φ ⊢ ¬Conτ0+φ, and
hence T0 ⊢ φ → Prτ0(⌜¬φ⌝). Since T0 ⊢ φ → Prτ0(⌜φ⌝), we have T0 ⊢ φ →
¬Conτ0 . It follows T0 ⊢ Prτ0(⌜¬Conτ0⌝) → ¬Conτ0 . By Löb’s theorem, T0 ⊢
¬Conτ0 . This contradicts the Σ1-soundness of T0. Therefore T1 + Conτ1 is
consistent.

3. Since T0 + Conτ0 is also Σ1-sound, T0 + Conτ0 ⊬ φ. On the other hand,
T1 +Conτ1 ⊢ φ, and hence Th(T1 +Conτ1) ⊈ Th(T0 +Conτ0).

Proposition 3.22. There exist consistent recursively enumerable extensions
T0 and T1 of IΣ1 and respective Σ1 definitions τ0(v) and τ1(v) of T0 and T1
satisfying the following conditions:

1. QPLτ0(T0) ⊆ QPLτ1(T1); and

2. ThΠ1
(T1) ⊈ ThΠ1

(T0).
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Proof. Let T0 be an arbitrary consistent recursively enumerable extension of
IΣ1 and τ0(v) be any Σ1 definition of T0. Let ρ be a Π1 Rosser sentence of T0
defined by using τ0(v), and let T1 := T0 + ¬ρ and τ1(v) be (τ0 + ¬ρ)(v). By
Rosser’s theorem, T1 is consistent. Since ¬ρ is Σ1, by Lemma 3.20, QPLτ0(T0) ⊆
QPLτ1(T1). It is easily shown that there exists a Π1 sentence π such that
IΣ1 ⊢ ρ ∨ π and IΣ1 ⊢ ρ ∧ π → Conτ0 . Then T1 ⊢ π and T0 ⊬ π because
T0 ⊬ ρ → Conτ0 . Therefore ThΠ1(T1) ⊈ ThΠ1(T0) (see also Lindström [11,
Chapter 5 Exercise 1]).

The following proposition shows that the converse implications of Proposi-
tion 3.3, Theorem 3.7 and Corollary 3.11 do not hold.

Proposition 3.23. There exist consistent recursively enumerable extensions
T0 and T1 of IΣ1 and respective Σ1 definitions τ0(v) and τ1(v) of T0 and T1
satisfying the following conditions:

1. IΣ1 ⊢ Conτ0 ↔ Conτ1 ;

2. T1 is Σ1-sound and Th(T0 +Conτ0) = Th(T1 +Conτ1);

3. For any LA-formula φ(x⃗),

IΣ1 ⊢ ∀x⃗
(
Prτ0(⌜Conτ0 → φ(⃗̇x)⌝) ↔ Prτ1(⌜Conτ1 → φ(⃗̇x)⌝)

)
;

4. QPLτ0(T0) ⊈ QPLτ1(T1).

Proof. Let T0 be any Σ1-sound recursively enumerable extension of IΣ1 and
τ0(v) be any Σ1 definition of T0. Let ρ be a Π1 Rosser sentence of T0 defined
by using τ0(v). Also let T1 := T0 + ρ and τ1(v) be (τ0 + ρ)(v).

1. Since IΣ1 ⊢ Conτ0 ↔ ¬Prτ0(⌜¬ρ⌝), IΣ1 ⊢ Conτ0 ↔ Conτ1 .
2. Let ψ be any Σ1 sentence with T1 ⊢ ψ. Then T0 ⊢ ¬ρ ∨ ψ. Since T0 is

Σ1-sound, N |= ¬ρ ∨ ψ. Since N |= ρ, N |= ψ. Hence T1 is Σ1-sound.
Moreover, since IΣ1 ⊢ Conτ0 → ρ, T0 + Conτ0 is deductively equivalent to

T0 + ρ+Conτ0 , and to T1 +Conτ1 .
3. For any LA-formula φ(x⃗),

IΣ1 ⊢ Prτ0(⌜Conτ0 → φ(⃗̇x)⌝) ↔ Prτ0+Conτ0
(⌜φ(⃗̇x)⌝),

↔ Prτ0+ρ+Conτ0+ρ(⌜φ(⃗̇x)⌝),
↔ Prτ1(⌜Conτ1 → φ(⃗̇x)⌝).

4. Since T1 is Σ1-sound and T0 is consistent, T1 ⊬ ¬Conτ0 . It follows from
Corollary 3.19 that QPLτ0(T0) ⊈ QPLτ1(T1).
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4 Σ1 arithmetical interpretations

In this section, we investigate inclusions between quantified provability logics
with respect to Σ1 arithmetical interpretations. The main goal of this section
is to give a necessary and sufficient condition for the inclusion relation between
quantified provability logics with respect to Σ1 arithmetical interpretations.

Definition 4.1. An arithmetical interpretation f is Σn if for any atomic formula
P (x⃗) of quantified modal logic, f(P (x⃗)) is a Σn formula.

Notice that there are natural Σ1 arithmetical interpretations. We introduce
the quantified provability logics with respect to Σn arithmetical interpretations.

Definition 4.2. QPLΣn
τ (T ) := {φ | φ is a sentence and for all Σn arithmetical

interpretations f , T ⊢ fτ (φ)}.

Berarducci [2] proved that restricting arithmetical interpretations to Σn does
not change the complexity of quantified provability logics, that is, for each n ≥ 1,
the complexity of the quantified provability logic of PA with respect to Σn

arithmetical interpretations is also Π0
2-complete.

On the other hand, it is beneficial to deal with Σ1 arithmetical interpreta-
tions in our study. In the proof of Artemov’s Lemma, the assumption Conτ ∧
fτ (D) is prepared to make the formulas f(PK(x)) and ¬f(PK(x, y)) equiva-
lent to Σ1 formulas for each K ∈ {Z, S,A,M,L,E}. In the case that f is a
Σ1 arithmetical interpretation, the same result holds without the assumption
Conτ ∧ fτ (D) by adding sufficiently many theorems of IΣ1 to the sentence χ as
conjuncts. This is guaranteed by the following equivalences:

� ¬PZ(x) ↔ ∃yPS(y, x);

� ¬PS(x, y) ↔ ∃z(PS(x, z) ∧ (PL(z, y) ∨ PL(y, z)));

� ¬PA(x, y, z) ↔ ∃w(PA(x, y, w) ∧ (PL(w, z) ∨ PL(z, w)));

� ¬PM (x, y, z) ↔ ∃w(PM (x, y, w) ∧ (PL(w, z) ∨ PL(z, w)));

� ¬PL(x, y) ↔ PE(x, y) ∨ PL(y, x);

� ¬PE(x, y) ↔ PL(x, y) ∨ PL(y, x).

Thus we obtain the following variation of Artemov’s Lemma with respect to Σ1

arithmetical interpretations.

Theorem 4.3 (Σ1-Artemov’s Lemma). There exists an LA-sentence χ such
that IΣ1 ⊢ χ and for any Σ1 arithmetical interpretation f and any LA-formula
φ(x⃗),

IΣ1 ⊢ fτ (χ◦) ∧Rf (x⃗, y⃗) → (φ(x⃗) ↔ fτ (φ
◦(y⃗))).
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We also obtain a variation of Fact 2.10 with respect to Σ1 arithmetical
interpretations.

Proposition 4.4. For any Σ1 arithmetical interpretation f ,

IΣ1 ⊢ fτ (χ◦) → ∀y∃xRf (x, y).

The following proposition is a variation of Fact 2.13 with respect to Σ1

arithmetical interpretations.

Proposition 4.5. For any LA-sentence φ, the following are equivalent:

1. T ⊢ φ.

2. χ◦ → φ◦ ∈ QPLΣ1
τ (T ).

Proof. (1 ⇒ 2): Suppose T ⊢ φ. By Σ1-Artemov’s Lemma, for any Σ1 arith-
metical interpretation f , IΣ1 ⊢ fτ (χ

◦) → (φ ↔ fτ (φ
◦)). Then T proves

fτ (χ
◦ → φ◦). Thus χ◦ → φ◦ ∈ QPLΣ1

τ (T ).
(2 ⇒ 1): Suppose χ◦ → φ◦ ∈ QPLΣ1

τ (T ). By considering a natural Σ1

arithmetical interpretation, we obtain T ⊢ φ.

We prove the following main theorem of this section.

Theorem 4.6. The following are equivalent:

1. QPLΣ1
τ0 (T0) ⊆ QPLΣ1

τ1 (T1).

2. Th(T0) ⊆ Th(T1) and for any LA-formula φ(x⃗),

T1 ⊢ ∀x⃗(Prτ0(⌜φ(⃗̇x)⌝) ↔ Prτ1(⌜φ(⃗̇x)⌝)).

Proof. (1 ⇒ 2): Suppose QPLΣ1
τ0 (T0) ⊆ QPLΣ1

τ1 (T1).
First, we prove Th(T0) ⊆ Th(T1). Let φ be any sentence with T0 ⊢ φ. Then

by Proposition 4.5, χ◦ → φ◦ ∈ QPLΣ1
τ0 (T0). By the supposition, this sentence is

also in QPLΣ1
τ1 (T1). Then by Proposition 4.5 again, we obtain T1 ⊢ φ. Therefore

Th(T0) ⊆ Th(T1).
Secondly, we prove the T1-provable equivalence of the two provability pred-

icates. Let φ(y⃗) be any LA-formula. By Σ1-Artemov’s Lemma, for any Σ1

arithmetical interpretation f ,

IΣ1 ⊢ fτ0(χ◦) ∧Rf (x⃗, y⃗) → (φ(x⃗) ↔ fτ0(φ
◦(y⃗))).

By Fact 2.1,

IΣ1 ⊢ fτ0(□χ◦)∧Prτ0(⌜Rf (⃗̇x, ⃗̇y)⌝) →
(
Prτ0(⌜φ(⃗̇x)⌝) ↔ fτ0(□φ◦(y⃗))

)
. (6)
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By Σ1-Artemov’s Lemma again,

IΣ1 ⊢ fτ0(χ◦) ∧Rf (x⃗, y⃗) →
(
fτ0(Prτ0(⌜φ(⃗̇y)⌝)◦) ↔ Prτ0(⌜φ(⃗̇x)⌝)

)
. (7)

By Lemma 3.6.2, IΣ1 ⊢ Rf (x⃗, y⃗) → Prτ0(⌜Rf (⃗̇x, ⃗̇y)⌝). By combining this
with (6) and (7),

IΣ1 ⊢ fτ0(⊡χ◦) ∧Rf (x⃗, y⃗) →
(
fτ0(Prτ0(⌜φ(⃗̇y)⌝)◦) ↔ fτ0(□φ◦(y⃗))

)
.

Since x⃗ does not appear in the consequent of the formula,

IΣ1 ⊢ fτ0(⊡χ◦) ∧ ∃x⃗Rf (x⃗, y⃗) →
(
fτ0(Prτ0(⌜φ(⃗̇y)⌝)◦) ↔ fτ0(□φ◦(y⃗))

)
.

By Proposition 4.4, IΣ1 ⊢ fτ0(χ◦) → ∀y⃗∃x⃗Rf (x⃗, y⃗). Then,

IΣ1 ⊢ fτ0(⊡χ◦) →
(
fτ0(Prτ0(⌜φ(⃗̇y)⌝)◦) ↔ fτ0(□φ◦(y⃗))

)
.

We obtain

∀y⃗
(
⊡χ◦ →

(
Prτ0(⌜φ(⃗̇y)⌝)◦ ↔ □φ◦(y⃗)

))
∈ QPLΣ1

τ0 (T0) ⊆ QPLΣ1
τ1 (T1).

By considering a natural Σ1 arithmetical interpretation, we conclude

T1 ⊢ ∀y⃗
(
Prτ0(⌜φ(⃗̇y)⌝) ↔ Prτ1(⌜φ(⃗̇y)⌝)

)
.

(2 ⇒ 1): Assume Clause 2 of the statement. Let A be any element of
QPLΣ1

τ0 (T0) and f be any Σ1 arithmetical interpretation. Then, T0 ⊢ fτ0(A).
Since Th(T0) ⊆ Th(T1), T1 ⊢ fτ0(A). By the assumption and Lemma 3.15, we
have T1 ⊢ fτ0(A) ↔ fτ1(A), and thus T1 ⊢ fτ1(A). Therefore A is in QPLΣ1

τ1 (T1).

We have proved QPLΣ1
τ0 (T0) ⊆ QPLΣ1

τ1 (T1).

Similar to the proof of (2 ⇒ 1) of Theorem 4.6, it can be proved that Clause
2 in the statement of Theorem 4.6 implies QPLτ0(T0) ⊆ QPLτ1(T1).

Corollary 4.7. If QPLΣ1
τ0 (T0) ⊆ QPLΣ1

τ1 (T1), then QPLτ0(T0) ⊆ QPLτ1(T1).

We propose the following question.

Problem 4.8. Does the converse implication of Corollary 4.7 hold?

We close this section with the following corollary.

Corollary 4.9. If QPLΣ1
τ0 (T0) ⊆ QPLΣ1

τ1 (T1) and T1 is Σ1-sound, then QPLΣ1
τ0 (T0) =

QPLΣ1
τ1 (T1).

Proof. Suppose QPLΣ1
τ1 (T0) ⊆ QPLΣ1

τ1 (T1) and T1 is Σ1-sound. By Theorem 4.6,

T1 ⊢ ∀x⃗(Prτ0(⌜φ(⃗̇x)⌝) ↔ Prτ1(⌜φ(⃗̇x)⌝)) for any LA-formula φ(x⃗). Let ψ be
any LA-sentence with T1 ⊢ ψ. Since T1 proves Prτ1(⌜ψ⌝) by Fact 2.1.1, we have
T1 ⊢ Prτ0(⌜ψ⌝). Since T1 is Σ1-sound, T0 ⊢ ψ. We have shown Th(T1) ⊆ Th(T0).

Then, for any LA-formula φ(x⃗), T0 ⊢ ∀x⃗(Prτ0(⌜φ(⃗̇x)⌝) ↔ Prτ1(⌜φ(⃗̇x)⌝)). By
Theorem 4.6, we conclude QPLΣ1

τ1 (T1) ⊆ QPLΣ1
τ0 (T0).
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