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TWIST STRUCTURES AND NELSON CONUCLEI

MANUELA BUSANICHE, NIKOLAOS GALATOS, AND MIGUEL MARCOS

Abstract. Motivated by Kalman residuated lattices, Nelson residuated lattices and Nelson paraconsistent residuated

lattices, we provide a natural common generalization of them. Nelson conucleus algebras unify these examples and

further extend them to the non-commutative setting. We study their structure, establish a representation theorem for

them in terms of twist structures and conuclei that results in a categorical adjunction, and explore situations where the

representation is actually an isomorphism. In the latter case, the adjunction is elevated to a categorical equivalence. By

applying this representation to the original motivating special cases we bring to the surface their underlying similarities.

Introduction

Residuated lattices arise in many contexts in general and ordered algebra. Examples of residuated lattices

include lattice-ordered groups, the lattice of ideals of a ring and relation algebras. At the same time they serve

as algebraic semantics for substructural logics, including linear, relevance and many-valued logics. As a result,

the algebraic semantics of these logics form further examples of residuated lattices and include MV, Heyting and

Boolean algebras. In this paper we investigate a construction of involutive residuated lattices that has interesting

applications to models of paraconsistent logics and use it to provide a unified approach to these models.

Given a lattice L, the twist structure over L is obtained by considering the direct product of L and its order-dual

L∂. The resulting lattice has a natural De Morgan involution given by

∼ (x, y) = (y, x)

for all (x, y) ∈ L × L∂. This construction was used by Kalman in 1958 [15], while the modifier "twist" appeared

thirty years later in Kracht’s paper [16]. Although Kalman only worked with the lattice structure, several other

authors considered expansions with additional operations on L which induce new and interesting operations on the

twist structure [10, 27, 9, 23, 16, 26, 5, 18, 19, 6, 7].

In particular, Tsinakis and Wille [26], inspired by Chu’s work in category theory [3] and its specialization to

quantales [22], considered the twist structure over a residuated lattice L having a greatest element ⊤ and endowed

it with a residuated lattice structure with unit (e,⊤), such that the pair (⊤, e) is the dualizing element for the natural

involution.

In [6], [5] and [7] it is proved that the logical systems of Nelson constructive logic with strong negation (CNS,

see [17]), and its paraconsistent analogue (PNS, see [19]) have as algebraic semantics residuated lattices whose

lattice reducts are twist structures (see also [24, 25]). Furthermore, the monoid and residuum operators coincide

with the ones proposed in [26]. However, the unit of the residuated lattice is not the same in all the cases, so these

structures do not fall directly under the framework of [26].

Our aim is to present a unified approach that provides a deeper insight into the classes of residuated lattices

that have a representation based on twist structures. Our framework encompasses Nelson residuated lattices [24,

5], Nelson paraconsistent residuated lattices [6, 7] and Kalman residuated lattices [8, 1]. Our results allow the

comparison among them and provide some interesting new examples.

To achieve this aim we start by considering a broader class of algebras: residuated lattice-ordered semigroups.

Given a residuated lattice L we define the general twist-product Tw(L) as an involutive residuated lattice-ordered

semigroup with an extra unary operation of involution; the fact that L may lack a top element results in Tw(L)

potentially lacking an identity element. By localizing to a specific positive idempotent element of Tw(L) (induced

by an arbitrary fixed element ı of L), we obtain a subalgebra Tw(L, ı) of Tw(L) that is a residuated lattice; this

localization is done by the double-division conucleus given in [13], which focuses on the local submonoid of the

positive idempotent element. This approach allows us to work with twist products of residuated lattices that do not

have a top element and subsumes all of our motivating examples. Thus we accomplish our first goal: we put into

the same framework different algebras, such as Nelson residuated lattices and Paraconsistent Nelson residuated

lattices.

Having established this first theoretical framework, we pursue our second purpose: to describe the class of

involutive residuated lattices that have a representation as a twist-product over a residuated lattice; this requires us

to focus on a construction in the reverse direction to the twist product. We show that the desired residuated lattice is
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also obtained by a conucleus on the involutive residuated lattice, which is of a very different nature than the double-

division one, and we call it a Nelson conucleus. The main representation result in Theorem 18 shows that pairs of

the form (A, n), where A is a cyclic involutive residuated lattice and n is a Nelson conucleus, are representable by

a twist-product over a residuated lattice defined on n[A]. We call these algebras Nelson conucleus algebras and

denote the variety they form by NCA. As a corollary we provide an adjunction between the algebraic category

given byNCA and a category whose objects are pairs of the form (L, ı) where L is a residuated lattice and ı ∈ L is

a cyclic element. Along the way of proving the representation, we generalize the original construction of Rasiowa

[20, 21] on Nelson algebras and their representation by twist structures. In particular, our presentation shows that

Rasiowa’s homomorphic image construction can be replaced by a conucleus construction, which is more internal

to the original algebra, as it provides representatives for the equivalence classes.

Our motivating examples share some extra common features: they are commutative residuated lattices and the

Nelson conucleus n is definable by a term function; therefore they actually form varieties of commutative involutive

residuated lattices. First we identify the subvariety ofNCAwhose elements are term equivalent to Kalman lattices.

Secondly we prove that Nelson residuated lattices and Paraconsistent Nelson residuated lattices form classes term

equivalent to subvarieties of NCA, thus Theorem 18 applies to them. Furthermore, we show that both of these

subvarieties are contained in NT , a subvariety ofNCA, up to term equivalence, whose elements we call Nelson-

type algebras. Following Sendlewski’s representation for Nelson algebras in [23] and the paraconsistent analogue

given by Odintsov in [18], we improve the representation of Theorem 18 for NT by providing a Sendlewski-

like theorem, i.e., we identify each Nelson-type algebra with a subalgebra of the twist-product on n[A]. As a

consequence we get a categorical equivalence between the algebraic category of Nelson-type algebras and the

category whose objects are triples of the form (H, i, F), where H is a Brouwerian algebra, ı is a cyclic element in H

and F is a Boolean filter of H. This then restricts to categorical equivalences for the two subvarieties corresponding

to Nelson residuated lattices and Paraconsistent Nelson residuated lattices.

In the last section, we complete the circle of ideas by providing some particular conditions under which the

representation Theorem 18 can be turned into an isomorphism theorem even when the Nelson conucleus is not

given by a term.

1. Preliminaries

In this section we review some existing definitions and constructions. We also introduce modifications and

combinations of these constructions that will be suitable for the paper.

1.1. Residuated lattices. A residuated lattice-ordered semigroup is an algebra A = (A,∨,∧, ·, \, /) such that

(A, ·) is a semigroup, (A,∨,∧) is a lattice and the residuation condition

x · y ≤ z iff y ≤ x\z iff x ≤ z/y

holds for all x, y and z in A, where ≤ is the order given by the lattice structure. A residuated lattice is an algebra

A = (A,∨,∧, ·, \, /, e) such that (A, ·, e) is a monoid and (A,∨,∧, ·, \, /) is a residuated lattice-ordered semigroup;

residuated lattice-ordered semigroups and residuated lattices form varieties. If a residuated lattice-ordered semi-

group satisfies x · y = y · x, it is called a commutative. In such case x\y = y/x and we denote the common value by

x → y. We say that the residuated lattice A is distributive if the lattice (A,∨,∧) is distributive. For each natural

number n we define x0
= e and xn

= xn−1 · x for n > 0; also we often write xy for x · y. For more on residuated

lattices, see [12, 4, 14].

We will be also working with integral residuated lattices, which are residuated lattices satisfying x ≤ e, and

with Brouwerian algebras that are term equivalent to residuated lattices satisfying xy = x ∧ y (and hence are

integral and commutative). We also consider expansions with an additional constant, which serves as the bottom

element, and refer to these algebras as bounded residuated lattices, since then they necessarily also have a term-

definable top element.

1.2. Involutive residuated lattices. Residuated lattices can be expanded into (cyclic) involutive residuated lattices

in two term equivalent ways. One is by adding to the signature a negation constant element f that is cyclic: for all

x, x\ f = f /x, and dualizing: f /(x\ f ) = x = ( f /x)\ f . Alternatively, we can add to the signature a unary (cyclic)

involution operation ∼ satisfying the equations:

∼∼x = x (double negation)

x\∼y = ∼x/y (contraposition)

The two ways produce term equivalent algebras via the definitions f = ∼e and ∼x = x\ f (see [11, 26] for details);

in particular ∼x = x\∼e. We prefer the definition in terms of the involution ∼, as it makes sense also for residuated

lattice-ordered semigroups. In this paper we will not make use of the notion of not-necessarily cyclic involutive
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residuated lattice, and we will always assume cyclicity for f and ∼. Observe that in commutative involutive

residuated lattices the contraposition takes the form x→∼y = y→∼x and that cyclicity holds automatically.

In an involutive residuated lattice-ordered semigroup the divisions are definable in terms of the multiplication

and the involution, and also the lattice operations are interdefinable via De Morgan equations. More precisely:

Lemma 1. (see [11, Lemma 5.1] and [12, Lemma 2.8]) If A is an involutive residuated lattice then

(1) x\y = ∼(∼y · x) and y/x = ∼(x · ∼y).

(2) x · y = ∼(y\∼x) = ∼(∼y/x).

(3) ∼(x ∨ y) = ∼x ∧ ∼y and ∼(x ∧ y) = ∼x ∨ ∼y.

An involutive residuated lattice is called odd if f = e, or equivalently ∼e = e; also, we have ∼x = x\e. Because

of the identification of the two constants, odd involutive residuated lattices are term equivalent to residuated lattices

that satisfy the equations x\e = e/x and (x\e)\e = x. In the commutative case, the defining equation is just

(x→ e)→ e = x.

1.3. Conuclei constructions. We review the important notion of conucleus on residuated structures.

1.3.1. Conuclei and weak conuclei.

Definition 2. A weak conucleus δ on a residuated lattice-ordered semigroup A = (A,∨,∧, ·, \, /) is a function on

A that satisfies:

(C1) δ(x) ≤ x,

(C2) δ(δ(x)) = δ(x),

(C3) if x ≤ y then δ(x) ≤ δ(y),

(C4) δ(x) · δ(y) ≤ δ(x · y).

If A is a residuated lattice with neutral element e and δ additionally satisfies:

(C5) δ(e) · δ(x) = δ(x) · δ(e) = δ(x),

then δ is called a conucleus on A.

Summing up, a conucleus is an interior operator δ on a residuated lattice A that satisfies (C4) and (C5). It is

immediate that if δ is a weak conucleus then δ(x) ∨ δ(y) = δ(δ(x) ∨ δ(y)) and δ(x) · δ(y) = δ(δ(x) · δ(y)).

Given a residuated lattice A and a conucleus δ on A, the algebra

Aδ = δ[A] = (δ[A],∨,∧δ, ·, \δ, /δ, δ(e))

is a residuated lattice ([12]), where x ∧δ y = δ(x ∧ y), x\δy = δ(x\y) and y/δx = δ(y/x) for x, y ∈ δ[A] (by the

previous observation, δ[A] is closed under ∨ and ·).

Lemma 3. If δ is a weak conucleus on A, then

(C6) δ(x ∧ y) = δ(δ(x) ∧ δ(y)),

(C7) δ(δ(x)\y) = δ(δ(x)\δ(y)) and δ(y/δ(x)) = δ(δ(y)/δ(x)).

Proof. For (C6), observe that by (C1) we have that δ(x) ∧ δ(y) ≤ x ∧ y, so δ(δ(x) ∧ δ(y)) ≤ δ(x ∧ y) by (C3).

As δ(x ∧ y) ≤ δ(x), δ(y) by (C3), we have that δ(x ∧ y) ≤ δ(δ(x) ∧ δ(y)) again by (C3) and (C2). For (C7), as

δ(x)\δ(y) ≤ δ(x)\y we have one inequality. For the other one, using (C4) we have δ(x) · δ(δ(x)\y) = δ(δ(x)) ·

δ(δ(x)\y) ≤ δ(δ(x) · δ(x)\y) ≤ δ(y) and (C7) follows from (C3) and (C2). �

1.3.2. Double Division conucleus. Let A = (A,∨,∧, ·, \, /) be a residuated lattice-ordered semigroup and p ∈ A

an idempotent element (i.e., p = p2) that is also positive (i.e., p\x, x/p ≤ x ≤ px, xp, for all x). This definition of

being positive is justified by the fact that if A has an identity element e, then p is positive iff e ≤ p. It is shown in

[13] that the map defined by

δp(x) = p\x/p

is a weak conucleus on A, that ∧p = ∧, \p = \, /p = /, that p is an identity element for δp[A] and that δp[A] =

p\A/p = {p\a/p : a ∈ A}. Therefore the algebra

p\A/p = δp[A] = (p\A/p,∧,∨, ·, \, /, p)

is a residuated lattice. The algebra p\A/p is called the double-division conucleus image of A by p. Moreover, it

turns out that δp[A] = {a ∈ A : ap = a, pa = a}.

It is further shown in [13] that if the residuated lattice-ordered semigroup A is (cyclic) involutive with involution

∼, then the residuated lattice p\A/p is also (cyclic) involutive and actually p\A/p is a subalgebra of A with respect

to the operations ∧,∨, ·, \, /,∼; the constants e and ∼e are replaced by p and ∼p.
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2. Twist structures

Given a residuated lattice-ordered semigroup L = (L,∧,∨, ·, \, /), we consider the set Tw(L) = L× L and define

the operations ∧ and ∨ as in L × L∂. Also, for a, a′, b, b′ ∈ L, we define:

∼(a, b) = (b, a) (1)

(a, b) · (a′, b′) = (a · a′, b′/a ∧ a′\b) (2)

(a, b)\(a′, b′) = (a\a′ ∧ b/b′, b′ · a) (3)

(a′, b′)/(a, b) = (a′/a ∧ b′\b, a · b′) (4)

The resulting structure (Tw(L),∧,∨, ·, \, /,∼) is an involutive residuated lattice-ordered semigroup, which we

denote by Tw(L). We refer to this algebra as the full twist structure over L. In addition, if L is a topped

residuated lattice with neutral element e and top element ⊤ the structure (Tw(L),∧,∨, ·, \, /,∼, (e,⊤)) is an invo-

lutive residuated lattice (see [26]). In particular, if (L,∧,∨, ·, \, /, e) is an integral residuated lattice, the algebra

Tw(L, e) = (Tw(L),∧,∨, ·, \, /,∼, (e, e)) is an involutive residuated lattice.

2.1. Double Division conucleus for twist structures. Next we do not assume that L has a top, so Tw(L) may

lack an identity element.

Lemma 4. Let L be a residuated lattice and ı ∈ L.

(1) The element (e, ı) is a positive idempotent of the residuated lattice-ordered semigroup Tw(L).

(2) An element (a, b) is fixed by δ(e,ı) iff ab ∨ ba ≤ ı. (Recall that δp(x) = p\x/p.)

Proof. For (1) we have (e, ı)(e, ı) = (e · e, ı/e ∧ e\ı) = (e, ı) so (e, ı) is a idempotent. To show that it is positive, we

have that for all (a, b),

(a, b)(e, ı) = (ae, ı/a ∧ e\b) = (a, ı/a ∧ b) ≥ (a, b)

(e, ı)(a, b) = (ea, b/e∧ a\ı) = (a, b ∧ a\ı) ≥ (a, b)

(e, ı)\(a, b) = (e\a ∧ ı/b, be) = (a ∧ ı/b, b) ≤ (a, b)

(a, b)/(e, ı) = (a/e ∧ b\ı, be) = (a ∧ b\ı, b) ≤ (a, b).

Note that

(e, ı)\(a, b)/(e, ı) = (e\a ∧ ı/b, be)/(e, ı) = (a ∧ ı/b, b)/(e, ı)

= ((a ∧ ı/b)/e ∧ b\ı, eb) = (a ∧ ı/b ∧ b\ı, b).

Therefore, (a, b) is fixed iff (e, ı)\(a, b)/(e, ı) = (a, b) iff (a ∧ ı/b ∧ b\ı, b) = (a, b) iff a ≤ ı/b ∧ b\ı iff ab ≤ ı and

ba ≤ ı iff ab ∨ ba ≤ ı. �

Given the fact that (e, ı) is a positive idempotent, for a residuated lattice L, we denote by

Tw(L, ı) = δ(e,ı)[Tw(L)] = (e, ı)\Tw(L)/(e, ı)

the double-division conucleus image of the residuated lattice-ordered semigroup Tw(L) by δ(e, ı). Note that even

though Tw(L) may have no identity element, Tw(L, ı) is still a residuated lattice with identity element (e, ı). This

allows us to consider this construction when L is a residuated lattice that lacks a top element. We call Tw(L, ı) the

twist structure over (L, ı)

According to the previous results, the universe of the algebra Tw(L, ı) is the set Tw(L, ı) = {(a, b) ∈ L × L∂ :

ab ∨ ba ≤ ı}. In summary we obtain the following:

Theorem 5. Let (L,∧,∨, ·, \, /, e) be a residuated lattice and ı ∈ L. Consider the set

Tw(L, ı) = {(a, b) ∈ L × L∂ : ab ∨ ba ≤ ı}

equipped with the operations ∧ and ∨ of L×L∂ and the operations defined in equations (1), (2), (3) and (4). Then

Tw(L, ı) = (Tw(L, ı),∧,∨, ·, \, /,∼, (e, ı)) is an involutive residuated lattice.

We prove a lemma that sheds some light into the construction.

Lemma 6. The set

Tw(L, ı) = {(a, b) ∈ L × L : ab ∨ ba ≤ ı}

is a downset of the direct product lattice L × L. Moreover, Mı = {(a, b) : a = ı/b ∧ b\ı and b = ı/a ∧ a\ı} consists

of maximal elements of Tw(L, ı) and if ı is cyclic then Tw(L, ı) = ↓L×LMı.
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Proof. We prove that Tw(L, ı) is a downset of L × L in terms of the coordinatewise order, which is different than

the order of the residuated lattice Tw(L, ı). If (c, d), (a, b) ∈ L × L, are such that c ≤ a, d ≤ b and ab ∨ ba ≤ ı, then

cd ∨ dc ≤ ab ∨ ba ≤ ı. Also, note that

Tw(L, ı) = {(a, b) : a ≤ ı/b ∧ b\ı and b ≤ ı/a ∧ a\ı}

= {(a, b) : a ≤ ı/b ∧ b\ı} = {(a, b) : b ≤ ı/a ∧ a\ı}.

It then follows directly that Tw(L, ı) is a downset. To show that the set Mı = {(a, b) : a = ı/b∧b\ı and b = ı/a∧a\ı}

consists of maximal elements of Tw(L, ı), let (a, b) ∈ Mı and (c, d) ∈ Tw(L, ı), be such that a ≤ c, b ≤ d. Then

a = ı/b ∧ b\ı, b = ı/a ∧ a\ı, c ≤ ı/d ∧ d\ı and d ≤ ı/c ∧ c\ı. So, c ≤ ı/d ∧ d\ı ≤ ı/b ∧ b\ı = a ≤ c and

d ≤ ı/c ∧ c\ı ≤ ı/a ∧ a\ı = b ≤ d, hence (c, d) = (a, b).

Assume now that ı is cyclic to prove that Tw(L, ı) = ↓L×LMı. Since Mı ⊆ Tw(L, ı) and Tw(L, ı) is a downset, we

get ↓L×LMı ⊆ Tw(L, ı). Conversely, if (c, d) ∈ Tw(L, ı), then c ≤ (c\ı)\ı, d ≤ c\ı and ((c\ı)\ı, c\ı) ∈ Mı; the element

(d\ı, (d\ı)\ı) also witnesses this fact. This provides a visual understanding of how Tw(L, ı) sits inside Tw(L). �

In Figure 1 we consider all possible twist structures and their maximal sets Mı associated with the only two-

element residuated lattice: the generalized Boolean algebra 2. In Figure 2 we consider all possible twist structures

and their maximal sets Mı associated with all the three-element residuated lattices: the Wajsberg chain Ł3, the

Gödel hoop G3 and the Sugihara monoid S3.

(0, 0) (1, 1)

(1, 0)

(0, 1)

Tw(2, 0)

(0, 0) (1, 1)

(1, 0)

(0, 1)

Tw(2, 1)

0

1

2

Figure 1. The 2-element residuated lattice 2, together with the lattice structure of all its possible

twist structures, and the maximal sets that describe them. In each case, the maximal sets are

shown in gray, and the identity element for the product (1, ı) is marked as a black square.

2.2. Motivating examples. We consider three different varieties of algebras that serve as the motivation for our

study. The goal is to include them under the same theoretical framework.

Example 7. A Kalman residuated lattice ([8, 1]) is a commutative residuated lattice A = (A,∧,∨, ·,→, e) satis-

fying the following equations:

(K1) (x→ e)→ e = x,

(K2) (x · y) ∧ e = (x ∧ e) · (y ∧ e),

(K3) ((x ∧ e)→ y) ∧ (x→ (y ∨ e)) = x→ y [equivalently, ((x ∧ e)→ y) ∧ ((∼y ∧ e)→ ∼x) = x→ y],

(K4) e ∧ (x ∨ y) = (e ∧ x) ∨ (e ∧ y) and

(K5) x ∧ (y ∨ e) = (x ∧ y) ∨ (x ∧ e).

(A,∧,∨, ·,→,∼, e) is a commutative involutive residuated lattice, where ∼x = x → e and ∼ e = e, i.e., A is an

odd residuated lattice. Note that the expressions (∼y∧ e)→ ∼x and x→ (y∨ e) in the two forms of (K3) are equal

by contraposition. It will follow from our analysis that (K5) is actually redundant.

If L = (L,∨,∧, ·,→, 1) is an integral commutative residuated lattice, then Tw(L, 1) is a Kalman lattice. More-

over, for each Kalman lattice A there is an integral residuated lattice L such that A is isomorphic to a subalgebra

of Tw(L, 1) [8, Th. 2.5].

Example 8. A Nelson residuated lattice ([24, 25, 5, 10, 23]) is a bounded integral commutative residuated lattice

A = (A,∨,∧, ·,→,⊥, e), that with ¬x := x→ ⊥ satisfies:

(NRL1) ¬¬x = x.

(NRL2) (x2 → y) ∧ ((¬y)2 → ¬x) = x→ y.

Involutive residuated lattices defined in [5] are not the same as the ones defined here, since the involution ¬ is

a definable operation if the constant ⊥ is included in the type. Nelson residuated lattices are term equivalent to

Nelson algebras [20, 21], the algebraic counterpart of Nelson constructive logic with strong negation [17].

If H = (H,∨,∧,→, 0, 1) is a Heyting algebra then viewing H as a bounded residuated lattice with · = ∧

and bottom element 0, Tw(H, 0) is a Nelson residuated lattice with bottom element (0, 1), which is added to the
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(a, a)(0, 0)

(a, 0)

(0, a)

(1, 0)

(0, 1)

Tw(Ł3, 0)

(a, a)(0, 0) (1, 1)

(a, 0) (1, a)

(0, a) (a, 1)

(1, 0)

(0, 1)

Tw(Ł3, a)

(a, a)(0, 0) (1, 1)

(a, 0) (1, a)

(0, a) (a, 1)

(1, 0)

(0, 1)

Tw(Ł3, 1)

a

1

0 = a2

Ł3

(0, 0)

(a, 0)

(0, a)

(1, 0)

(0, 1)

Tw(G3, 0)

(a, a)(0, 0)

(a, 0) (1, a)

(0, a) (a, 1)

(1, 0)

(0, 1)

Tw(G3, a)

(a, a)(0, 0) (1, 1)

(a, 0) (1, a)

(0, a) (a, 1)

(1, 0)

(0, 1)

Tw(G3, 1)

a = a2

1

0

G3

(0, 0)

(e, 0)

(0, e)

(⊤, 0)

(0,⊤)

Tw(S 3, 0)

(e, e)(0, 0)

(e, 0)

(0, e)

(⊤, 0)

(0,⊤)

Tw(S 3, e)

(e, e)(0, 0) (⊤,⊤)

(e, 0) (⊤, e)

(0, e) (e,⊤)

(⊤, 0)

(0,⊤)

Tw(S 3,⊤)

e

⊤

0

S 3

Figure 2. The 3-element residuated lattices Ł3, G3 and S3, together with the lattice structure of

all their possible twist structures, and the maximal sets that describe them. In each case, the

maximal sets are shown in gray, and the identity element for the product (1, ı) is marked as a

square.

signature of Tw(H, 0). As in the previous case, there is a representation theorem since every Nelson residuated

lattice is embeddable in Tw(H, 0) for a Heyting algebra H (see [5, Corollary 3.5]).

Example 9. A Nelson paraconsistent residuated lattice (NPc-lattice for short, see [6], [7], [19] and [2]) is an

odd distributive commutative residuated lattice A = (A,∨,∧, ·,→, e) satisfying, for ∼x = x→ e:

(NPc1) ∼∼ x = x

(NPc2) (x · y) ∧ e = (x ∧ e) · (y ∧ e)

(NPc3) (x ∧ e)2
= x ∧ e

(NPc4) ((x ∧ e)→ y) ∧ (x→ (y ∨ e)) = x→ y [equivalently, ((x ∧ e)→ y) ∧ ((∼y ∧ e)→ ∼x) = x→ y]

NPc-lattices are special Kalman residuated lattices satisfying distributivity and (NPc3). They were introduced

in [6] in order to present the algebraic semantics of Nelson paraconsistent logic [19] within the framework of

residuated lattices.
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If H = (H,∨,∧,→, 1) is a Brouwerian algebra (also called generalized Heyting algebra), then viewing H as a

residuated lattice with · = ∧, Tw(H, 1) is a Nelson paraconsistent residuated lattice. As in the previous cases, every

NPc-lattice A can be embedded into a twist structure Tw(H, 1) (see [2]).

2.3. Natural conuclei on twist structures. Another conucleus will be important for understanding involutive

residuated lattices represented by twist structures; this time the conucleus will be on Tw(L, ı). Given a residuated

lattice L and an element ı ∈ L, we define the function

nTw(a, b) = (a, ı/a ∧ a\ı)

on Tw(L, ı). Recall that ı is cyclic if x\ı = ı/x, for all x. In that case ab ∨ ba ≤ ı iff ab ≤ ı iff ba ≤ ı, for all

a, b. So, if ı is a cyclic (and in particular in the commutative case), Tw(L, ı) = {(a, b) ∈ L × L∂ : ab ≤ ı} and also

nTw(a, b) = (a, a\ı).

Note that, under the assumption that ı is cyclic, nTw satisfies (C1), (C2), (C3) and (C5). Moreover, we can prove:

Lemma 10. Assume that the function nTw(a, b) = (a, ı/a ∧ a\ı) is defined on Tw(L, ı) with ı cyclic. Then for each

a, b, c, d ∈ L we have:

(1) nTw((a, b) · (c, d)) = nTw(a, b) · nTw(c, d)

(2) nTw((a, b) ∨ (c, d)) = nTw(a, b) ∨ nTw(a, b)

(3) (nTw(a, b) · (c, d)) ∨ ((a, b) · nTw(c, d)) = (a, b) · (c, d).

In particular, nTw(a, b) is a conucleus.

Proof. Using Lemma 2.6(6) of [12], we have that

nTw((a, b) · (c, d)) = (ac, (ac)\ı) = (ac, ı/(ac)∧ (ac)\ı)

= (ac, (c\ı)/a)∧ (c\(a\ı)) = (a, a\ı) · (c, c\ı)

= nTw(a, b) · nTw(c, d).

Using Lemma 2.6(3) of [12], we also have that:

nTw((a, b) ∨ (c, d)) = nTw(a ∨ c, b ∧ d) = (a ∨ c, (a ∨ c)\ı)

= (a ∨ c, (a\ı) ∧ (c\ı)) = (a, a\ı) ∨ (c, c\ı)

= nTw(a, b) ∨ nTw(a, b).

Finally we observe that

(nTw(a, b)(c, d))∨ ((a, b)nTw(c, d)) = (a, a\ı)(c, d)∨ (a, b)(c, c\ı)

= (ac, (d/a∧ c\(a\ı))) ∨ (ac, (c\b∧ (c\ı)/a))

= (ac, (d/a∧ c\(a\ı)) ∧ (c\b ∧ (c\ı)/a))

= (ac, (d/a∧ ac\ı) ∧ (c\b ∧ ac\ı))

= (ac, d/a ∧ c\b) = (a, b) · (c, d),

where we used that ac(d/a ∧ c\b) ≤ ac(c\b) ≤ ab ≤ ı, so d/a ∧ c\b ≤ ac\ı. �

3. Nelson conucleus algebras

Motivated by the properties of the pair of the involutive residuated lattice Tw(L, ı) and the conucleus nTw, we

define the main class of algebras of the paper and link them to the preceding constructions.

3.1. Nelson conuclei and the varietyNCA. An operator n on a residuated lattice A is called a Nelson conucleus

if n is a conucleus and it also satisfies:

(T1) n(x ∨ y) = n(x) ∨ n(y)

(T2) n(xy) = n(x)n(y)

(T3) xy ≤ n(x)y ∨ xn(y)

Any conucleus satisfies xy ≥ n(x)y ∨ xn(y). Then we have:

Lemma 11. Let A be a residuated lattice and n a conucleus on it satisfying (T1) and (T2). Then n is a Nelson

conucleus iff

(T4) xy = n(x)y ∨ xn(y).
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Observe that a Nelson conucleus n also satisfies n(e) = e since e = ee = n(e)e ∨ en(e) = n(e). Thus given

a residuated lattice A and a Nelson conucleus n on A, the conucleus image An = (n[A],∧n,∨, ·, \n, /n, e) is a

residuated lattice.

From the results of Section 2.3 we get:

Lemma 12. Given a residuated lattice L and a cyclic element ı ∈ L, the operator nTw defined on Tw(L, ı) by

nTw(a, b) = (a, a\ı)

is a Nelson conucleus.

If L an integral and commutative residuated lattice, then Tw(L, 1) is a Kalman lattice and nTw(a, b) = (a, 1). If

H is a Heyting algebra and Tw(H, 0) is a Nelson residuated lattice, then nTw(a, b) = (a, a→ 0).

We consider in Figure 3 all the twist structures from Figures 1 and 2 associated with all the two or three-element

residuated lattices, together with the sets n[A].

(a, a)(0, 0)

(a, 0)

(0, a)

(1, 0)

(0, 1)

Tw(Ł3, 0)

(a, a)(0, 0) (1, 1)

(a, 0) (1, a)

(0, a) (a, 1)

(1, 0)

(0, 1)

Tw(Ł3, a)

(a, a)(0, 0) (1, 1)

(a, 0) (1, a)

(0, a) (a, 1)

(1, 0)

(0, 1)

Tw(Ł3, 1)

a

1

0 = a2

Ł3

(0, 0)

(a, 0)

(0, a)

(1, 0)

(0, 1)

Tw(G3, 0)

(a, a)(0, 0)

(a, 0) (1, a)

(0, a) (a, 1)

(1, 0)

(0, 1)

Tw(G3, a)

(a, a)(0, 0) (1, 1)

(a, 0) (1, a)

(0, a) (a, 1)

(1, 0)

(0, 1)

Tw(G3, 1)

a = a2

1

0

G3

(0, 0)

(e, 0)

(0, e)

(⊤, 0)

(0,⊤)

Tw(S 3, 0)

(e, e)(0, 0)

(e, 0)

(0, e)

(⊤, 0)

(0,⊤)

Tw(S 3, e)

(e, e)(0, 0) (⊤,⊤)

(e, 0) (⊤, e)

(0, e) (e,⊤)

(⊤, 0)

(0,⊤)

Tw(S 3,⊤)

e

⊤

0

S 3

(1, 0)

(0, 0)

(0, 1)

Tw(2, 0)

(1, 0)

(0, 0) (1, 1)

(0, 1)

Tw(2, 1)

1

0

2

Figure 3. The 2 or 3-element residuated lattices 2, Ł3, G3 and S3, together with the lattice

structure of all their possible twist structures, and the image of the conucleus. In each case, the

images of n are shown in gray, and the identity element for the product (1, ı) is marked as a

square.
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In the involutive case (T4) can be rephrased:

Lemma 13. Let A be an involutive residuated lattice and n a conucleus on A. The operator n satisfies (T4) iff it

satisfies one of the following equivalent identities

(T5) x\y = (n(x)\y) ∧ (∼x/n(∼y)), x\y = (n(x)\y) ∧ (x\∼n(∼y)),

y/x = (y/n(x)) ∧ (n(∼y)\∼x), y/x = (y/n(x)) ∧ (∼n(∼y)/x).

In this case we also have that n(∼e) is cyclic in An.

Proof. For (T5), by (T4) and Lemma 1(1), we have

(x\y) = ∼(∼y · x) = ∼(n(∼y) · x ∨ (∼y) · n(x))

= ∼(n(∼y) · x) ∧ ∼((∼y) · n(x)) = (∼x/n(∼y)) ∧ (n(x)\y).

The converse follows the same reasoning and analogously we get the other equalities, using that a\b = ∼a/∼b.

Finally, for cyclicity, recalling (C7) we obtain

n(x)\nn(∼e) = n(n(x)\n(∼e)) = n(n(x)\∼e)

= n(∼n(x)) = n(∼e/n(x)) = n(n(∼e)/n(x)) = n(∼e)/nn(x).

�

Note that n(x) ≤ n(y) iff n(x) ≤ y holds for all interior operators.

Lemma 14. Let A be a residuated lattice, n a Nelson conucleus in A and x, y ∈ A.

If n(x) = n(y) and n(∼x) = n(∼y), then x = y.

Proof. Observe that n(x) ≤ n(y) iff n(x) ≤ y. Now n(x) ≤ y and n(∼y) ≤ ∼x, iff e ≤ n(x)\y and e ≤ ∼x/n(∼y), iff

e ≤ (n(x)\y) ∧ (∼x/n(∼y)). By Equation (T5) this is equivalent to e ≤ x\y and to x ≤ y. �

We define the varietyNCA of Nelson conucleus algebras whose elements are algebras (A, n) such that A is a

(cyclic) involutive residuated lattice and n is a Nelson conucleus on A. As an immediate consequence of Lemma

12 we have:

Theorem 15. Given a residuated lattice L and a cyclic element ı ∈ L, the pair (Tw(L, ı), nTw), where nTw(a, b) =

(a, ı/a ∧ a\ı) as before, is in NCA.

If (A, n) ∈ NCA, we define

xu y = n(x)\y and y w x = y/n(x).

With this notation, from (C7) we get n(xu y) = n(n(x)\y) = n(n(x)\n(y)) = n(x)\nn(y), n(x wy) = n(n(x)/y) =

n(n(x)/n(y)) = n(x)/nn(y) and the equations (T5) become

x\y = (xu y) ∧ (∼x w∼y) y/x = (y w x) ∧ (∼yu ∼x). (T5’)

3.2. Twist-representation and a categorical adjunction. So far we have described the process where from a

residuated lattice L and a cyclic element ı ∈ L, we construct an algebra (Tw(L, ı), nTw) in NCA.

We consider the category RLcy with objects algebras (L, ı), where L is a residuated lattice and ı is a cyclic

element of L; the morphisms are homomorphisms of these algebras (they preserve the cyclic element). Also, note

thatNCA defines a category where the morphisms are the algebraic homomorphisms.

For an object (L, ı) ∈ RLcy and a morphism f in RLcy, we define

T(L, ı) = (Tw(L, ı), nTw) and T( f )(a, b) = ( f (a), f (b)).

It can be easily verified that T is a functor from RLcy to NCA.

We also have the reverse process: given an algebra (A, n) ∈ NCA, the algebra

An = (n[A],∨,∧n, ·, \n, /n, e)

is a residuated lattice and n(∼e) cyclic element of An. Therefore, for an object (A, n) and a homomorphism

f : (A, n)→ (B, n′) in NCA we define

R(A, n) = (An, n(∼e)) and R( f ) to be the restriction of f to An.

It can be shown that R is a functor fromNCA to RLcy.

We will show that the functors R and T form an adjunction. For that consider, for (L, ı) ∈ RLcy and (A, n) ∈

NCA, the functions

ψ(L,ı) : (L, ı)→ RT(L, ı) given by ψ(L,ı)(a) = (a, a\ı)
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and

φ(A,n) : (A, n)→ TR(A, n) given by φ(A,n)(x) = (n(x), n(∼x)).

Theorem 16. Let (L, ı) ∈ RLcy. The function ψ(L,ı) is an isomorphism. Therefore the composition RT of functors

is naturally isomorphic to the identity functor on RLcy, via ψ−1
(L,ı)

.

Proof. For (L, ı) ∈ RLcy, we have T(L, ı) = (Tw(L, ı), nTw), where Tw(L, ı) = {(a, b) ∈ L2 : ab ≤ ı}. Applying R to

that we obtain (Tw(L, ı)nTw
, nTw(∼(e, ı))), where Tw(L, ı)nTw

= {(a, a\ı) : a ∈ L} and also nTw(∼(e, ı)) = nTw(ı, e) =

(ı, ı\ı). We will write ψ for ψ(L,ı). Clearly, ψ : (L, ı)→ (Tw(L, ı)nTw
, (ı, ı\ı)) is a bijection. Also,

• ψ(a) ∨ ψ(b) = (a, a\ı) ∨ (b, b\ı) = (a ∨ b, a\ı ∧ b\ı) = (a ∨ b, (a ∨ b)\ı) = ψ(a ∨ b)

• ψ(a)ψ(b) = (a, a\ı)(b, b\ı) = (a · b, (b\ı)/a)∧ (b\(a\ı)) = (a · b, ı/(a · b) ∧ (a · b)\ı) = (ab, ab\ı) = ψ(ab)

• ψ(a) ∧nTw
ψ(b) = (a, a\ı) ∧nTw

(b, b\ı) = nTw(a ∧ b, a\ı ∨ b\ı) = (a ∧ b, (a ∧ b)\ı) = ψ(a ∨ b)

• ψ(a)\nTw
ψ(b) = nTw((a, a\ı)u (b, b\ı)) = nTw(a\b ∧ (a\ı)/(b\ı), (b\ı)a) =

nTw(a\b, (b\ı)a) = ψ(a\b)

• ψ(b)/nTw
ψ(a) = nTw((b, b\ı) w (a, a\ı)) = nTw(b/a ∧ (b\ı)\(a\ı), a(b\ı)) =

nTw(b/a, a(b\ı)) = ψ(b/a)

For both divisions, we used the fact that a(a\b)(b\ı) ≤ ı, that (ı/b)(b/a)a ≤ ı and cyclicity, to show that

a\b ≤ (a\ı)/(b\ı) and b/a ≤ (b\ı)\(a\ı). Furthermore, ψ(e) = (e, e\ı) = (e, ı) and ψ(ı) = (ı, ı\ı).

Therefore, ψ is an isomorphism in RLcy. �

We will show that every algebra (A, n) ∈ NCA can be embedded in TR(A, n). This means that it can be

represented by a twist-product, in the following sense.

Definition 17. A twist-product over (L, ı) ∈ RLcy is a subalgebra of Tw(L, ı) that contains nTw[Tw(L, ı)], i.e. all

elements of the form (a, ı/a ∧ a\ı) for a ∈ L.

From Theorem 5 we have the algebra of pairs

Tw(An, ı) =
{

(n(x), n(y)) ∈ An × A∂
n : n(x) · n(y) ≤ ı

}

where ı = n(∼e).

Theorem 18. Let (A, n) ∈ NCA and let ı = n(∼ e). The function φ(A,n) : A→ Tw(An, ı) given by the prescription

x 7→ (n(x), n(∼ x))

is an injective homomorphism from (A, n) to (Tw(An, ı), nTw). In particular, (A, n) is isomorphic to a twist-product

over (An, ı).

Proof. We will write φ for φ(A,n). To prove that the mapping is well-defined, observe that x · ∼x ≤ x · (x\(∼e)) ≤ ∼e

and therefore

n(x) · n(∼x) = n(x · ∼x) ≤ n(∼e) = ı.

Recall that the neutral element on Tw(An, ı) is the pair (e, ı). Clearly φ(e) = (n(e), n(∼e)) = (e, ı). Using the

fact that De Morgan laws hold in A one can easily check that ∧ and ∨ are preserved by the mapping φ. Also the

preservation of ∼ is straightforward from the definition of the mapping and the fact that ∼ is an involution in A.

Due to Lemma 1 we only need to check that · is preserved. Observe that for all x, y ∈ A,

φ(x · y) = (n(x · y), n(∼(x · y)))

and

φ(x) · φ(y) = (n(x) · n(y), n(∼y)/nn(x) ∧n n(y)\nn(∼x)).

As n(x · y) = n(x) · n(y), we just need to prove that the second coordinates of both pairs coincide. An application

of Equation (T5’), Lemma 3 and Lemma 1 give:

n(∼y)/nn(x) ∧n n(y)\nn(∼x) = n(n(n(∼y)/n(x)) ∧ n(n(y)\n(∼x)))

= n(n(∼y/n(x)) ∧ n(n(y)\∼x))

= n((∼y/n(x)) ∧ (n(y)\∼x))

= n(((∼y) w x) ∧ (yu (∼x)))

= n(∼y/x) = n(∼(x · y)).

To see that the morphism φ is injective, observe that if x, y ∈ A are such that φ(x) = φ(y), then n(x) = n(y) and

n(∼x) = n(∼y) and Lemma 14 implies injectivity.

10



For the last part, observe that n(∼n(x)) = n(n(x)\∼e) = n(n(x)\n(∼e)) = n(x)\nı, so using the cyclicity of

ı = n(∼e), we get φ(n(x)) = (n(n(x)), n(∼n(x))) = (n(x), n(x)\nı) = nTw(φ(x)). �

The function φ(A,n) is not always an isomorphism, so the functors R and T do not form an equivalence between

the categories RLcy and NCA. For example, consider the set S = Tw(G3, 0) \ {(0, 0)} which is the universe of a

subalgebra S of Tw(G3, 0), such that nTw(S ) = G3; see Figure 2. Then the function

φ(S,nTw) : (S, nTw)→ TR(S, nTw)

is an embedding from S into the twist-product over (G3, 0) that is not an isomorphism. However, R and T form an

adjunction.

Theorem 19. The functor R is left adjoint of the functor T. They form an adjunction between the categories RLcy

to NCA, with unit φ and counit ψ−1.

Proof. We need to show that for every (A, n) ∈ NCA and (L, ı) ∈ RLcy we have:

1R(A,n) = ψ
−1
R(A,n) ◦ R(φ(A,n)) and 1T(L,ı) = T(ψ−1

(L,ı)) ◦ φT(L,ı)

For the second identity, recall that T(L, ı) = (Tw(L, ı), nTw). For all a, b ∈ Tw(L, ı), we have

T(ψ−1
(L,ı)) ◦ φT(L,ı)(a, b) = T(ψ−1

(L,ı))(φ(Tw(L,ı),nTw)(a, b))

= T(ψ−1
(L,ı))(nTw(a, b), nTw(∼(a, b)))

= T(ψ−1
(L,ı))(nTw(a, b), nTw(b, a))

= T(ψ−1
(L,ı))((a, a\ı), (b, b\ı))

= (ψ−1
(L,ı)(a, a\ı), ψ

−1
(L,ı)(b, b\ı))

= (a, b)

The first one can be written as 1(An,n(∼e)) = ψ
−1
(An ,n(∼e))

◦ φ(A, n)|An
. For all x ∈ An,

ψ−1
(An ,n(∼e)) ◦ φ(A, n)|An

(x) = ψ−1
(An ,n(∼e))(φ(A, n)|An

(x))

= ψ−1
(An ,n(∼e))(n(x), n(∼x))

= ψ−1
(An ,n(∼e))(x, x\n(∼e))

= x

We used the fact that x = n(x) and that n(∼n(x)) = n(n(x)\n(∼e)) = n(x)\nn(∼e)), which was already mentioned

in the proof of Theorem 18. �

3.3. Rasiowa-style presentation. The class of algebras we study is motivated by Nelson lattices and paracon-

sistent Nelson lattices. The original representation of these algebras in terms of twist-products is carried out by

considering the algebra A and defining an equivalence relation on A which turns out to be a congruence with re-

spect to some of the original operations on A (see [10, 23, 19, 6]). Although our presentation has a different flavor,

it can be compared to the original presentations of Nelson lattices (as in [20], [21]) and of paraconsistent Nelson

lattices (as in [19]). We connect these ideas in this section.

Let (A, n) ∈ NCA. Note that the implications \ and / are not preserved by the Nelson conucleus n. However,

we will prove that the operations

xu y = n(x)\y and y w x = y/n(x)

are mapped into the quotient properly.

Lemma 20. For a residuated lattice A and a Nelson conucleus n on A we have that the map

n : A→ An, where n(x) = n(x),

is a homomorphism from the algebra Ā =
(

A,∧,∨, ·,u , w , e
)

to the algebra An = (n[A],∧n,∨, ·, \n, /n, n(e)).

Proof. All conuclei produce homomorphisms for meet and e, as explained in the first section, while (T1) and (T2)

give the homomorphism property for join and multiplication. From equation (C7) we get

n(xu y) = n(n(x)\y) = n(n(x)\n(y)) = n(x)\nn(y).

Analogously we prove w . �
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With this result in mind, we consider the relations θ and � on A defined by:

xθy iff n(x) = n(y) (5)

x � y iff n(x) ≤ n(y) (iff n(x) ≤ y). (6)

Lemma 21. If n is a Nelson conucleus on A, then the following hold.

(1) The relation � is a preorder compatible with the operations of Ā.

(2) The relation θ is a congruence on Ā, which is the kernel of the map n. Thus, Ā/θ is isomorphic to An.

Proof. The fact that � is a preorder is trivial. For the compatibility of � with multiplication, we have x � y and

z � w implies n(x) ≤ n(y) and n(z) ≤ n(w), so n(x)n(z) ≤ n(y)n(w), hence n(xz) ≤ n(yw), by (T2). Consequently

we obtain xz � yw. The compatibility with ∨ and ∧ is similar. To prove that � is compatible with u and w we

observe that if n(x) ≤ n(x′) and n(y) ≤ n(y′), then (x′u y) � (xu y′) and (y w x) � (y′ w x). We give the proof

for the case of u , as the other case is analogous. If n(x) ≤ n(x′) and n(y) ≤ n(y′), by an application of (C7) in

Lemma 3 and the definition of u we obtain

n(x′u y) = n(n(x′)\y) = n(n(x′)\n(y)) ≤ n(n(x)\n(y′)) = n(n(x)\y′) = n(xu y′).

The claim about θ follow directly from the previous item and from Lemma 20. �

Lemma 22. For a residuated lattice A and a Nelson conucleus n on A we have

x � y iff (xu y)u (xu y) ≤ (xu y) iff (y w x) w (y w x) ≤ (y w x).

Proof. If x � y then n(x) ≤ y, so e ≤ n(x)\y and by Equation (C5),

(xu y)u (xu y) = n(n(x)\y)\(n(x)\y)

≤ n(e)\(n(x)\y) = (n(x) · n(e))\y = n(x)\y

= xu y.

Now assume (xu y)u (xu y) ≤ (xu y). Since n(xu y) ≤ (xu y), we have

e ≤ n(xu y)\(xu y) = (xu y)u (xu y)

and so e ≤ (xu y) = n(x)\y. Therefore we obtain n(x) ≤ y and x � y. The equivalence for w is analogous. �

We propose the following definition, which is phrased in terms of u , w , � and θ, as a natural generalization

of the definitions of Nelson lattices and paraconsistent Nelson lattices.

A Rasiowa-type algebra Ā = (A,∨,∧, ·,u , w ,∼, e) is an algebra with five binary operations∨,∧, ·,u , w ,

a unary operation ∼ and a constant e, that satisfies:

(R1) (A,∨,∧) is a lattice and ∼ is a De Morgan involution on it, namely ∼∼x = x and ∼(x ∨ y) = ∼x ∧ ∼y;

(R2) the relation � is a preorder, where x � y if and only if (xu y)u (xu y) ≤ (xu y), and also if and only if

(y w x) w (y w x) ≤ (y w x);

(R3) the equivalence relation θ induced by � is a congruence on the algebra Ā = (A,∨,∧, ·,u , w , e) and the

quotient Ā/θ is a residuated lattice;

(R4) ∼(xu y) θ (∼y · x) , ∼(y w x) θ (x · ∼y) and ∼(x · y) θ (yu ∼x) ∧ (∼y w x);

(R5) x ≤ y if and only if x � y and ∼y � ∼x.

(R6) for each x ∈ A, (xu ∼e) = (∼e w x).

Lemmas 20, 21, 22 and 13 yield the next immediate result:

Theorem 23. If (A, n) ∈ NCA, then for xu y = n(x)\y andy w x = y/n(x), the structure

A = (A,∨,∧, ·,u , w ,∼, e)

is a Rasiowa-type algebra.

To close this circle of ideas we prove the following theorem. We use [x] for the equivalence class of x with

respect to θ.

Theorem 24. Assume Ā = (A,∨,∧, ·,u , w ,∼, e) is a Rasiowa-type algebra. After setting

x\y = ∼(∼y · x) and y/x = ∼(x · ∼y),
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the algebra A = (A,∨,∧, ·, \, /,∼, e) is an involutive residuated lattice, which is isomorphic to a subalgebra of

Tw(Ā/θ, [∼ e]). Moreover, if we set

n(x) = ∼(xu ∼e)

we have that the pair (A, n) is in NCA.

Proof. We define a map h on A by

h(x) = ([x], [∼x])

and prove that it is an injective homomorphism from A into Tw(Ā/θ, [∼ e]), and therefore show that A is an

involutive residuated lattice.

First we observe that the image of h is in the set Tw(Ā/θ, [∼ e]). Indeed, we need to see that for each x ∈ A we

have

[x] · [∼x] ∨ [∼x] · [x] ≤ [∼e]. (7)

To this aim, by (R4) we get that [∼x] = [∼(e · x)] ≤ [xu ∼e] and therefore, since Ā/θ is a residuated lattice by

(R3), we get

[x] · [∼x] ≤ [x] · [xu ∼e] = [x] · ([x]u [∼e]) ≤ [∼e],

and similarly [∼x] · [x] ≤ [∼e], ensuring that the inequality (7) holds.

The injectivity of h follows directly from (R5).

Note that (R1) implies that h preserves∨,∧ and ∼. For the product, because of (R4) observe that for any x, y ∈ A

we have

h(x) · h(y) = ([x], [∼x]) · ([y], [∼y]) = ([x · y], [(yu ∼x) ∧ (∼y w x)])

= ([x · y], [∼(x · y)]) = h(x · y).

We also have h(e) = ([e], [∼e]), which is the identity element of Tw(Ā/θ, [∼ e]). As \ and / are defined in terms

of the product and the involution, we conclude that h is an injective morphism from A into Tw(Ā/θ, [∼ e]), and in

particular A is an involutive residuated lattice.

Observe now that as a consequence of (R1) and (R4) we have that

x θ x · e = x · ∼∼e θ ∼(∼e w x) and x θ e · x = ∼∼e · x θ ∼(xu ∼e),

so x θ∼(∼e w x) θ ∼(xu ∼e). Therefore

h(n(x)) = h(∼(xu ∼e) ∨ ∼(∼e w x))

=

(

[∼(xu ∼e) ∨ ∼(∼e w x)], [(xu ∼e) ∧ (∼e w x)]
)

=

(

[x], ([x]u [∼e]) ∧ ([∼e] w [x])
)

= nTw(h(x)).

By (R6) xu ∼e = ∼e w x, thus [∼e] is cyclic, nTw is a Nelson conucleus and so is n.

�

Therefore, Rasiowa-type algebras, which include Nelson lattices as defined by Rasiowa and eN4-lattices (see

[23, 6]), are term equivalent to Nelson conucleus algebras. Thus the Rasiowa-style definition can be exchanged

by one that has the advantage of being internal to A and can be seen as providing representatives for Rasiowa’s

equivalence classes [x] via the elements n(x) ∈ [x]. We also note that in the above proof we opted for the easier

argument of embedding the algebra into a twist product, but the term equivalence can be proved directly; for

example, from (R5) in order to prove associativity of multiplication it suffices to show that [(xy)z] = [x(yz)] and

[∼((xy)z)] = [∼(x(yz))].

4. Algebras with a term definable Nelson conucleus

Nelson residuated lattices, paraconsistent Nelson residuated lattices and Kalman lattices, are particular exam-

ples of algebras in which the Nelson conucleus can be defined by a term, i.e., there is a definable term function n

such that for each A in the corresponding class the pair (A, n) is in NCA. Before analyzing that, we note that the

theory we have developed is broader and admits algebras where the conucleus is not definable by a term.
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Example 25. Consider the twist structure Tw(Ł3, 0) shown in Figure 3 and in Figure 4 below. Observe that

nTw(a, 0) = (a, a) so (Tw(Ł3, 0), nTw) is in NCA. However Tw(Ł3, 0) \ {(a, a)} is the universe of a subalgebra of

Tw(Ł3, 0) (as a nTw-less reduct), and therefore nTw cannot be a term function, since the element nTw(a, 0) cannot

be obtained from operations applied to (a, 0) and the identity (1, 0).

To show that it is a subalgebra, observe that it is a chain, therefore closed under ∧ and ∨, and also it is closed

under ∼. As the implication can be defined in terms of the product and the involution, it only remains to show that

it is closed under the product, and we do this in Figure 4.

(a, a)(0, 0)

(a, 0)

(0, a)

(1, 0)

(0, 1)

Tw(Ł3, 0)

· (0, 1) (0, a) (0, 0) (a, 0) (1, 0)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

(0, a) (0, 1) (0, 1) (0, 1) (0, a)

(0, 0) (0, 1) (0, a) (0, 0)

(a, 0) (0, a) (a, 0)

(1, 0) (1, 0)

Figure 4. An example where the conucleus n cannot be a term function.

4.1. The defining terms and Kalman residuated lattices. Note that all the motivating examples are of commu-

tative involutive residuated lattices, and the residuated lattices An are integral. They also share some similarities

with respect to the terms defining the conucleus. Two particular cases follow from the next results, the first one in

Lemma 27 and the second in Theorem 30.

Lemma 26. Let (A, n) ∈ NCA. Then (x ∧ e)2 ≤ n(x) and if n(x) ≤ e for all x, then

(1) (x ∧ e)2 ≤ n(x) ≤ x ∧ e.

(2) If e ≤ ∼e, then e = ∼e and n(x) = x ∧ e.

(3) If n(x)2
= n(x), then n(x) = (x ∧ e)2.

Proof. Using (T4), we have

(x ∧ e)2
= n(x ∧ e) · (x ∧ e) ∨ (x ∧ e) · n(x ∧ e) ≤ n(x)e ∨ en(x) = n(x).

If n(x) ≤ e then n(x) ≤ x ∧ e, so (x ∧ e)2 ≤ n(x) ≤ x ∧ e. With this in mind, we only need to show one inequality

for (2) and for (3).

Observe first that if n(x) ≤ e holds, then ∼e\e = n(∼e)\e ∧ e/n(∼e) ≥ e, so ∼e ≤ e. If e ≤ ∼e, then by the

previous observation e = ∼e and as n(∼n(x)) ≤ e, by (T5) we get

(x ∧ e)\n(x) = n(x ∧ e)\n(x) ∧ ∼(x ∧ e)/n(∼n(x))

≥ n(x)\n(x) ∧ (∼x ∨ ∼e)/e ≥ e ∧ ∼e = e,

so x ∧ e ≤ n(x). If n(x)2
= n(x), then clearly n(x) = n(x)2 ≤ (x ∧ e)2.

�

Observe that if n(x)2
= n(x) and A is commutative (even without assuming n(x) ≤ e), then using equation (T4)

we have that x2
= n(x)x, and so

x3
= x2 · x = n(x)xx = n(x)x2

= n(x)n(x)x = n(x)x = x2.

This means that if n(x)2
= n(x) and A is commutative, then A is 3-potent (it satisfies x3

= x2).

Lemma 27. Given a Kalman residuated lattice A, the term function n(x) = x ∧ e defines a Nelson conucleus on

A, and therefore (A, n) ∈ NCA. Conversely, if (A, n) ∈ NCA satisfies commutativity, n(x) ≤ e and e ≤ ∼e, then

A is a Kalman residuated lattice.

Proof. First assume that A is a Kalman residuated lattice and we set n(x) = x ∧ e. It is immediate that equations

(C1), (C2) and (C3) hold in A. (C4) will follow from (T2) and (C5) comes from the fact that n(e) = e ∧ e = e.

Finally, (T1) is (K4), (T2) is (K2) and (T4) follows from commutativity, (K3) and Lemma 13.
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Now, if (A, n) ∈ NCA satisfies commutativity, n(x) ≤ e and e ≤ ∼e. Then by Lemma 26 we have e = ∼e and

n(x) = x∧e, and the only equation left to verify that A is a Kalman lattice is the fact that x∧(y∨e) = (x∧y)∨(x∧e).

As n(x) = x ∧ e is a Nelson conucleus,

(x ∧ (y ∨ e)) ∧ e = x ∧ ((y ∨ e) ∧ e)) = x ∧ e

((x ∧ y) ∨ (x ∧ e)) ∧ e = (x ∧ y ∧ e) ∨ (x ∧ e) = x ∧ e

and

∼(x ∧ (y ∨ e)) ∧ e = (∼x ∧ e) ∨ ((∼y ∧ e) ∧ e) = (∼x ∨ ∼y) ∧ e

∼((x ∧ y) ∨ (x ∧ e)) ∧ e = ((∼x ∨ ∼y) ∧ e) ∧ ((∼x ∨ e) ∧ e) = (∼x ∨ ∼y) ∧ e

so by Lemma 14 we have the equality. �

4.2. Nelson-type algebras. In this section we will construct a variety of algebras A with a definable term function

n such that (A, n) is in NCA. This variety will encompass both Nelson residuated lattices and Nelson paraconsis-

tent lattices. To motivate our definition, we first rewrite what we need from Lemma 26.

Lemma 28. If (A, n) ∈ NCA satisfies n(x) ≤ e and n(x)2
= n(x), then n(x) = (x∧e)2 and A is a residuated lattice

satisfying:

(N1) xy = (x ∧ e)2y ∨ x(y ∧ e)2,

(N2) (xy ∧ e)2
= (x ∧ e)2(y ∧ e)2.

Moreover, An is an integral residuated lattice where · and ∧n coincide, i.e. it is a Brouwerian algebra. Finally, A

is commutative, distributive, and satisfies ((x ∨ y) ∧ e)2
= (x ∧ e)2 ∨ (y ∧ e)2.

Proof. The first facts follow from Lemma 26. Note that because of integrality of An,

n(x) ∧n n(y) = n(x ∧ y) = n(x ∧ y)2 ≤ n(x)n(y) ≤ n(x) ∧n n(y),

so An is a Brouwerian algebra. Therefore, An is commutative and distributive and by Theorem 18 A will also

satisfy commutativity and distributivity, as these properties are inherited by the twist-product. �

With this in mind, we define the varietyNT of Nelson-type algebras, as the variety of commutative, distribu-

tive, involutive residuated lattices satisfying equations (N1)-(N2). We show below thatNT is (term equivalent to)

a subvariety ofNCA. Considering the term n(x) = (x ∧ e)2, these axioms can be written as:

(N’1) xy = n(x)y ∨ xn(y),

(N’2) n(xy) = n(x)n(y).

As an immediate consequence of the observation below Lemma 26 we get that for each n ∈ N, n ≥ 2 the

equation xn
= x2 holds in NT .

Lemma 29. If A ∈ NT , then n(x) = (x ∧ e)2 is a Nelson conucleus.

Proof. Trivially n satisfies (C1) and (C3). Equation (C2), that is, ((x ∧ e)2 ∧ e)2
= (x ∧ e)2 is immediate from

Lemma 26, as (x ∧ e)2 ≤ e and (x ∧ e)4
= (x ∧ e)3

= (x ∧ e)2 from (N1). (C4) will follow from (N2) and (C5)

follows by observing that (e∧ e)2
= e. To prove (T1), we have to show that (x∧ e)2 ∨ (y∧ e)2

= ((x∨ y)∧ e)2 hold.

Since · and ∧ distribute over ∨, we have that

((x ∨ y) ∧ e)2
= ((x ∨ y) ∧ e)3

= (x ∧ e)3 ∨ (x ∧ e)2(y ∧ e) ∨ (x ∧ e)(y ∧ e)2 ∨ (y ∧ e)3

= (x ∧ e)2 ∨ (y ∧ e)2.

(T2) is (N2) and (T4) follows from (N1). �

We conclude:

Theorem 30. If A ∈ NT , then n(x) = (x ∧ e)2 is a Nelson conucleus and (A, n) ∈ NCA. Conversely, if

(A, n) ∈ NCA satisfies n(x)2
= n(x) ≤ e, then A ∈ NT .

As we are in the commutative setting, we set x → y = x\y = y/x and x ⇒ y = xu y = y w x. The follow-

ing result shows that Nelson-type algebras generalize both Nelson residuated lattices and Nelson paraconsistent

residuated lattices.

Lemma 31. We have that:

(1) The variety of Nelson residuated lattices is term equivalent to the subvariety of integral Nelson-type alge-

bras.
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(2) The variety of Nelson paraconsistent residuated lattices is term equivalent to the subvariety of odd Nelson-

type algebras.

Proof. 1. We will show that if A = (A,∨,∧, ·,→,⊥, e) is a Nelson residuated lattice, after setting ¬x = x → ⊥, the

algebra A = (A,∨,∧, ·,→,¬, e) is in NT and it is integral. The definition of Nelson residuated lattices imply that

A = (A,∨,∧, ·,→,¬, e) is commutative, distributive, involutive (NRL1), and integral. Integrality trivializes (N2).

For (N1) we observe that from (NRL1) and (NRL2),

xy = ¬¬(xy) = ¬(x→ ¬y) = ¬(x2 → ¬y) ∨ ¬(y2 → ¬x) = x2y ∨ y2x.

Assume now that A = (A,∨,∧, ·,→,∼, e) is in NT and satisfies integrality. If we set ⊥ = ∼e, then

∼e ∨ x = ∼(e ∧ ∼x) = ∼∼x = x

and therefore ⊥ is the lowest element in A. Besides ∼x = x → ∼e = x→ ⊥ thus ¬x = ∼x and (NRL1) holds in A.

Therefore A = (A,∨,∧, ·,→,⊥, e) is an involutive residuated lattice in the sense of [6]. Equation (NRL2) follows

from integrality and (N1).

2. Let A = (A,∨,∧, ·,→, e) be an NPc-lattice. From (NPc3) the term function n(x) = (x ∧ e)2 becomes

n(x) = x ∧ e and clearly A = (A,∨,∧, ·,→,∼, e) is in NT .

Now consider an algebra A = (A,∨,∧, ·,→,∼, e) ∈ NT satisfying e = ∼e. Then ∼x = x → ∼e = x → e

and A = (A,∨,∧, ·,→, e) is a lattice with involution. As (NPc1) is required we need to check that the other three

equations hold in A.

Equations (NPc2) and (NPc4) are equivalent to (N2) and (N1) under (NPc3). So it only remains to show that

equation (NPc3) follows from (N1)-(N2) and (NPc1). Observe that (x ∧ e)2 ≤ x ∧ e always holds, for the other

inequality, by (N1) and ∼e = e,

(x ∧ e)→ (x ∧ e)2
= ((x ∧ e)2 → (x ∧ e)2) ∧ ((∼(x ∧ e)2 ∧ e)2 → ∼(x ∧ e))

≥ e ∧ (e→ ∼(x ∧ e)) = e ∧ (∼x ∨ e) = e,

so x ∧ e ≤ (x ∧ e)2. �

Observe that there are algebras in NT which are neither equivalent to Nelson residuated lattices nor to Nelson

paraconsistent residuated lattices. For example, this is the case of Tw(G3, a) in Figure 2. It is immediate to check

that (N1) and (N2) hold in this algebra but e = (1, a) , (a, 1) =∼ e and e = (1, a) < (1, 0).

We can axiomatize the join of Nelson residuated lattices and NPc-lattices as the variety NT 0 of Nelson-type

algebras satisfying the condition

(N3) e ≤ ∼e ∨ (∼e→ x).

Lemma 32. The varietyNT 0 is the variety generated by integral and odd Nelson-type algebras.

Proof. Let A ∈ NT 0 be subdirectly irreducible. By [14, Theorem 2.9], in any subdirectly irreducible commutative

residuated lattice e is join-irreducible. By distributivity in (N4) e = (∼e ∧ e) ∨ ((∼e→ x) ∧ e), so either e ≤ ∼e, in

which case by Lemma 26 we have e = ∼e, or ∼e ≤ x for all x, which implies that A is integral. �

5. Sendlewski-style representation

We present two cases in which we can improve the categorical adjunction to a categorical equivalence.

5.1. The case of Nelson-type algebras. Theorem 18 holds for algebras in NT with the Nelson conucleus given

by n(x) = (x ∧ e)2. To improve the result for this class, we follow Sendlewski’s ideas for Nelson algebras ([23])

and Odintsov’s ideas for the paraconsistent case ([18]). Recall that if A = (A,∨,∧, ·,→,∼, e) is in NT , then

HA = (n[A],∨,∧n,→n, e) is a Brouwerian algebra.

If H is a Brouwerian algebra and F ⊆ H is a lattice filter, then F is called a Boolean filter if for every x, y ∈ H

the element x ∨ (x → y) belongs to F; such elements are called dense. The reader may note that if H is lower

bounded, i.e., it is the ⊥-free reduct of a Heyting algebra and F is a Boolean filter of H, then the quotient H/F is

the ⊥-free reduct of a Boolean algebra.

Lemma 33. Let H be a Brouwerian algebra, ı ∈ H and F a Boolean filter of H. Then the set

Tw(H, ı, F) = {(a, b) ∈ H × H∂ : a ∧ b ≤ ı, a ∨ b ∈ F}

is the universe of a subalgebra of Tw(H, ı) which is a twist-product over H.

Proof. We only need to show the closure of the operations ∼, ∧ and ·, as ∨ and → can be derived from them.

Consider (a, b), (a′, b′) ∈ Tw(H, ı, F). This means that a ∧ b ≤ ı, a ∨ b ∈ F, a′ ∧ b′ ≤ ı and a′ ∨ b′ ∈ F.
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(∼) this is immediate from the definition.

(∧) (a, b)∧ (a′, b′) = (a∧ a′, b∨ b′). We have to show that (a∧ a′)∨ (b∨ b′) ∈ F. Indeed, (a∧ a′)∨ (b∨ b′) =

(a ∨ b ∨ b′) ∧ (a′ ∨ b ∨ b′) ≥ (a ∨ b) ∧ (a′ ∨ b′) ∈ F.

(·) (a, b) · (a′, b′) = (a ∧ a′, a → b′ ∧ a′ → b), then we have to prove that (a ∧ a′) ∨ (a → b′ ∧ a′ → b) ∈ F.

Recalling that F contains all the dense elements,

(a ∧ a′) ∨ (a→ b′ ∧ a′ → b) =

= (a ∨ (a→ b′)) ∧ (a ∨ (a′ → b)) ∧ (a′ ∨ (a→ b′)) ∧ (a′ ∨ (a′ → b))

≥ (a ∨ (a→ b′)) ∧ (a ∨ b) ∧ (a′ ∨ b′) ∧ (a′ ∨ (a′ → b)) ∈ F

Finally, for each a ∈ H, the pair (a, a→ ı) is in Tw(H, ı, F) since a · (a→ ı) ≤ ı by residuation and a ∨ (a→ ı) is a

dense element contained in F. Thus Definition 17 asserts that Tw(H, ı, F) is a twist-product over H. �

To obtain an isomorphism for each A ∈ NT , we need to find a Boolean filter F on HA such that A �

Tw(HA, ı, F). Recalling that x ⇒ y = xu y = y w x in the commutative case, we will frequently use the fact

that the equation

n(∼(x⇒ y)) = n(n(x) ∧ (∼y)) (8)

holds for every pair of elements x, y in an algebra A ∈ NT (it follows from the definition of ⇒, the results of

Lemma 1 and the fact that ∧n and · coincide in HA).

Lemma 34. If A ∈ NT and then the subset FA = {n(x ∨ ∼x) : x ∈ A} = {n(w) : ∼w ≤ w} = {n(z) : n(∼z) ≤ n(z)}

of HA is a Boolean filter.

Proof. For all x ∈ A, we have ∼(x∨∼x) = ∼x∧ x ≤ x∨∼x, and if ∼w ≤ w, then w∨∼w = w. So, {n(x∨∼x) : x ∈

A} = {n(w) : ∼w ≤ w}. We have that if ∼w ≤ w, then n(∼w) ≤ n(w), so {n(w) : ∼w ≤ w} ⊆ {n(z) : n(∼z) ≤ n(z)}.

Also, if z satisfies n(∼z) ≤ n(z), then n(z∨∼z) = n(z)∨n(∼z) = n(z); so, {n(z) : n(∼z) ≤ n(z)} ⊆ {n(x∨∼x) : x ∈ A}.

We will prove that FA is a (lattice) filter. Indeed, as n(e) is the top element of HA, we have n(e) = n(e∨∼e) ∈ FA.

To prove closure under ∧, take n(w), n(z) ∈ FA, with ∼w ≤ w and ∼z ≤ z. For

t = ∼ (w ∧ (w⇒ ∼(w ∨ z))) ∧ ∼ (z ∧ (z⇒ ∼(w ∨ z)))

= (∼w ∨ n(w)(w ∨ z)) ∧ (∼z ∨ n(z)(w ∨ z)),

we have ∼t = (w ∧ (w⇒ ∼(w ∨ z))) ∨ (z ∧ (z⇒ ∼(w ∨ z))) . Using divisibility and distributivity,

n(∼t) = (n(w) ∧n n(∼(w ∨ z))) ∨ (n(z) ∧n n(∼(w ∨ z)))

= n(w ∨ z) ∧n n(∼(w ∨ z))

= n(∼w) ∧n n(∼z).

Recalling Equation (8) and that p ≤ ∼∼(p ∨ q) for all p, q we get

n(t) = (n(∼w) ∨ (n(w) ∧n n(∼∼(w ∨ z)))) ∧ (n(∼z) ∨ (n(z) ∧n n(∼∼(w ∨ z))))

= n(w ∨ ∼w) ∧n n(z ∨ ∼z)

= n(w) ∧n n(z),

so n(∼t) ≤ n(t), hence n(t) ∈ FA. Since also n(w) ∧n n(z) = n(t), we get n(w) ∧n n(z) ∈ FA.

Additionally, if n(w) ≥ n(y), where ∼w ≤ w, we have ∼(w ∨ y) = ∼w ∧ ∼y ≤ w ≤ w ∨ y, hence n(w ∨ y) ∈ FA.

Since we also have n(w ∨ y) = n(w) ∨ n(y) = n(y) we get n(y) ∈ FA.

To show that FA contains all dense elements, we need to see for all x, y ∈ A, that the element n(x) ∨ (n(x) →n

n(y)) = n(x ∨ (x⇒ y)) is in FA. This is true since using Equation (8) we obtain

n(∼(x ∨ (x⇒ y))) = n(∼x ∧ (n(x) · ∼y)) = n(∼x) ∧ n(x) ∧ n(∼y)

≤ n(x) ∨ (n(x)→n n(y)) = n(x ∨ (x⇒ y)).

�

Theorem 35. Let A ∈ NT . If HA, ı and FA are as before, then A � Tw(HA, ı,FA).

Proof. From Theorem 18, it is sufficient to show that φA(A) = Tw(An, ı, FA) = Tw(HA, ı, FA). One inclusion is

immediate, for if x ∈ A, then n(x ∨ ∼x) ∈ FA by definition of FA.

For the other, consider (n(x), n(y)) ∈ Tw(HA, ı, FA). We have to find z ∈ A such that n(z) = n(x) and n(∼z) =

n(y). As n(x) ∨ n(y) ∈ FA by hypothesis, let w ∈ A be such that n(x) ∨ n(y) = n(w ∨ ∼w). Define now

z = [(w ∧ ∼w) ∨ ∼ (x⇒ n(y)) ∨ ∼ (y⇒ n(x))] ∧ (y⇒ n(x)) .

17



Then as n(x) ∧ n(y) ≤ n(∼e), we have that n(x) ≤ n(∼n(y)) and n(y) ≤ n(∼n(x)), so

n(z) = (n(w ∧ ∼w) ∨ n (∼ (x⇒ n(y))) ∨ n (∼ (y⇒ n(x)))) ∧n (n(y)→n n(x))

= (n(w ∧ ∼w) ∨ (n(x) ∧n n(∼n(y))) ∨ (n(y) ∧n n(∼n(x)))) ∧n (n(y)→n n(x))

= (n(w ∧ ∼w) ∨ n(x) ∨ n(y)) ∧n (n(y)→n n(x))

= (n(x) ∨ n(y)) ∧n (n(y)→n n(x))

= n(x)

n(∼z) = (n(w ∨ ∼w) ∧n (n(x)→n n(y)) ∧n (n(y)→n n(x))) ∨ (n(y) ∧n n(∼n(x)))

= ((n(x) ∨ n(y)) ∧n (n(x)→n n(y)) ∧n (n(y)→n n(x))) ∨ n(y)

= (n(x) ∧n n(y)) ∨ n(y)

= n(y).

�

Theorem 35 provides a way to improve the result from Theorem 19. First, we show how morphisms behave

between Nelson-type algebras.

Lemma 36. Let H1,H2 be Brouwerian algebras, ı1 ∈ H1, ı2 ∈ H2 and let F1 ⊆ H1, F2 ⊆ H2 be Boolean filters. If

f : H1 → H2 is a morphism such that f (ı1) = ı2 and f (F1) ⊆ F2, then ϕ f : Tw(L1, ı1,F1) → Tw(L2, ı2,F2) given

by ϕ f (a, b) = ( f (a), f (b)) is morphism in NT .

Lemma 37. Let A1,A2 ∈ NT . If ϕ : A1 → A2 is a morphism, then fϕ = ϕ|HA1
is a morphism from HA1

into HA2

such that fϕ((∼e1 ∧ e1)2) = (∼e2 ∧ e2)2 and fϕ(FA1
) ⊆ FA2

.

Now, consider the categoryBF cy with objects triples (H, ı, F), where H is a Brouwerian algebra, ı ∈ H and F ⊆

H a Boolean filter; as morphisms we take Brouwerian algebra homomorphisms f : H1 → H2 such that f (ı1) = ı2
and f (F1) ⊆ F2. Note that NT defines a category where the morphisms are the algebraic homomorphisms. We

can conclude:

Theorem 38. The categoriesNT and BF cy are equivalent.

5.2. Involutive-imageNCA. In this section we consider a variety in which the categorical adjunction in Theorem

19 is strengthened. Unlike in Nelson-type algebras, the Nelson conucleus n doesn’t need to be a term function.

5.2.1. Twist products and dualizing elements. Let L be a commutative involutive residuated lattice and let f = ∼e.

We define the operation a⊕b = ∼((∼b) · (∼a)). It is well known [12] that this operation is associative, commutative

and satisfies, among other things:

a ⊕ (b ∧ c) = a ⊕ b ∧ a ⊕ c and if a ≤ b then a ⊕ c ≤ b ⊕ c.

Lemma 39. Let L be a commutative involutive residuated lattice, ı ∈ L and F be a lattice filter of L that contains

the element e ⊕ ı = f → ı. Then the set

Tw(L, ı, F) = {(a, b) ∈ L × L∂ : a · b ≤ ı, a ⊕ b ∈ F}

is the universe of a subalgebra of Tw(L, ı) which is a twist-product over L.

Proof. Let (a, b), (a′, b′) ∈ Tw(L, ı, F), then (a→ f )→ b, (a′ → f )→ b′ ∈ F.

• Tw(L, ı, F) is clearly closed under ∼ by commutativity of ⊕.

• (a, b) ∧ (a′, b′) = (a ∧ a′, b ∨ b′), and

(a ∧ a′) ⊕ (b ∨ b′) = a ⊕ (b ∨ b′) ∧ a′ ⊕ (b ∨ b′) ≥ a ⊕ b ∧ a′ ⊕ b′ ∈ F.

• (a, b) · (a′, b′) = (a · a′, a→ b′ ∧ a′ → b), and

(a · a′) ⊕ (a→ b′ ∧ a′ → b) =
(

(a · a′) ⊕ (a→ b′)
)

∧
(

(a · a′) ⊕ (a′ → b)
)

= ((a · a′)→ f )→ (a→ b′) ∧ ((a · a′)→ f ) → (a′ → b)

= ((a · (a→ (a′ → f ))→ b′)) ∧ ((a′ · (a′ → (a→ f ))→ b))

≥ ((a′ → f )→ b′) ∧ ((a→ f )→ b) ∈ F.

• nTw(a, b) = (a, a→ ı), and

a ⊕ (a→ ı) = (a→ f )→ (a→ ı) = (a(a→ f ))→ ı ≥ f → ı = e ⊕ ı ∈ F.

�
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Note that e⊕ ı ∈ F automatically follows from assuming that e ∈ F in the special case where f = 0 is the bottom

element; in that case as e = f → f , so e will be the top element. The next lemma provides a hint on how to define

filters starting from the twist structure.

Lemma 40. Let L be an integral commutative involutive residuated lattice. Consider ı ∈ L and F a lattice filter of

L. Then c ∈ F if and only if there exists (a, b) ∈ Tw(L, ı, F) such that c = a ⊕ b.

Proof. Note that 0 := ∼e is the bottom element. If (a, b) ∈ Tw(L, ı, F), then by definition c = a⊕b ∈ F. Conversely,

if c ∈ F then c ⊕ 0 = c ∈ F and c · 0 = 0 ≤ ı, so (c, 0) ∈ Tw(L, ı, F) satisfies what we wanted. �

5.2.2. Involutive-image Nelson Conucleus Algebras. If (A, n) ∈ NCA is such that An is an involutive residuated

lattice, we want to find a lattice filter FA on An such that A � Tw(An, ı,FA). Given the characterization in

Lemma 40, FA should contain the elements of the form a ⊕ b, where x = (a, b) ∈ Tw(An, ı,FA). Note that

n(x) = (a, a\ı) and n(∼x) = (b, b\ı). The identification between a and (a, a\ı) and between b and (b, b\ı) provided

by ψ(L,ı) guides us in defining

FA = {n(x) ⊕ n(∼x) : x ∈ A}.

We define the variety INCA of algebras (A, n) such that A is an involutive commutative residuated lattice with

a bottom element ⊥, (Â, n) ∈ NCA where Â is the ⊥-less reduct of A, and such that the following equation holds:

(IT1) n(n(n(x)→ ⊥)→ ⊥) = n(x).

We note that A is also bounded above with top element ⊤ = ∼⊥ = ⊥ → ⊥.

In this case, LA := (An, 0, 1) will be an integral commutative residuated lattice, with 0 = n(⊥) as negation

constant element and 1 = n(⊤) = n(e) as unit element. If we define for all a ∈ LA

¬na = a→n 0,

since a = n(a), we have ¬na = a →n 0 = n(a⇒ 0) = n(n(a)→ n(⊥)) = n(n(a)→ ⊥). So if (A, n) ∈ INCA, the

residuated lattice LA := (An, 0, 1) is bounded, commutative, and (IT1) translates into: for all a ∈ An

¬n¬na = a.

In Lemma 39, we saw that if L is a commutative residuated lattice where the dualizing element is the least

element and ı ∈ L, then Tw(L, ı,F) defines a subalgebra of Tw(L, ı). Note that the latter is in INCA.

Example 41. As a particular case, if L is a bounded commutative residuated lattice satisfying ¬¬x = x, we have

that n(x) = x is a Nelson conucleus, so (L, n) ∈ INCA when we consider ∼x = ¬x, and by Theorem 18 we have

that L embeds into Tw(L, 0) by the mapping x 7→ (x,¬x).

In the notation involving ⊥, note that we have

FA = {n(x) ⊕ n(∼x) : x ∈ A} = {(¬nn(x))→n n(∼x) : x ∈ A}

= {(n(x)→n 0)→n n(∼x) : x ∈ A} = {n((n(x)⇒ ⊥)⇒ n(∼x)) : x ∈ A}

= {n(n(n(x)→ ⊥)→ ∼x) : x ∈ A}.

We will need the following technical result.

Lemma 42. If (A, n) ∈ NCA has a lower bound⊥, then with the previous notation FA = {n(∼z) : n(z) = 0, z ∈ A}.

Proof. Recall that FA = {n(x)⊕n(∼x) : x ∈ A} Clearly, if n(z) = 0, for some z ∈ A, then n(∼z) = n(z)⊕n(∼z) ∈ FA.

Conversely, let x ∈ A and define z = x · n(n(x) → ⊥). We have n(x) ⊕ n(∼x) = n(n(n(x) → ⊥) → ∼x) =

n(∼(x · n(n(x)→ ⊥)) = n(∼z). Also,

n(z) = n(x) · n(n(x)→ ⊥) = n(n(x) · (n(x)→ ⊥)) = n(⊥) = 0.

�

Theorem 43. If (A, n) ∈ INCA, 1 = n(e) and ı = n(∼e), then FA is a lattice filter of LA and

A � Tw(LA, ı, FA).

Proof. We will use Lemma 42 throughout the proof. First note that 1 ⊕ ı = n(e) ⊕ n(∼e) ∈ FA. Now, we show that

FA is a lattice filter.

• 1 ∈ FA, because n(⊤) ⊕ n(∼⊤) = n(⊤) ⊕ n(⊥) = 1 ⊕ 0 = 1.

• If a = n(∼x), where n(x) = 0 and b = n(∼y), where n(y) = 0, for some x, y ∈ A, define z := x ∨ y. Then,

a∧nb = n(∼x)∧nn(∼y) = n(∼x∧∼y) = n(∼(x∨y)) = n(∼z). Also, n(z) = n(x∨y) = n(x)∨n(y) = 0∨0 = 0.

So, a ∧n b ∈ FA.
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• If a = n(∼x), where n(x) = 0 and b ≥ a with b = n(y) for some x, y ∈ A, consider z = ∼y ∧ x, so

∼z = y ∨ ∼x. We have n(∼z) = n(y) ∨ n(∼x) = b ∨ a = b, and

n(z) = n(∼y ∧ x) = n(∼y) ∧n n(x) = n(∼y) ∧n 0 = 0,

So b ∈ FA.

Now, using Theorem 18, we will show that φA(A) = Tw(LA, ı, FA). Note that if (n(x), n(∼x)) ∈ φA(A), then

n(x) ⊕ n(∼x) ∈ FA, so φA(A) ⊆ Tw(LA, ı, FA). For the other inclusion, consider (n(x), n(y)) ∈ Tw(LA, ı, FA).

Therefore we have n(x) · n(y) ≤ ı = n(∼e) and n(x) ⊕ n(y) ∈ FA. Thus there exists w ∈ A such that n(x) ⊕ n(y) =

n(∼w) and n(w) = 0. We will find z ∈ A such that n(z) = n(x) and n(∼z) = n(y).

Recall that ⊕ is an operation on LA defined by a ⊕ b = ¬na→n b, where for a ∈ LA we have ¬na = a→n 0 =

n(a ⇒ 0) = n(n(a)→ n(⊥)) = n(n(a)→ ⊥). For convenience we extend these operations to A by defining for

x, y ∈ A, ¬nx = n(n(x)→⊥) and x ⊕ y = ¬nx→n n(y). It then follows that n(x ⊕ y) = n(¬nx→n n(y)) = n(¬nx ⇒

y) = n(¬nx)⇒ n(y) = ¬nn(x)⇒ n(y) = n(x) ⊕ n(y).

Consider z = x ⊕ w ∧ ∼n(y). Then recalling that n(x) · n(y) ≤ n(∼e) implies that n(x) ≤ n(∼n(y))

n(z) = n(x ⊕ w ∧ ∼n(y)) = n(x) ⊕ n(w) ∧n n(∼n(y)))

= n(x) ⊕ 0 ∧n n(∼n(y))) = n(x) ∧n n(∼n(y)) = n(x),

and

n(∼z) = n(∼(¬n→ w) ∨ n(y)) = n(∼(¬nx→ w)) ∨ n(y)

= n(¬nx · ∼w)) ∨ n(y) = n(¬nx) · n(∼w)) ∨ n(y)

= n(¬nx) · (n(x) ⊕ n(y))) ∨ n(y) = ¬nn(x) · (n(x) ⊕ n(y))) ∨ n(y) = n(y).

�

As before the isomorphism on objects extends to a categorical equivalence.
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