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Abstract

A gossip protocol is a procedure for sharing secrets in a network. The basic
action in a gossip protocol is a pairwise message exchange (telephone call) wherein
the calling agents exchange all the secrets they know. An agent who knows
all secrets is an expert. The usual termination condition is that all agents are
experts. Instead, we explore protocols wherein the termination condition is that
all agents know that all agents are experts. We call such agents super experts. We
also investigate gossip protocols that are common knowledge among the agents.
Additionally, we model that agents who are super experts do not make and do
not answer calls, and that this is common knowledge. We investigate conditions
under which protocols terminate, both in the synchronous case, where there is
a global clock, and in the asynchronous case, where there is not. We show that
a commonly known protocol with engaged agents may terminate faster than the
same commonly known protocol without engaged agents.

1 Introduction

The gossip problem addresses how to spread secrets among a group of agents by pairwise
message exchanges, traditionally named telephone calls. We assume that each agent
holds a single secret, and that when calling each other the agents exchange all the
secrets they know. An agent may call another agent if it has that agent’s telephone
number. It is typically assumed that the goal of the information dissemination is that
all agents know all secrets. The situation can be represented by a graph or network
where the nodes are the agents and where, when two nodes are linked, the agents can
call each other. They are then often called neighbours.
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Survey of related work There are many variations of the problem. It goes back
to the early 1970s [9, 28, 23, 10, 36]. In this classic setting (for an overview, see [20])
only secrets are exchanged, and the focus is on minimum execution length of proto-
cols executed by a central scheduler. Variations (described in depth in [20]) involve
distinguishing message exchange (push-pull), from only the caller informing the person
called (push), and from only the person called informing the caller (pull). Here, we
only consider exchange. Parallel calls, but where an agent cannot be involved in two
parallel calls at the same time, were considered in [23]. We only consider sequential
calls in this paper. Different network topologies restrict what agents are neighbours:
trees, lines, circles, etcetera. We only consider that all agents can call each other.

Later publications assume that the scheduling is distributed [22, 15], which means
that agents calling each other are not assigned to do so by the central scheduler, but
operate autonomously. The two scheduling approaches are related: in distributed gossip
the role of the central scheduler is restricted to a random move of nature, determining
which agent is next to call. In the traditional gossip community distributed gossip
focusses on rounds of calls, where all agents simultaneous place a call — this requires a
mechanism for agents to receive multiple incoming calls from different callers [22]. In the
more recent modal logical gossip community an elegant connection between distributed
and non-distributed scheduling was first proposed in [1]. With distributed protocols
and random scheduling came the issue of the expected termination of gossip protocols,
where nearly all approaches concur in finding the Coupon Collector’s complexity (or
related) of O(n logn) [10, 17, 26, 32], for n agents, exceptions granted for networks with
restricted neighbour relations where O(n log2 n) has been obtained[16].

Fairly recent developments focus on gossip protocols with epistemic preconditions
for calls [1, 6, 7, 3, 4, 11, 5, 33]. For example, an agent may only call another agent once,
or only if she does not know the other agent’s secret. Epistemic preconditions formalize
what agents know about secrets. To determine what an agent knows, it is required to
reason about indistinguishable call sequences. Novel issues then come into play, such
as whether callers only know what set of secrets they hold after a call (merge-then-
inspect) or whether they also know what the other caller contributed to that output
(inspect-then-merge), which is more informative [1, 6, 34, 2]. Instead of preconditions
involving individual knowledge one can also consider preconditions involving common
knowledge between the two agents involved in a call [3, 5]. The presence of a global
clock (synchronous gossip) provides much more information — and thus knowledge —
than when it is absent, as in truly distributed systems (asynchronous gossip) [1, 4, 34].
In our setting we will also derive very different results for synchrony and for asynchrony.

In dynamic gossip [34, 35] the agents do not only exchange all the secrets they know
but also all the neighbours (telephone numbers) they know. This results in network
expansion: not only the secret relation but also the number relation is expanded after
a call. The network is then dynamic, which explains the term. If the number relation
is a complete digraph (the universal relation), i.e., when all agents know all telephone
numbers, then the dynamic and classic gossip problem coincide. We assume complete
digraphs and thus do not investigate dynamic gossip.
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Another way in which gossip protocols can be epistemic is when they strive to realize
higher-order epistemic goals. Such protocols were investigated in [21, 11]. They show
that arbitrarily higher-order mutual knowledge of all secrets can be obtained when the
callers are permitted not merely to exchange secrets but also knowledge about secrets.
In their approach, primarily, in a call the two agents may exchange all the secrets they
know. But once this is done, they may also exchange the information ‘everyone knows
all the secrets’. This requires that the number of agents is known. And once that is
done, they may exchange the information ‘everyone knows that everyone knows all the
secrets’, and so on. They thus achieve higher-order mutual knowledge of all secrets (all
the agents know that all the agents know, etc.). Surprisingly, arbitrary higher-order
goals cannot be reached if agents are only allowed to exchange secrets, assuming that
agents can only observe their own calls [29]: ‘everyone knows that everyone knows all
the secrets’ is all you can get. This makes gossip protocols with that epistemic goal a
particularly interesting target for analysis.

Our contribution In this contribution we investigate gossip protocols with the epis-
temic goal that all agents know that all agents know all secrets. Clearly, this assumes
that the agents know how many (other) agents there are.

• The protocol terminates when everyone knows that everyone knows all secrets.

However, we continue to assume that agents only exchange the same basic information
as in the classic gossip problem, i.e. only secrets. So, unlike [21] we do not achieve
the epistemic goal by loading the messages with epistemic features. The agents may
also have knowledge of the protocol, or of the behaviour of other agents. We consider
various such modifications, and will investigate how making such assumptions affect
properties such as termination and execution length.

• Agents know what gossip protocol is used by all agents.

• Agents who know that everyone knows all secrets no longer make calls.

• Agents who know that everyone knows all secrets no longer answer calls.

An agent who knows all secrets is called an expert, as usual. We call an agent who
knows that everyone is an expert a super expert. So our epistemic goal is for all agents to
become super experts, where we will also investigate the effect of additional assumptions
such as knowledge of the protocol and that super experts no longer make and answer
calls.

Examples In the remainder of this introductory section we give examples to motivate
our approach and we outline our results.

Let there be four agents a, b, c, d. Each agent holds a single secret to share. Consider
the call sequence ab; cd; ac; bd. In a call, agents exchange all secrets they know. After
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a b c d
ab
→ ab ab c d
cd
→ ab ab cd cd
ac
→ abcd ab abcd cd
bd
→ abcd abcd abcd abcd

Table 1: Results of the call sequence ab; cd; ac; bd.

the call ab, agents a and b both know two secrets, and similarly after the call cd, agents
c and d both know two secrets. Therefore, after the subsequent call ac, agents a and c
both know all four secrets: they are experts. Similarly, after the final call bd, b and d
are experts. So, after ab; cd; ac; bd, all agents are experts. See Table 1.

In fact, the agents know a bit more than that. After call ac agent a is not only herself
an expert but she also knows that agent c is an expert, and agent c also knows that
agent a is an expert. (We typically use female pronouns to refer to a, male pronouns
to refer to b, female pronouns to refer to c, and so on.) Similarly, after call bd, agent b
also knows that d is an expert, and d also knows that b is an expert. Can the agents
continue calling each other until they all know that they are all experts, i.e., until they
all know that they all know all secrets? Yes, they can.

Let us first consider agent a. In order to get to know that everyone knows all secrets,
a has to make two further calls: ab and ad. Let us suppose these calls are made, and in
that order, i.e. consider the whole sequence ab; cd; ac; bd; ab; ad. First, note that before
and after those calls the agents involved are already experts, so no factual information
is exchanged. However, the agents still learn about each other that they are experts.
Hence, after ab, agent a knows that b is an expert and after ad she knows that d is an
expert. As she also knows this about herself, a therefore now knows that everyone is
an expert. She has become a super expert.

Let us now consider agent b. In call bd he learnt that d is an expert, and in the
additional call ab he learnt that a is an expert. And again he obviously knows about
himself that he is an expert. Therefore, in order to get to know that everyone is an
expert, b only needs to make one additional call, bc, and b then is a super expert.

We now consider agent c. Similarly, after yet another call cd, c is a super ex-
pert, which can be observed by highlighting the calls wherein c learns that another
agent is an expert, as follows: ab; cd;acacac; bd; ab; ad;bcbcbc;cdcdcd. We killed two birds with one
stone, because after that final call cd also agent d knows that all agents are experts:
ab; cd; ac;bdbdbd; ab;adadad; bc;cdcdcd.

Therefore, all agents are super experts after the call sequence

ab; cd; ac; bd; ab; ad; bc; cd.

Motivation for missed call semantics We now motivate our modifications of the
usual call rules in gossip. We call an agent who no longer makes calls and no longer
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answers calls an engaged agent, and a call that is not answered we name a missed call.
As a first idea, suppose that agents become engaged once they are experts (so not super
experts). Given this, can everyone still become an expert? Yes. For example, after the
already mentioned call sequence ab; cd; ac; bd all agents are experts, and all calls were
answered. However, now consider the sequence ab; ac; ad. After this, agents a and d are
experts. Agents b and c can now no longer become experts: if either were to call a or
d, this would be a missed call. Note that agents do not learn any secrets from a missed
call. Hence in this case b and c can never learn the secret of d: they can still call each
other, and after additional call bc or cb agents b and c would both know three secrets
but not all four secrets, hence they are not experts. The protocol cannot terminate.

We could additionally assume common knowledge among the agents that a missed
call means that the agent not answering the call is an expert. But that does not make a
big difference. After a missed call as above agents b and c would thus know that a and
d are experts. But, for example, that agent b knows that a knows the secret of d, does
not make b himself know the secret of d. They cannot use that knowledge to become
experts themselves. With the classic gossip goal wherein all agents become experts the
presence of engaged agents prevents termination even for very simple protocols. We
conclude that this first idea of a condition for missed calls is not very satisfactory.

In this contribution we therefore employ the idea of missed calls in a different way.
Let us now suppose that the goal of the protocol is for all agents to become super
experts, and that an agent who is a super expert no longer makes calls and no longer
answers calls. This requirement is harder to fulfil than the previous requirement that
an agent who is an expert stops making and answering calls.

We can already satisfy the stronger termination requirement that all are super ex-
perts without such missed calls, for example, with the sequence ab; cd; ac; bd; ab; ad; bc; cd
above. This is not entirely obvious. However, observe that after the subsequence
ab; cd; ac; bd; ab; ad only agent a knows that everyone is an expert, and in the subse-
quent call bc only agent b learns that, and only in the final call cd agents c and d
simultaneously learn that. No call is made to a super expert. Therefore, there are no
missed calls.

However, now consider the call sequence ab; cd; ac; bd; ab; ad; ba; ca; da with this
missed call semantics. All final three calls are missed calls, because a already knows
that everyone is an expert. What do b, c, and d respectively learn from these calls?
Well, nothing whatsoever, as just like above we did not make any assumptions so far
about the meaning of a missed call in this new context. Therefore, after those calls we
can still make the additional calls bc; cd in order to satisfy that everyone knows that
everyone is an expert.

Let us now, as above, additionally assume that it is common knowledge among
the agents that a missed call means that the agent not answering the call is a su-
per expert. Now, unlike above, that makes a big difference. Given the sequence
ab; cd; ac; bd; ab; ad; ba; ca; da, in the three final missed calls ba, ca, and da, respectively,
agents b, c, d then learn from a that all agents are experts, so that after the entire
sequence all agents know that all agents are experts. Again, we are done.
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Before we continue, let us make three more observations. Firstly, if the three missed
calls had been ordinary calls, the termination condition would not yet have been met.
For example, agent d would then not know that agent c knows all secrets. Additional
calls would have been needed. Secondly, although the sequence with three missed calls
is one call longer than the previous sequence that also realizes the knowledge objective,
in general there are terminating sequences with missed calls that are shorter than any
other terminating sequence without missed calls, as we will prove later. Thirdly, as in
a missed call the agent calling must already be an expert (otherwise the agent called
cannot be a super expert), no factual information would have been exchanged if that
call had been an ordinary call. So the presence of missed calls does not prevent agents
from becoming experts in the first place, which would have wrecked our chances to
reach the protocol goal.

The modelling solution for missed calls, that is novel, is similar to a modelling
solution for making protocols common knowledge, presented in [30]. We incorporated
both in this contribution. This also allows us to investigate how we can achieve that
all agents are super experts with the constraints of some protocols known from the
literature, such as the protocol CMO wherein each pair of agents can only call each
other once (either ab or ba is allowed, but not both) [35].

For example, consider again the sequence ab; ac; ad after which agents a and d are
experts. Agent amay no longer be involved in any subsequent call according to CMO. It
is therefore impossible for her to get to know that everyone is an expert. So, common
knowledge of a protocol comes with additional constraints. It may also come with
additional advantages: in this case we can sometimes achieve common knowledge of
termination under synchronous conditions, i.e., if all agents know how many calls have
been made, even if they were not involved themselves in all those calls. We will report
some such cases, in particular for CMO: for example, after an extension of ab; ac; ad
with three more calls, all agents including a are super experts. Unfortunately, if we also
allow missed calls this may no longer be the case, namely when an agent who already is
a super expert must call another agent in order for all agents to become super experts.
Such an extra complication can be overcome if agents have a notion of time, and if we
allow a so-called skip action that merely stands for a tick of the clock. We will carefully
distinguish all such modelling aspects.

GoMoChe To find out what agents know, we need to consider all call sequences they
consider possible. Such reasoning about call sequences is a non-trivial exercise. To
automatically find and verify such protocol executions we used GoMoChe, the model
checker for gossip protocols available at https://github.com/m4lvin/GoMoChe. As-
suming synchrony, we only need to reason about finite sets of call sequences to verify
knowledge. But assuming asynchrony we need to reason about infinite sets of call se-
quences of arbitrary finite length, which cannot be done with a model checker. However,
it is often sufficient to verify ignorance, i.e., lack of knowledge, namely by producing
two ‘witness’ call sequences with opposite properties. Such witnesses can already be
found for call sequences of ‘small’ length, by reasoning about finite sets of call sequences
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of a certain maximal length. We also used the model checker GoMoChe for that.
It should be possible in principle to have a model checker for knowledge in the

asynchronous setting as well, namely using the notion of redundant call as in [4, 33],
that bounds the maximal length of a call sequence without redundant (non-informative)
calls, and that therefore also makes the sets of indistinguishable call sequences (and the
length of individual sequences) finite again.

Applications We hope our results may be useful for applications involving gossip.
First, because we show that by merely exchanging secrets also stronger epistemic goals
may be met. In other words, the cost of messaging remains unchanged so that at
the price of longer call sequences we obtain the benefit of additional epistemic goals.
We thus add to the standard gossip setting the possibility of acknowledgements (that
all secrets have been disseminated as intended). Second, the more involved semantics
where protocols are common knowledge might help to formalize as diverse settings
as: councils or groups without a vertical hierarchy informing each other of the latest
developments (when it is common knowledge that all calls are made only once, and in
the presence of a time-out for rounds of calls). Third, the even more involved semantics
where engaged agents do not answer calls: this is a widely used phenomenon knows as
missed calls wherein exactly such signalling takes place [14].

Outline Section 2 presents a logical language and semantics for gossip protocols with
the epistemic goal that all agents know that all agents know all secrets. A protocol
is super-successful if all executions terminate satisfying this condition. We also recall
four gossip protocols from the literature: ANY, PIG, CMO, and LNS. We obtain various
results for the protocols ANY and PIG, mainly that they are super-successful (both for
the synchronous and asynchronous versions) in a sense adequate for protocols permit-
ting arbitrarily large call sequences. Section 3 refines the logic with common knowledge
of gossip protocols. If a protocol P is common knowledge we call it ‘known P.’ We then
show that synchronous known CMO is super-successful. Section 4 adds the feature that
super experts do not make calls and do not answer calls. We then show that, if this
is also known, super-successful protocol executions can be shorter. However, under
these conditions CMO is no longer super-successful. We conclude in Section 5 with an
overview of our results and ideas for future research.

In three appendices we include further details. Appendix A contains the proof that
protocol-dependent knowledge is well-defined. Appendix B adds skip calls to protocol-
permitted sequences and applies this to known CMO with engaged agents. Appendix C
provides scripts of the model checker GoMoChe that verify claims in this article.
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2 Gossip protocols for super experts

2.1 Syntax and semantics

Suppose a finite set of agents A = {a, b, c, . . . } is given. We assume that two agents
can always call each other, i.e., a complete network connects all the agents. Let S ⊆ A2

be a binary relation such that we read Sxy (for (x, y) ∈ S) as “agent x knows the
secret of agent y”, and where Sx stands for {y ∈ A | Sxy}. For the identity relation
{(x, x) | x ∈ A} we write I.

The agents communicate with each other through telephone calls. During a call
between two agents x and y, they exchange all the secrets that they knew before the
call. So if a call takes place the binary relation S may grow.

A call or telephone call is a pair (x, y) of agents x, y ∈ A for which we write xy.
Agent x is the caller and agent y is the callee. Given call xy, call yx is the dual call.
An agent x is involved in a call yz iff y = x or z = x. A call sequence is defined by
induction: the empty sequence ǫ is a call sequence. If σ is a call sequence and xy is a
call, then σ; xy is a call sequence. Let S be the secret relation between agents and σ a
call sequence. The result of applying σ to S is defined recursively by

Sǫ = S; and Sσ;xy = Sσ ∪ ({(x, y), (y, x)} ◦ Sσ)

where ◦ is relational composition: R ◦R′ := {(x, y) | ∃z (x, z) ∈ R1&(z, y) ∈ R2}.
We write |σ| to denote the length of a call sequence, σ[i] for the ith call of the

sequence, σ|i for the first i calls of the sequence, and σx for the subsequence of σ that
only contains calls involving x. If σ = ρ; τ , then ρ is a prefix of σ, denoted as ρ ⊑ σ,
and τ is the complement of ρ in σ, where τ is also denoted σ \ ρ.

For a given set of agents A, a gossip state is a pair (S, σ), where S is a secret relation
and σ a call sequence. A gossip state is initial if S = I and σ = ǫ. In this contribution
we only consider gossip states of the form (I, σ), in which case we omit I. Hence ǫ
stands for the initial state (I, ǫ), and ab; cd stands for (I, ab; cd), etcetera.

Definition 1 (Language) For a given finite set of agents A the language L of protocol
conditions is given by the following BNF :

ϕ := ⊤ | Sab | Cab | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [π]ϕ
π := ?ϕ | ab | (π; π) | (π ∪ π) | π∗

where a, b range over A. We have the usual abbreviations for implication, disjunction
and for dual modalities, and often omit parentheses. ⊣

The ϕ are called formulas and the π are called programs. The atomic formula Sab
reads as ‘agent a has the secret of b’. The atomic formula Cab means that agent a has
called agent b (in the past). The formula Kaϕ reads ‘agent a knows that ϕ is true’. By
abbreviation we further define K̂aϕ := ¬Ka¬ϕ, for ‘agent a considers it possible that ϕ.’
We also define the abbreviation Eϕ :=

∧

a∈AKaϕ and read it as ‘everyone knows that ϕ’
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(Eϕ is also known as shared knowledge ormutual knowledge of ϕ). Expression [π]ϕ reads
as ‘after executing the program π, ϕ is true’. The basic program ?ϕ denotes the ‘test on
ϕ’ and the basic program ab denotes, as expected, the call ab. The composite programs
π; π, π∪π and π∗ represent, respectively, sequential execution, non-deterministic choice,
and arbitrary iteration. Program iteration is defined as: π0 := ?⊤, and for n ≥ 0,
πn+1 := πn; π.

Agent a is an expert if she knows all the secrets, formally
∧

b∈A Sab, abbreviated
as Expa. Everyone is an expert is represented by the formula ExpA :=

∧

a∈A

∧

b∈A Sab.
Agent a is a super expert if she knows that everyone is an expert, formally KaExpA.

Definition 2 (Protocol) A protocol P is a program defined by

P := (?¬EExpA;
⋃

a6=b∈A

(?Pab; ab))
∗

; ?EExpA

where Pab ∈ L is the protocol condition for call ab of protocol P. ⊣

The formula EExpA is called the epistemic goal or the termination condition of the
protocol. The non-deterministic choice in the definition of gossip protocol is common
for distributed protocols without central schedulers [1, 4, 30]. However, the difference
from the usual definitions of a gossip protocol, e.g. [30], is that we replace the goal
ExpA with EExpA. In other words, instead of “while not everyone is an expert, select
two agents to make a call” we have “while not everyone is a super expert, select two
agents to make a call”.

To define formally what the agents participating in a gossip protocol know, we use
the following epistemic accessibility relations. We recall that Iσb is the set {a ∈ A |
(b, a) ∈ Iσ}, where I is the secret relation that is the identity and where Iσ is the
result of applying call sequence σ to relation I. Hence a ∈ Iσb means that after the call
sequence σ agent a knows the secret of b. Moreover, Iσb = Iτb means that after the two
call sequences σ and τ agent b knows the same secrets.

Definition 3 (Epistemic relation) Let a ∈ A. The synchronous epistemic relation
≈a is the smallest equivalence relation between call sequences such that:

• ǫ ≈a ǫ

• if σ ≈a τ and a /∈ {b, c, d, e}, then σ; bc ≈a τ ; de

• if σ ≈a τ and Iσb = Iτb , then σ; ab ≈a τ ; ab

• if σ ≈a τ and Iσb = Iτb , then σ; ba ≈a τ ; ba

The asynchronous epistemic relation ∼a between call sequences is defined the same as
the relation ≈a except that the second clause is replaced by

• if σ ∼a τ , a /∈ {b, c}, then σ; bc ∼a τ . ⊣
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Informally, the synchronous accessibility relation encodes that agents not involved in
a call are still aware that a call has taken place, as considered in [1, 6]. This implies
that all agents know how many calls have taken place, i.e., there is a global clock. The
asynchronous accessibility relation does not make any such assumption. Then, agents
are only aware of the calls in which they are involved. Any information on other calls
has to be deduced from the secrets they obtain from their calling partners.

Both epistemic relations assume that the callers not only learn the union of the sets
of secrets they each held before the call, but they also learn what set of secrets the
other agent held before the call. As discussed in the introductory survey, this is known
as the “inspect-then-merge” form of observation [2].

Note that for any agent a, ≈a ⊆ ∼a. This is fairly obvious, because for any call
sequences σ and τ and a /∈ {b, c, d, e}: σ ∼a τ implies σ; bc ∼a τ , which implies
σ; bc ∼a τ ; de. The latter copies the clause σ; bc ≈a τ ; de for the synchronous case.

Definition 4 (Semantics) Let call sequence σ and formula ϕ ∈ L be given. We
define σ |= ϕ by induction on the structure of ϕ.

σ |= ⊤ iff true
σ |= Sab iff b ∈ Iσa
σ |= Cab iff ab ∈ σ
σ |= ¬ϕ iff σ 6|= ϕ
σ |= ϕ ∧ ψ iff σ |= ϕ and σ |= ψ
σ |= Kaϕ iff τ |= ϕ for all τ such that σ ≈a τ
σ |= [π]ϕ iff τ |= ϕ for all τ such that σ[[π]]τ

where

σ[[?ϕ]]τ iff σ |= ϕ and τ = σ
σ[[ab]]τ iff τ = σ; ab
σ[[π; π′]]τ iff there is a sequence ρ such that σ[[π]]ρ and ρ[[π′]]τ
σ[[π ∪ π′]]τ iff σ[[π]]τ or σ[[π′]]τ
σ[[π∗]]τ iff there is n ∈ N such that σ[[πn]]τ

The inductive clause forKaϕ above is for the synchronous setting. For the asynchronous
setting we replace σ ≈a τ by σ ∼a τ in that clause. For simplicity we do not use
a separate symbol for the asynchronous semantics — it will always be clear from the
context what ‘|=’ stands for. A formula ϕ is valid, notation |= ϕ, iff for all call sequences
σ we have σ |= ϕ. ⊣

We assume that all our protocols are symmetric, which means that for all a 6= b ∈ A
and c 6= d ∈ A, simultaneously replacing a by c and b by d in the protocol condition
Pab yields Pcd. Intuitively, a symmetric protocol gives the same instructions and does
not assign any special roles to individual agents. Moreover, we only consider protocols
that are epistemic, which means that Pab → KaPab is valid. This means that agents
always know which calls they are allowed to make (see [30, page 170]).
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If in call ab agent a or b becomes an expert, then the other agent simultaneously
becomes an expert, whereas if in a call ab agent a or agent b becomes a super expert,
then the other agent need not also become a super expert.

We continue with terminology on protocol termination. If σ |= Pab we say that call
ab is P-permitted after σ. A P-permitted call sequence is a call sequence consisting of
P-permitted calls.

A call sequence σ is P-maximal if it is P-permitted and for any call ab, σ; ab is not
P-permitted.

For subsequent definitions we also need to consider infinite call sequences. We
denote an infinite call sequence as σ∞. An infinite call sequence σ∞ is P-permitted if
for any i ∈ N prefix σ∞|i is P-permitted.

A P-permitted infinite call sequence σ∞ is fair if: for all x 6= y ∈ A, if for all i
there is j > i such that xy is P-permitted in σ∞|j, then for all i there is j > i such
that σ∞[j] = xy. Fairness of an infinite call sequence means that all permitted calls
are made infinitely often. A P-maximal call sequence σ is also called fair. The idea
of fairness is that all calls get a sporting chance to contribute to the dissemination of
knowledge before it is too late and their execution is no longer permitted: that is why
not any finite call sequence is fair but only a maximal one. Whereas with an infinite
fair call sequence this moment is never reached, and calls remain permitted. Various
kinds of fairness are discussed in [4, 25].

A call sequence σ is successful if σ |= ExpA, and σ is super-successful if σ |= EExpA.
An infinite call sequence is (super-)successful if has a prefix that is (super-)successful.
A protocol P is (super-)successful if all fair P-permitted finite and infinite call sequences
are (super-)successful.

Variants and terminology We discuss a number of variants of gossip protocols and
thus need to make clear for each section or result which specific variation it concerns.
To distinguish different variants we use the following terminology. Protocols P are
considered for synchronous and for asynchronous conditions. Results for ‘P’ where we
do not mention synchrony or asynchrony explicitly, hold for both. Otherwise, we will
speak of ‘synchronous P’ or ‘asynchronous P’. In subsequent sections we will introduce
gossip protocols that are common knowledge between agents and we will call this ‘known
P’. Another variation will be a semantics where super experts do not make or answer
calls and we will call this ‘known P with engaged agents’. This means that a result
for ‘P’ may not be a result for ‘known P’ or for ‘known P with engaged agents’, and
vice versa. Protocol ‘P’ as such, without further qualification, therefore means ‘without
common knowledge of the protocol between agents’ and ‘without engaged agents’.

2.2 Gossip protocols ANY, LNS, CMO and PIG

Four gossip protocols feature in this contribution. The protocol conditions are for any
a, b ∈ A with a 6= b.
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• ANY with protocol condition ANYab := ⊤;

• LNS with protocol condition LNSab := ¬Sab.

• CMO with protocol condition CMOab := ¬Cab ∧ ¬Cba;

• PIG with protocol condition PIGab := K̂a

∨

c∈A((Sac ∧ ¬Sbc) ∨ (¬Sac ∧ Sbc));

Protocols with these protocol conditions have been investigated in the literature
but with the weaker termination condition that all agents are experts (ExpA instead
of EExpA). As these protocols have the same protocol condition, they come with the
same protocol-permitted call sequences and we will therefore use the same name below.

The acronym ANY stands for make ANY call and is the standard uninformed pro-
tocol in the gossip literature [22]. There are infinite ANY-permitted sequences, such as
repeating the same call forever.

The acronym LNS stands for Learn New Secrets. A call ab is LNS-permitted if agent
a does not know the secret of agent b [6, 34, 35]. This protocol is traditionally known
as NOHO, for No One Hears Own [20]. All LNS-permitted sequences are finite, as each
agent will call any other agent at most once, and will therefore makes at most |A| − 1
calls.

The acronym CMO stands for Call Me Once. You are allowed to call an agent if
you have not yet been involved in a call with that agent. This protocol was introduced
in [35] and is reminiscent of [12]. As any two out of n agents are only allowed to call

each other once, the maximum number of calls in CMO is
(
n

2

)
= n(n−1)

2
.

The acronym PIG stands for Possible Information Growth. Intuitively, the call ab is
permitted if a considers it possible that: a will learn a secret c that b knows but not a,
or that: b will learn a secret c that a knows but not b. It has been investigated in [6, 34].
Protocol PIG also permits infinite call sequences, although fewer then ANY [34], as will
also be discussed later.

Already with a merely strengthened epistemic goal we can obtain novel results for
gossip protocols. The protocols ANY and PIG are super-successful, whereas LNS and
CMO are not super-successful. First consider LNS, in which case we can be short, by
way of an example.

Example 5 Consider four agents and the call sequence σ = ab; cd; ac; bd from the
introduction and Table 1. This sequence is LNS-maximal and successful. However,
after σ agent a also considers the sequence τ = ab; cd; ac; bc possible, where the last call
is different. After τ , agent d is not an expert, so that τ is not successful, and therefore
after σ agent a does not know that everybody is expert, thence σ is not super-successful.
Similar examples can be found for n > 4 agents, hence LNS is not super-successful. ⊣

In the case of LNS, the protocol condition is too restrictive to ever obtain super-
successful termination. It is therefore not worth investigating further. However, it
contrasts well with the protocol condition for PIG that contains similar constituents
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in an epistemic way, which makes it worth investigating. From here on, we no longer
consider LNS.

The protocol CMO is also not super-successful, but in this case we can recoup super-
successful termination with the more involved semantics of Section 3 (and only there we
will show that CMO is not super-successful without), which can then be lost again with
the even more involved semantics of Section 4. We therefore employ it as a showcase
illustrating the semantics of these sections.

2.3 Results for the protocol ANY

We first show that ANY is super-successful. This is followed by some examples of that
for three and for four agents that also demonstrate the difference between asynchrony
and synchrony.

Theorem 6 ANY is super-successful. ⊣

Proof We first observe that there are no maximal ANY-permitted call sequences. If σ
is finite then any call ab is ANY-permitted after σ which contradicts maximality.

Let σ∞ be a fair ANY-permitted call sequence. In other words, this is simply a call
sequence in which all calls occur infinitely often. Hence there is a finite call sequence
τ ⊏ σ∞ in which each call occurs. After τ everyone is an expert.

By fairness each call also occurs in the complement σ∞ \ τ . Hence there is a finite
call sequence ρ in which each call occurs and such that τ ; ρ ⊏ σ∞. Because after τ
everyone is an expert, for each call in ρ the agents involved know that they are both
experts. Hence everyone is a super expert after ρ. Therefore σ∞ is super-successful,
and because it was arbitrary we have shown that ANY is super-successful.

We did not use any assumption about synchrony or asynchrony. Therefore the result
holds for both. �

Example 7 Let A = {a, b, c}, and let the protocol be asynchronous ANY. We show
that after call sequence ab; ac; ab; cb it holds that EExpA.

• After the prefix ab; ac, agents a and c are experts.

• After the prefix ab; ac; ab, agents a and b are super experts.

Agent a already knew that c is an expert and in call ab also learns that b now is
an expert. Therefore, she is a super expert: ab; ac; ab |= KaExpA.

In the third call, ab, agent b learns that a is an expert. Because in the first call
ab agent a did not know the secret of c yet, but now gives it to b, agent b can
infer that the call ac must have taken place between the two ab calls. As in that
call ac agent c became an expert, agent b also knows that agent c is an expert.
Therefore also agent b is a super expert.
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a b c d initial state
ab
→ ab ab c d
cd
→ ab ab cd cd
ac
→ abcd A C ab abcd A C cd
ad
→ abcd A CD ab abcd A C abcd A CD
bc
→ abcd A CD abcd BC abcd ABCD abcd A CD KcExpA
ba
→ abcd ABCD abcd ABC abcd ABCD abcd A CD
bd
→ abcd ABCD abcd ABCD abcd ABCD abcd ABCD EExpA

Table 2: Results of ab; cd; ac; ad; bc; ba; bd with synchronous ANY. We describe what
an agent knows: a lower case y in the column of x means Sxy; an upper case Y means
KxExpy. Therefore, “abcd” denotes an expert and “ABCD” denotes a super expert.

• Now consider the entire sequence ab; ac; ab; cb. In final call cb, agent c becomes
a super expert. After the second call, ac, agent a is an expert, hence c knows
this. After the last call cb agent b is an expert, hence c also knows this. Therefore
agent c knows that all agents are experts.

The sequence ab; ac; ab; cb is minimal: for three agents using asynchronous ANY there
is no sequence of less than four calls that is super-successful — see Appendix C for a
GoMoChe query to check this. ⊣

Example 8 Now assume synchrony. Consider the prefix ab; ac; ab of the call sequence
ab; ac; ab; cb of Example 7. This prefix is already synchronously super-successful. Agent
c is not involved in the third call, and this is common knowledge to all agents. All three
agents only consider ab; ac; ab possible. ⊣

Example 9 Let now A = {a, b, c, d}, and let the protocol be asynchronous ANY.
A super-successfully terminating sequence ab; cd; ac; bd; ab; ad; bc; cd consisting of eight
calls was already given in the introductory Section 1.

However, we can reach EExpA in only seven calls, namely with sequence:

ab; cd; ac; ad; bc; ba; bd

What agents learn in these calls is shown in Table 2 (generated using the model checker).
Let us sketch the justification of these results.

After prefix ab; cd; ac; ad we have three experts a, c and d. In the fifth call bc agent
b becomes an expert, and as usual b and c learn about each other that they are experts.
In addition, and somewhat surprisingly, c also learns in that call that d is an expert.
This is due to synchrony and can be checked as follows: c knows that between the
third call ac and the fifth call bc there must have been a call which must have between
between a and d or between a and b. But in the fifth call bc agent b only knows the
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secrets of a and b, hence this fourth call did not involve b. Therefore, it must have
involved d, which implies that d is an expert. (See Table 2).

Note that agent c only became a super expert in call bc because of synchrony, and
that c is not involved in calls after that, and therefore asynchronously considers it
possible that bc was the last call. Therefore, this seven-call sequence is not super-
successful asynchronously. By exhaustive search in the model checker GoMoChe we
confirmed that other call sequences of at most seven calls are also not super-successful
(Appendix C). ⊣

The above examples demonstrated that:

Observation 10 For three and for four agents, synchronous ANY permits shorter
super-successful sequences than asynchronous ANY. ⊣

We have not shown that for any number of agents synchronous ANY permits shorter
super-successful sequences than asynchronous ANY. We already do not know whether
this is the case for five agents.

We continue with observations relating expert to super expert, and different super
experts.

Observation 11 Assuming synchrony, an agent can become an expert and a super
expert in the same call. ⊣

Example 12 Consider 4 agents, synchronous ANY and ab; ac; cd; ab; bc; ab. In the final
call, agent a becomes an expert and a super expert. See Table 3. This sequence was
found and the table was generated using the model checker GoMoChe (see Appendix
C). It is easy to explain the entries in Table 3 and to see why a is a super expert.

a b c d initial state
ab
→ ab ab c d
ac
→ abc ab abc d
cd
→ abc ab abcd CD abcd CD
ab
→ abc CD abc abcd CD abcd CD
bc
→ abc CD abcd BCD abcd BCD abcd CD
ab
→ abcd ABCD abcd ABCD abcd BCD abcd ABCD a is expert and

super expert

Table 3: Results of ab; ac; cd; ab; bc; ab with synchronous ANY.

In the second call ab that is the fourth call in the sequence, a considers it possible
that the third call, not involving her, was: bc, bd or cd. As in the fourth call she
learns that agent b only knew {A,B}, she can therefore rule out that b was involved
in the third call. It must therefore have been cd. Also, a knows that c brought secrets
{A,B,C} into that call cd, that c learnt in the second call, ac. Therefore a learns that
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c and d became experts in the third call. But a is not yet an expert herself after this
second call ab.

After the third call ab that is the sixth call in the sequence, a is an expert, and a
knows that b is also an expert. Therefore, she is now a super expert. ⊣

Observation 13 Two agents can become super experts in the same call. ⊣

Example 14 It is straightforward to see that an asychronous example is call sequence
ab; cd; ac; bd; ad; bc; ab from the above Example 9. In the final call, a and b become
super experts. Now just remove the final call, and it is obvious that neither a nor b is
a super expert: the remaining final two calls ad; bc are made by disjoint pairs of agents
that both consider it possible that the other call did not happen.

A synchronous example is given by the last row of Table 3, wherein a and b simul-
taneously become super experts by calling each other. ⊣

How many calls are needed for at least one agent to become a super expert?

Proposition 15 For n ≥ 2 agents, an agent can become a super expert in 2n − 3
calls. ⊣

Proof Let there be n ≥ 2 agents. Let an agent call other agents in succession. These
are n − 1 calls. Let that agent call all other agents again in succession except the last
one. These are n − 2 calls. Then this agent is now a super expert. Altogether, these
are (n− 1) + (n− 2) = 2n− 3 calls.

Notably, this sequence makes the caller a super expert, no matter whether we assume
synchrony or asynchrony, because the caller is involved in all calls. The analysis does not
involve epistemic reasoning sometimes allowing for shorter sequences with synchrony.
Synchronously the caller only considers one call sequence, asynchronously many more,
but the shortest one involving herself in all calls remains the same. �

An example of Proposition 15 for 4 agents is the (2 · 4 − 3 =) five-call sequence
ab; ac; ad; ab; ac. It makes agent a a super expert. The call ad is not needed twice,
because d already became an expert in call ad.

We are uncertain whether the bound in Proposition 15 is hard. However, if there
is a super expert, then all agents are experts, and merely one less call, 2n − 4, is the
minimum number for all of n ≥ 4 agents to become experts [28]. For n = 2, one call
ab is the minimum and for n = 3 the call sequence ab; ac; ab is the minimum. There
are different ways for all agents to become experts in 2n − 4 calls and for n ≥ 4 none
known to us result in an agent also becoming a super expert in the final call. The
number 2n−3 figures in various results for gossip with the expert goal: the conjectured
minimum for termination of an epistemic gossip protocol is 2n−3 (that is, with protocol
conditions known by the calling agent, so that one cannot require that the first two
calls are disjoint) [31, 5]; the minimum number of calls for various network topologies
where agents cannot call all other agents but only some (their ‘neighbours’) is 2n− 3,
for example circles and binary trees [20].

We can use Example 9 to show how many calls can make everyone a super expert.

16



Proposition 16 Given n ≥ 4 agents, super-successful asynchronous ANY termination
can be achieved in n− 2 +

(
n

2

)
calls. ⊣

Proof Consider n agents, select 4 agents a, b, c, d among these n and 1 agent a among
these 4. First, let a call all the agents except b, c, d. These are (n− 4) calls. Then, let
a, b, c, d execute the sequence ab; cd; ac; bd. These are 4 calls. Note that in the final two
calls ac and bd these four agents become experts. Apart from ac and bd, we now let all
remaining pairs of agents also call each other. There are

(
n

2

)
pairs of agents (including

ac and bd). When after a call both agents are experts, they know this from one another.
Therefore, after the

(
n

2

)
calls, all agents know that all agents are experts: EExpA holds.

Altogether these are (n− 4) + 4− 2 +
(
n

2

)
= n− 2 +

(
n

2

)
calls. �

In the proof of Proposition 16, the first call in which two agents become experts is
call n − 1. This is the minimum, as n − 1 links are need to connect n points in a
graph. No agents can become experts in the first n − 2 calls. In all subsequent

(
n

2

)

calls, when calling each other, either agents x and y become expert, or they learn from
each other that they already were experts. This suggests that the only way in which
an agent asynchronously can get to know that another agent is an expert is by calling
that agent. The next example shows that this is false.

Example 17 Assume asynchrony. Consider four agents and the call sequence σ =
ac; ad; ac; bc; ac. After the sequence ac; ad; ac these three agents share their secrets. In
call ad agent a learns that d has not been involved in a call with b and in the second
call ac agent a learns that c has not been involved in a call with b after the first call ac.
Therefore a knows that whomever b makes his first call with, he will become expert.
In the third call ac of σ agent a learns that c knows the secret of b, so there should
have been a call between b and c or between b and d. (If between b and d, that call
could have taken place between call ad and the second call ac, but not if between b and
c.) Either way, b then would be an expert. So a knows that b is an expert. However,
there has been no prior call between a and b wherein they both became or already were
experts.

The model checker GoMoChe confirms that no super-successful asynchronous seven-
call sequence exists (see Appendix C), and also that no super-successful asynchronous
eight-call sequence exists extending σ. So, this prefix σ = ac; ad; ac; bc; ac is not an
efficient start in order to get super-successful termination. ⊣

Because of phenomena like in Example 17 we are uncertain whether the bound in
Proposition 16 is hard.

2.4 Results for the protocol PIG

The PIG protocol has infinite executions (PIG-permitted sequences) for four or more
agents [34].
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Infinite call sequence ab; ab; ab; . . . is asynchronous PIG-permitted. Call ab is in-
distinguishable for agent a from call sequence ab; bc, after which agent b has learnt
something new. Thus, after first call ab, the same call ab is again PIG-permitted.
Similarly, ab; ab ∼a ab; ab; bc, thus ab is again PIG-permitted after ab; ab, and so on.
However, this infinite call sequence is not synchronous PIG-permitted (although it is
ANY-permitted).

Infinite call sequence ab; cd; ab; cd; ab; cd; . . . is synchronous PIG-permitted, as after
any even number of calls agent a considers it possible that agent b was involved in the
previous call and would thus have learnt a new secret in that call. Therefore, each odd
call can again be call ab.

Unlike for ANY, there are maximal PIG-permitted call sequences: if in call sequence
τ ; ab agents a and b become expert in that final call ab, then call ab is not PIG-permitted
in any extension of τ ; ab.

Example 18 The super-successful call sequence σ = ab; cd; ac; bd; ab; ad; cb; cd from
Section 1 is not only ANY-permitted but also PIG-permitted. It is also PIG-maximal,
but obviously not ANY-maximal, as no ANY call sequence is maximal.

We can adapt σ to get a super-successful ANY-permitted sequence that is not PIG-
permitted: in σ, repeat penultimate call cb before final call cd, i.e., with the additional
call in bold, ab; cd; ac; bd; ab; ad; cb;cbcbcb; cd. ⊣

To obtain termination results for the PIG protocol we need to analyze finite call
sequences and infinite call sequences. We will first show a relation between the PIG

protocol condition and the termination condition super-successful, and we will then
show that PIG is super-successful.

Lemma 19
∨

a,b∈A PIGab ↔ ¬EExpA is valid. ⊣

Proof We recall that for any call ab, PIGab := K̂a

∨

c∈A((Sac ∧ ¬Sbc) ∨ (¬Sac ∧ Sbc)).
Assume

∨

a,b∈A PIGab. If an agent a considers it possible that there is a secret that
is not known by another agent b or by herself, then she considers it possible that that
other agent or herself is not an expert: ¬Ka¬¬Expb ∨ ¬Ka¬¬Expa. Either way, she
then does not know that all agents are experts, ¬KaExpA, and therefore ¬EExpA.

For the other direction, suppose ¬EExpA. Then for some three agents a, b, c we have
K̂a¬Sbc. We distinguish the case where Sac holds from the case where ¬Sac holds. If
Sac, then KaSac. Thus also K̂a(Sac ∧ ¬SbC), which implies PIGab. If ¬Sac, then we
have PIGac. In both cases we get

∨

a,b∈A PIGab. �

Theorem 20 PIG is super-successful. ⊣

Proof First, let σ be a PIG-maximal call sequence. This means that σ |=
∧

a,b∈A ¬PIGab.
By Lemma 19 we thus have σ |= EExpA, i.e. σ is super-successful.

Next, let σ∞ be a PIG-permitted infinite call sequence. Towards a contradiction
suppose σ∞ is fair.
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Let τ ⊏ σ∞. As σ∞ is PIG-permitted, there is an agent a for which there is an agent
b such that τ |= PIGab, that is, τ |= K̂a

∨

c∈A(Sac ∧ ¬Sbc) ∨ (¬Sac ∧ Sbc).

First assume that there is a c such that τ |= K̂a¬Sac. Then ac is PIG-permitted
after τ , so, as σ∞ is fair, there is a ρ with τ ⊏ ρ ⊏ σ∞ with ac ∈ ρ \ τ . And then
ρ |= Sac. We can do this for all such c. Therefore, there is ρ′ with ρ ⊏ ρ′ ⊏ σ∞ after
which a is an expert.

At that stage it can still be that a considers it possible that some other agent b is
not an expert: ρ′ |= K̂a

∨

c∈A(Sac ∧ ¬Sbc). In that case, ab is still PIG-permitted after
ρ′. Therefore, as σ∞ is fair, there is a ξ with ρ′ ⊏ ξ ⊏ σ∞ such that ab ∈ ξ \ ρ′. As a
already was expert, ξ |= KaExpb. Again, we can do this for all such b. Therefore, there
is ξ′ with ξ ⊑ ξ′ ⊏ σ∞ after which a is a super expert.

We are almost there. At this stage it can still be that some agent d other than a
considers it possible that not all other agents are expert. As a is a super expert, d must
already be an expert. We then must have that ξ′ |= K̂d¬Sef for some agents e, f which
PIG-permits call de and we repeat the argument in the preceding paragraph so that we
finally obtain a χ with ξ′ ⊏ χ ⊏ σ∞ after which d is also a super expert. We do this
for all such d, so that there is a χ′ with χ ⊑ χ′ ⊏ σ∞ after which EExpA holds.

By Lemma 19 we then get χ′ |= ¬
∨

a,b∈A PIGab which means that any remaining
calls in σ∞ after χ′ are not PIG-permitted. This contradicts that σ∞ is PIG-permitted.

Hence there are no fair infinite PIG-permitted call sequences. �

3 Common knowledge of gossip protocols

3.1 Syntax and semantics — known protocols

We now enrich the framework by modelling common knowledge of protocols. This
requires that we replace the knowledge modality by a knowledge modality depending
on a given protocol, and that we replace the epistemic relations by more restricted
relations incorporating common knowledge of the protocols (it is a restriction as this
reduces the uncertainty about call sequences). The resulting semantic framework is
more complex, because these definitions require mutual recursion both in the syntax
and in the semantics. In the syntax, because what an agent knows now depends on a
given protocol, whereas the protocol is defined with respect to a protocol condition, that
could be a knowledge formula, that needs to be evaluated in the semantics. Similarly,
in the semantics, the epistemic relation (that interprets a knowledge modality) depends
on a given protocol, and thus on the interpretation of the protocol conditions: formulas,
so we are back in the syntax. We adapt the framework presented in [30] to our needs.

Definition 21 (Language and Protocol — known protocols) In the BNF of the
language L we replace the inductive clause Kaϕ by an inductive clause KP

aϕ. For
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∧

a∈AK
P
aϕ we write EPϕ. Then, a protocol called “known P” is a program defined by

P := (?¬EPExpA;
⋃

a6=b∈A

(?Pab; ab))
∗

; ?EPExpA

⊣

FormulaKP
aϕmeans that agent a knows ϕ given (common knowledge between all agents

of) protocol P. So, EPExpA means that everyone is a super expert given protocol P.
We call KP

a ϕ protocol-dependent knowledge (of ϕ).
We now define ≈P

a and ∼P
a , simultaneously with the satisfaction relation |=. The

difference with the prior Definition 4 of |=, is that we replace Ka by K
P
a everywhere and

≈a by ≈P
a everywhere, and similarly for ∼a. Only the knowledge clause of the semantics

is therefore given.

Definition 22 (Epistemic relations and semantics — known protocols)
Let a ∈ A. The synchronous accessibility relation ≈P

a between call sequences is the
smallest symmetric and transitive relation such that:

• ǫ ≈P
a ǫ,

• if σ ≈P
a τ , a /∈ {b, c, d, e}, σ |= Pbc and τ |= Pde then σ; bc ≈

P
a τ ; de

• if σ ≈P
a τ , I

σ
b = Iτb , σ |= Pab and τ |= Pab, then σ; ab ≈

P
a τ ; ab

• if σ ≈P
a τ , I

σ
b = Iτb , σ |= Pba and τ |= Pba, then σ; ba ≈P

a τ ; ba

The asynchronous accessibility relation ∼P
a between call sequences is the same as the

relation ≈P
a except that the second clause is replaced by

• if σ ∼P
a τ , a /∈ {b, c}, and σ |= Pbc, then σ; bc ∼

P
a τ

Finally, in the inductive definition of |= we replace the clause for Kaϕ by:

σ |= KP
aϕ iff τ |= ϕ for all τ such that σ ≈P

a τ ⊣

On the set of P-permitted call sequences the relations ≈P
a and ∼P

a are equivalence
relations, but not on the set of all call sequences: below, we show that the T axiom
KP

aϕ→ ϕ fails so that the relation is not reflexive and therefore no equivalence relation;
see also [30].

For KANY
a ϕ we write Kaϕ, for ≈

ANY
a we write ≈a and for ∼ANY

a we write ∼a. This is
not ambiguous, because if for all a, b ∈ A, Pab = ⊤, we regain the syntax and semantics
of the previous Section 2.

In Definition 21 of the version of the language and the protocols assuming commonly
known protocols, formula KP

a ϕ contains as parameter a protocol P, and vice versa a
protocol P contains protocol conditions Pab that are formulas. This is well-defined, once
we see KP

a ϕ as Ka(X,ϕ) where X is the list of formulas Pab for a 6= b ∈ A. In other
words, we see KP

a ϕ as a modality with not a single argument ϕ, but with |A|2−|A|+1
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arguments.1 For formal precision, in Appendix A we give the well-founded preorder
demonstrating that the semantics is well-defined. As also discussed at length in [30],
this excludes self-referential protocols.

As already explicit in Definition 21, we refer to the protocol P with the syntax and
semantics for common knowledge of protocols as known P. The properties of protocol
‘known P’ may be very different from those of protocol P, except that known ANY is
the same as ANY, as said above. To summarize the differences: the protocol P and
the protocol known P have the same protocol conditions Pab for all calls ab but have
different termination condition, namely EExpA respectively EPExpA. Therefore, the
set of P-permitted call sequences remains the same either way. Protocol-dependent
knowledge KP

aϕ is merely a way to use the information already available in the set
of P-permitted call sequences differently, namely by defining the relations ∼P

a and ≈P
a .

There is nothing against using different KP
a and KP′

a in the same formula. Implicitly,
we have already done this: the protocol condition of PIG remains the same, namely
K̂a

∨

c∈A((Sac∧¬Sbc)∨ (¬Sac∧Sbc)). Formally, this is now K̂ANY
a

∨

c∈A((Sac∧¬Sbc)∨
(¬Sac ∧ Sbc)); whereas the termination condition of known PIG is EPIGExpA.

We list some elementary properties of the semantics below, but refer to [30] for
further discussion and proofs. Here, a, b ∈ A, protocols P, P′, and ϕ ∈ L are all
arbitrary.

• |= KP
a ϕ → KP

aK
P
aϕ, and |= ¬KP

a ϕ → KP
a¬K

P
a ϕ. Intuitively, KP

a has two of the
standard properties of knowledge, namely positive and negative introspection.

• 6|= KP
aϕ → ϕ. Whenever σ is not P -permitted, then σ |= KP

a⊥. In other words,
if you are in violation of the protocol, anything goes. However, whenever σ is
P-permitted, then σ |= KP

a ϕ→ ϕ.

• |= Pab → P
′
ab implies |= KP′

a ϕ → KP
a ϕ; as KANY

a ϕ = Kaϕ, for all a, b ∈ A,
ANYab = ⊤ and ψ → ⊤ is valid for all ψ, a corollary is that |= Kaϕ→ KP

aϕ.

• |= Sab ↔ KP
a Sab and |= ¬Sab ↔ KP

a¬Sab. Whether a knows the secret of b can
be determined from the call sequence and independently from the protocol.

3.2 Results for the protocols PIG and CMO

As known ANY is the same as ANY, and ANY is super-successful (Theorem 6), known
ANY is also super-successful. This is therefore not separately given as a result. The
protocol known PIG is also still super-successful. This is non-trivial, as KPIG

a ϕ need not
be equivalent to Kaϕ. The minor results in this section are called propositions instead
of theorems.

Proposition 23 Known PIG is super-successful. ⊣

1Namely, the combinations
(
|A|
2

)
of 2 out of |A| elements, times 2 as for any different a, b ∈ A

formulas Pab and Pba count separately, plus 1 for the formula ϕ bound by the KP
a modality.
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Proof The proof is a straightforward but interesting variation of the proof of Theo-
rem 20 that PIG is super-successful. We use that from PIGab → ANYab it follows that
for all ϕ, Kaϕ → KPIG

a ϕ (see the properties of protocol-dependent knowledge listed
above), so in particular KaExpA → KPIG

a ExpA and also EExpA → EPIGExpA.
In the proof, we still reason over PIG-permitted call sequences, that is, sequences that

satisfy for every next call PIGab which is K̂a

∨

c∈A(Sac∧¬Sbc)∨(¬Sac∧Sbc), the standard

K̂a, not K̂
PIG
a . The protocol condition is the same. But the termination condition is

different: whereever KaExpA is obtained in the proof, we now need KPIG
a ExpA, and

whereever EExpA is obtained in the proof, we now need EPIGExpA. But both follow
from the observed implications above, so we are fine.

It is still the case, like in the proof of Theorem 20, that no fair infinite PIG-permitted
call sequences occur. However, it may be that EPIGExpA holds before EExpA in a
maximal PIG-permitted call sequence. (Although KPIG

a ϕ is not always equivalent to
Kaϕ, we do not know whether EPIGExpA is equivalent to EExpA.) �

For the protocol CMO, whether the agents know that CMO is executed makes a big
difference. It is the difference between being super-successful or not. We first list the
negative results, followed by a positive result for synchronous known CMO.

Proposition 24 Synchronous (not commonly known) CMO is not super-successful. ⊣

Proof There are counterexamples whenever |A| ≥ 4.
Given A = {a1, a2, . . . , an}, let ρ be a maximal CMO-permitted sequence between

agents {a1, a2, . . . , an−1}. From [35] it follows that after ρ all agents a1, a2, . . . , an−1

know all their secrets. So they are all experts for the set {a1, a2, . . . , an−1} except that
none knows the secret of an. Now define the call sequence σ by having agent an call all
other agents after ρ:

σ := ρ; ana1; ana2; . . . ; anan−1

We note that σ is again a maximal CMO sequence, as
(
n−1
2

)
+ (n− 1) =

(
n

2

)
. After σ,

all agents are experts, and agent an is the only super expert. Let i, j < n and i 6= j.
Now consider the following call sequence τ where an only calls aj (many times) and ai
(once, at the same moment as in σ):

τ := ρ;

i−1 times
︷ ︸︸ ︷
anaj ; anaj; . . . anaj ; anai;

n−i−1 times
︷ ︸︸ ︷
anaj ; anaj . . . anaj

We then have that σ ≈ai τ and that τ 6|= ExpA. Therefore, σ |= ¬KaiExpA. As σ is
maximal and not super-successful, CMO is not super-successful. �

Proposition 25 Asynchronous CMO is not super-successful. ⊣

Proof There are counterexamples whenever |A| ≥ 4.
Consider again the call sequence ρ and σ from the proof of Proposition 24. The

sequence ρ; anai is CMO-permitted, and σ ∼ai ρ; anai. After ρ; anai, only agents an
and ai are experts but none of the remaining agents. Therefore, σ 6|= KaiExpA, so
σ 6|= EExpA. As σ is maximal and not super-successful, CMO is not super-successful.

�
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In fact, for the proof of Proposition 25 it does not matter whether CMO is known,
as we also have σ ∼CMO

ai
ρ; anai. Hence we have the same result when CMO is known.

Corollary 26 Asynchronous known CMO is not super-successful. ⊣

Example 27 Consider the semantics without protocol knowledge. Let A = {a, b, c, d}
and consider the sequence σ := ab; ac; bc; ad; db; dc. This sequence is CMO-permitted,
CMO-maximal, and satisfies ExpA.

Observe that σ ≈b ab; ac; bc; ad; db; ad, where in the call sequence on the right side
we replaced the final call dc in σ by ad. This sequence is not CMO-permitted, as call ad
occurs twice. After ab; ac; bc; ad; db; ad, agent c does not know the secret of d, therefore
ab; ac; bc; ad; db; ad 6|= ExpA. From that and σ ≈b ab; ac; bc; ad; db; ad then follows that
σ 6|= KbExpA, and therefore σ 6|= EExpA, so that σ is not super-successful. ⊣

Example 28 Consider again call sequence σ from the previous Example 27. Now
assume asynchrony. Consider the prefix ab; ac; bc; ad of σ. Note that σ ∼a ab; ac; bc; ad,
as a is not involved in the final two calls. Observe that after ab; ac; bc; ad agents b and c
do not know the secret of d (ab; ac; bc; ad |= ¬Sbd∧¬Scd), so that ab; ac; bc; ad 6|= ExpA.
From that and ab; ac; bc; ad; db; dc ∼a ab; ac; bc; ad it follows that σ 6|= KaExpA, which
implies σ 6|= EExpA, so that again σ is not super-successful.

We only used CMO-permitted call sequences in the argument. It therefore also
demonstrates that asynchronous known CMO is not super-successful (Corollary 26). ⊣

We will now show that synchronous known CMO is super-successful.

Theorem 29 Synchronous known CMO is super-successful. ⊣

Proof The extension of CMO consists of finite call sequences of length at most
(
n

2

)
.

Consider a maximal CMO call sequence σ. Then we must have |σ| =
(
n

2

)
. We now

use that CMO is successful, i.e., for goal ExpA [35]. As there are no call sequences of
length greater than

(
n

2

)
, and as CMO is successful, all sequences of length

(
n

2

)
satisfy

ExpA. As the setting is synchronous, given σ, all agents only consider call sequences
of that length. Therefore, regardless of the epistemic relations, they only consider call
sequences satisfying ExpA. Therefore we have E

CMOExpA and σ is super-successful. �

Example 30 This example features synchronous known CMO. The results in this
example have been validated with the model checker GoMoChe. They are displayed in
Tables 4 and 5, and in Figure 1.

Given four agents a, b, c, d, we always reach ECMOExpA in five calls when the first
two calls have no overlap, as in the prefix ab; cd of the five-call sequence ab; cd; bd; ac; bc
displayed in Figure 1. The only CMO-permitted call that has not yet been made after
this five-call sequence is ad.

Given synchrony it is not always obvious how agents not involved in a call learn
that agents become super experts in that call. We will therefore justify in detail how
this may come to pass for some agents.
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. . .

. . .

ab.abcd.cd.abcd
. BD .D. BD

bd

abcd .abcd. abcd .abcd
ABCD.ABD.ABCD.BCD

ac

abcd . abcd . abcd . abcd
ABCD.ABCD.ABCD.ABCD

bc

ab.abc.abcd.abcd
. . CD . CD

cd

abcd.abc.abcd.abcd
AD . . CD .ACD

ad

abcd .abcd. abcd . abcd
ABCD. BD .ABCD.ABCD

bd

abcd . abcd . abcd . abcd
ABCD.ABCD.ABCD.ABCD

ac

abc.abc.abc.d
. . .

ac

abcd.abc.abc.abcd
AD . . D . AD

ad

abcd.abcd. abc .abcd
AD . BD .ABD.ABD

bd

abcd . abcd . abcd . abcd
ABCD.ABCD.ABCD.ABCD

cd

≈CMO

b

≈CMO

b

≈CMO

b

≈CMO

b

Figure 1: A partial view of the CMO execution tree for four agents. If the first two
calls are disjoint, success is (always) reached after five calls. Otherwise, it is (always)
after six calls. Two other branches are suggested at depths 0 and 1 of the tree, but most
other branches are not depicted. All such branches are similar to the three branches
shown. In particular, after ab; bc call bd (or db) can be made, so that the same agent,
b, occurs in the first three calls. Such a sequence therefore also succeeds after six calls.
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For example, in third call bd agent c learns that d becomes a super expert. This is
because in the second call cd, agent c learns that the first call was ab, and as c is not
involved in the third call, this must be one of ab, ad, bd (or the dual call). As c knows
that ab has already taken place, the third call must therefore have been between a and
d or between b and d. This always involves d, and d then always becomes an expert.
Therefore, c knows that d is an expert.

Similarly, in the fifth call bc, agent d becomes a super expert (and in particular
learns that a is an expert), because d knows that the two remaining CMO-permitted
calls were bc and ad. As d was not involved, d knows that the call was bc.

a b c d
ab
→ ab ab c d
cd
→ ab ab cd cd
bd
→ ab abcd B D cd D abcd B D
ac
→ abcd ABCD abcd AB D abcd ABCD abcd BCD
bc
→ abcd ABCD abcd ABCD abcd ABCD abcd ABCD

Table 4: The results of ab; cd; bd; ac; bc with synchronous known CMO.

However, if we start with overlapping calls ab; bc, then ECMOExpA is only reached
after 6 calls. For example, consider the sequence ab; bc; cd; ad; bd; ca. After this sequence
everyone is a super expert. We show the results of this sequence in Table 5.

a b c d
ab
→ ab ab c d
bc
→ ab abc abc d
cd
→ ab abc abcd CD abcd CD
ad
→ abcd A D abc abcd CD abcd A CD
bd
→ abcd ABCD abcd B D abcd ABCD abcd ABCD
ac
→ abcd ABCD abcd ABCD abcd ABCD abcd ABCD

Table 5: The results of ab; bc; cd; ad; bd; ac with synchronous known CMO.

After the five calls ab; bc; cd; ad; bd agent b considers ab; bc; ac; ad; bd possible, after
which c is not an expert. But b has already been in a call with each other agent, and
hence b is no longer CMO-permitted to make calls. However, call ac has not yet been
made. Although agent a is a super expert, call ac is CMO-permitted, after which the
protocol terminates super-successfully. ⊣

If in the above Example 30 the horizon of six calls has been reached, it is even
common knowledge2 that all agents are experts, and thus it is common knowledge

2Common knowledge is an infinitary epistemic notion proposed in, for example, [24, 8, 18]
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that they are super experts. However, if termination is earlier, after five calls, we are
uncertain if such common knowledge is then reached. We conjecture that it is, and
that this might be the case for CMO for any number n ≥ 4 of agents, and possibly
for other gossip protocols as well that do not have infinite executions. We wish to
add common knowledge to the logical language in future research and investigate these
matters. The common knowledge operator was already studied in the context of gossip
protocols in [3], but not for the super-successful goal.

4 Engaged agents

4.1 Syntax and semantics — engaged agents

We now provide a semantics wherein agents who are super experts do not make calls
and do not answer calls. In principle, these are independent features that could be
modelled separately, but we model them jointly. The idea behind this is utilitarian.
Each agent’s principal interest is to get to know all the secrets. Knowing them all, why
continue to pay attention to further calls? The agent will thus be tempted to ‘walk
away from the scene’, which means no longer making and no longer answering calls. As
we have already seen in the introductory section, this might prevent other agents from
becoming experts. An agent valuing that everybody is an expert would first ascertain
(or, in that way, ensure) that everybody else is also an expert, and only then walk
away. In other words, she walks away once she is a super expert. So only then, she is
no longer making and no longer answering calls. So, we model these aspects jointly.

To model that agents who are super experts do not make calls, we need to change
the definition of gossip protocol. An extra condition to be permitted to call is that the
agent is not a super expert. In other words, we strengthen the protocol condition.

To model that agents who are super experts do not answer calls, we need to change
the definition of the epistemic relation, such that a call sequence cannot be extended
with a call made by a super expert. In other words, we change the meaning of knowl-
edge, as this a function of the epistemic relation, and therefore we indirectly also change
the termination condition.

Agents who neither make nor answer calls are called engaged agents (as in ‘engaged
in other activities’ for the former and as in ‘the line is engaged’ for the latter). A call that
is not answered is amissed call. Giving meaning to a missed call is quite common, see for
example [14] for an interview survey and [13] for a general “one bit per second” protocol
solely using missed calls. Letting the telephone ring until a connection is made is free,
whereas making the connection and having a conversation, however short, is payable.
Communication by missed calls is therefore free of charge. Such communication is only
meaningful if there is common knowledge of the meaning of a missed call, just as in our
case. (Although, unlike here, this is then typically informative for the callee, and not
for the caller.) Obviously the telephone companies do not like that unintended use.

The extension involving engaged agents should be seen as a form of common knowl-

26



edge of the gossip protocol. Super experts not making calls can already be taken care of
in the definition of the protocol, by strengthening the calling condition, whereas super
experts not answering calls require changing the epistemic relation, such that it really
concerns some form of common knowledge of the gossip protocol. We present the en-
gaged agents feature as an extension of any given protocol “known P”, so one where P

is also common knowledge. We will call such a protocol “protocol known P with engaged
agents”. A semantics for engaged agents where P is not common knowledge would be
conceivable. In that case, recalling that known ANY is the same as ANY, consider ANY
with engaged agents, and apply P on the set of thus permitted call sequence.

Definition 31 (Protocol — engaged agents) A protocol P (denoted “known Pwith
engaged agents”) is a program defined by

P := (
⋃

a6=b∈A

(?(¬KP

aExpA ∧ Pab); ab))
∗

; ?EPExpA

where for all a 6= b ∈ A, Pab ∈ L is the protocol condition for call ab of protocol P. ⊣

This protocol definition is different from the previous Definitions 2 and 21 but also
different from the usual definition (e.g., [30]):

(?¬ExpA;
⋃

a6=b∈A

(?Pab; ab))
∗

; ?ExpA

As our termination condition is stronger, we already replaced “while not everyone is
an expert” by “while not everyone is a super expert” and the protocol becomes Defini-
tion 31:

(?¬EPExpA;
⋃

a6=b∈A

(?Pab; ab))
∗

; ?EPExpA

Then, as we do not want super experts to make calls, we strengthen the protocol
condition by adding ¬KP

a ExpA to it:

(?¬EPExpA;
⋃

a6=b∈A

(?(¬KP

aExpA ∧ Pab); ab))
∗

; ?EPExpA

Finally, as
∧

a∈AK
P
aExpA is EPExpA, it is easy to see that the same call sequences are

permitted if we remove the first test on ¬EPExpA, which leads to the above Definition 31.
We continue with the changed epistemic relations. The definition of the semantic

relation |= remains the same. In particular, the semantics of an actually made call ab
is the same as the semantics of a missed call ab. Although no secrets are exchanged in
a missed call, if the secrets had been exchanged neither agent would have learnt a new
secret, as both agents must already have been experts. (So, formally, when S = A2 then
for all x, y ∈ A, Sσ = ({(x, y), (y, x)} ◦ Sσ), so that Sσ;ab = Sσ ∪ ({(a, b), (b, a)} ◦ Sσ) =
Sσ.)
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Definition 32 (Epistemic relation — engaged agents)
Let a ∈ A. The synchronous accessibility relation ≈P

a between call sequences is the
smallest symmetric and transitive relation such that:

• ǫ ≈P
a ǫ,

• if σ ≈P
a τ , a /∈ {b, c, d, e}, σ |= ¬KP

b ExpA ∧ Pbc and τ |= ¬KP

d ExpA ∧ Pde then
σ; bc ≈P

a τ ; de

• if σ ≈P
a τ , I

σ
b = Iτb , σ |= ¬KP

aExpA∧Pab, τ |= ¬KP
aExpA ∧Pab, and (σ |= KP

b ExpA

iff τ |= KP

b ExpA), then σ; ab ≈
P
a τ ; ab

• if σ ≈P
a τ , I

σ
b = Iτb , σ |= ¬KP

b ExpA∧Pba, τ |= ¬KP

b ExpA ∧Pba, and (σ |= KP
aExpA

iff τ |= KP
aExpA), then σ; ba ≈P

a τ ; ba

The asynchronous accessibility relation ∼P
a between gossip states is as the relation ≈P

a

except that the second clause is replaced by

• if σ ∼P
a τ , a /∈ {b, c}, and σ |= ¬KP

b ExpA ∧ Pbc, then σ; bc ∼
P
a τ ⊣

In the first place, the above definitions incorporate that agents no longer make calls
once they are super experts. This is the part ¬KP

aExpA in the definition of protocol,
and the parts ¬KP

aExpA and ¬KP

b ExpA in respectively the third and fourth item of
Definition 32 of the epistemic relation.

In the second place, the extra conditions “σ |= KP

b ExpA iff τ |= KP

b ExpA” and
“σ |= KP

aExpA iff τ |= KP
aExpA” in the third and fourth items of the definition of the

epistemic relation, model that agents b and a, respectively, no longer answer calls once
they are super experts. For example, in the third item it has the effect that after a
missed call ab, any state τ after which ab is not a missed call (b answers the call) is no
longer considered possible by agent a. In other words, we then have that σ; ab 6≈a τ ; ab,
so that after σ; ab agent b knows that ab was a missed call.

The properties of protocol-dependent knowledge KP
a listed in the previous section

also hold for the semantics extended with the feature of engaged agents. In particular,
on the set of all call sequences that are P-permitted and such that super experts do not
make calls, the relations ≈P

a and ∼P
a are equivalence relations.

A special feature of the semantics with engaged calls is that calling a super expert
will also make the callee a super expert:

Lemma 33 In the semantics with engaged calls, |= KP

b ExpA → [ab]KP
aExpA. ⊣

Proof We give the proof for the asynchronous epistemic relation. The proof is similar
for the synchronous relation. Let σ |= KP

b ExpA and assume σ |= ¬KP
aExpA ∧ Pab. Let

τ ′ be such that σ; ab ∼a τ
′. Given the definition of the epistemic relation, τ ′ = τ ; ab

for some τ , and from σ; ab ∼P
a τ ; ab we also obtain σ ∼P

a τ . As σ |= KP

b ExpA and
σ ∼P

a τ , from the definition of the epistemic relation we obtain τ |= KP

b ExpA, and thus
also τ ; ab |= KP

b ExpA. As knowledge is correct after P-permitted sequences (Section 3),
also τ ; ab |= ExpA. And as τ was arbitrary such that σ; ab ∼P

a τ ; ab, we obtain σ; ab |=
KP

aExpA and thus σ |= [ab]KP
aExpA as desired. �
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The dual effect of this semantics for engaged calls is, that when after σ agent b
answers a call from a, any state τ wherein agent b would have been a super expert is no
longer considered possible by a. In particular, even when a learns that b already knew
all secrets before the call ab, she learns that b was not yet a super expert after σ. Of
course, b may have become a super expert in the call ab.

4.2 Results for the protocols ANY and CMO

We show that ANY is super-successful for the semantics with engaged agents, whereas
CMO is now no longer super-successful. For PIG this is unknown. We also present a
result for execution length.

Theorem 34 ANY with engaged agents is super-successful. ⊣

Proof The proof consists of a slight adaptation of the proof of Theorem 20. For
the protocol ANY, the part ¬KP

aExpA ∧ Pab of the engaged agents protocol definition
becomes ¬KaExpA. This is equivalent to K̂a

∨

c∈A ¬Sbc. This is a slight weakening of

PIGab which is K̂a

∨

c∈A(Sac ∧ ¬Sbc) ∨ (¬Sac ∧ Sbc). A simplification of the argument
in the proof of Theorem 20 now suffices, where (i) we do not need to consider the
case ¬Sac ∧ Sbc given the simpler condition to be satisfied, and (ii) calls by super
experts do not occur in an (engaged ANY)-permitted call sequence. We can think of
such disallowed calls as being removed from the assumed PIG-permitted call sequences
in the proof of Theorem 20, where we note that the calls de needed to reach super-
successful termination must satisfy K̂d¬Sef (see the penultimate paragraph of the proof
of Theorem 20), such that d is therefore not a super expert and therefore de is (engaged
ANY)-permitted.

Again, the proof holds for synchrony and asynchrony. �

However, it remains unclear whether known PIG with engaged agents is also super-
successful. In this case, the part ¬KP

aExpA ∧ Pab of the engaged agents protocol def-
inition becomes ¬KPIG

a ExpA ∧ PIGab, which is equivalent to K̂PIG
a

∨

c∈A ¬Sbc, that is,
∨

c∈A K̂
PIG
a ¬Sbc. We do not know whether K̂a¬Sbc is equivalent to K̂

PIG
a ¬Sbc.

We continue with some results for asynchronous ANY demonstrating how the feature
of engaged agents affects termination.

Example 35 Consider again Example 7 for three agents a, b, c and super-successful
call sequence ab; ac; ab; cb. With engaged agents, final call cb is a missed call. The
sequence remains super-successful. But we need that final call. ⊣

Example 36 Given are six agents a, b, c, d, e, f . We first assume asynchronous ANY

without engaged agents. We enact the procedure also used in the proof of Proposi-
tion 16. A standard solution to obtain ExpA is ae; af ; ab; cd; ac; bd; ae; af . It consists
of eight calls. After any of the final four calls ac; bd; ae; af , the involved agents are ex-
perts. The agents can continue to verify that all other agents are experts in subsequent
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calls. Altogether this requires each pair of agents to make a call after which they both
are (or remain) experts. For 6 agents we therefore need 8− 4+

(
6
2

)
= 4+15 = 19 calls.

An example execution with all calls in lexicographic order is as follows.

ae; af ; ab; cd; ac; bd; ae; af ; ab; ad; bc; be; bf ; cd; ce; cf ; df ; ed; ef

With engaged agents, a simpler sequence with 15 instead of 19 calls is already super-
successful:

ae; af ; ab; cd; ac; bd; ae; af ; ab; ad; ba; ca; da; ea; fa

In this sequence first a becomes a super expert, in call ad. Then all other agents call
agent a. These are the final five calls ba; ca; da; ea; fa, These are therefore all missed
calls in which b to f also become super experts. ⊣

In Proposition 16 we showed that with n agents, super-successful asynchronous ANY
termination is reached in n− 2+

(
n

2

)
calls, which is of O(n2) complexity. We now show

(or rather observe) that asynchronous ANY with engaged agents termination is reached
in 3n − 4 calls, which is of O(n) complexity. We conjecture that the bound 3n − 4 is
minimal.

Proposition 37 Given n agents, super-successful asynchronous ANY termination with
engaged agents can be achieved in 3n− 4 calls. ⊣

Proof Select an agent a among the n agents. First, agent a calls all other agents.
These are n − 1 calls. Then, agent a calls all agents again in the same order, except
the last one that was called in the first round. These are n− 2 calls. Finally, all other
agents call a. These are n− 1 calls. Altogether these are 3n− 4 calls. The final n− 1
calls are all missed calls. After a missed call the calling agent is also a super expert
(Lemma 33). All agents are then super experts: EExpA holds. �

The proof extends the method used in Proposition 15 to show that 2n − 3 calls are
enough to make a super expert. We merely add another n − 1 calls to the 2n − 3
already made.

Example 38 For four agents, the method also used the proof of Proposition 37 con-
structs a 14-call super-successful call sequence (so, one less than in Example 36 above).
All calls involve a. First, a calls everyone else, then a calls everyone else except the last
agent f , finally everyone else calls a, all of which are missed calls. We obtain:

ab; ac; ad; ae; af ; ab; ac; ad; ae; ba; ca; da; ea; fa ⊣

So far, all the news involving engaged agents seems good: speedier termination. We
close with a bit of bad news. When engaged agents withdraw from the conversation
this can impede dissemination of information, and even prevent that super-successful
termination. We recall Theorem 29 that synchronous known CMO is super-successful.
Unfortunately, with engaged agents it is no longer super-successful.
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Proposition 39 Synchronous known CMOwith engaged agents is not super-successful.⊣

Proof The proof is by counterexample. Consider again Example 30 and Table 5.
Consider (prefix) sequence ab; bc; cd; ad; bd. After this sequence everyone but b is a
super expert.

Agent b considers ab; bc; ac; ad; bd possible (see again Figure 1) after which c is not
an expert. But b has already been in a call with each other agent, and hence b is no
longer permitted to make calls. On the other hand, agents a and c have not been in a
call yet, so ac and ca are CMO-permitted, but they are both super experts (see Table 4)
and will therefore not make a call. The protocol terminates unsuccessfully. �

A fortiori this holds for asynchrony, as agent b then considers it possible that the
call bd was the last call. Therefore:

Corollary 40 Asynchronous known CMOwith engaged agents is not super-successful.⊣

If only, in Example 30, agent b could be sure that after the sequence ab; bc; ac; ad; bd
the final call cd would be made . . . But even though we assume synchrony, b knows
nothing about the interval between calls and therefore b cannot become a super expert.
To become an expert b would have to reason as follows:

I am uncertain between two call sequences. An interval x of time has now
passed (a ‘clock tick’). After one sequence another call was permitted, after
which all agents are experts. After the other sequence no call was permitted,
but all agents already were experts. Therefore, I now know that all agents
are experts.

By another extension of the semantics with explicit ‘clock ticks’, using basic programs
called ‘skip’, we can still make CMO super-successful. This rather technical extension
is presented in Appendix B, as a further illustration how versatile and general our
method is to adapt the logical semantics of epistemic gossip and to obtain PDL-style
results for it. It involves changing the logical language, because we add a basic program
called skip. The addition of skip only makes sense in the presence of time, so, we must
assume synchrony. Such an addition seems already of interest without the semantics
with common knowledge of protocols and engaged agents, and for other protocols than
CMO.

5 Conclusion and further research

We explored gossip protocols wherein the termination condition is that all agents know
that all agents know all secrets. Such agents are called super experts and call sequence
satisfying that is called super-successful. For our results it matters whether the agents
have common knowledge which gossip protocol is executed. For protocols with this
epistemic goal we also investigated what happens when agents who are super experts
do not make and do not answer calls. Such agents are called engaged agents.
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We investigated conditions under which such gossip protocols terminate, both in
the synchronous case, where there is a global clock, and in the asynchronous case,
where there is not. In particular, the protocol CMO wherein agents may only call each
other once, is super-successful in the presence of a global clock. We further showed that
synchronous protocols may terminate before asynchronous protocols, and that protocols
with engaged agents may terminate before protocols without.

Table 6 provides an overview of our results.

standard P known P known P + engaged

ANY YES, Theorem 6 YES, Theorem 6 YES, Theorem 34

CMO ≈ NO, Proposition 24 YES, Theorem 29 NO, Proposition 39
CMO ∼ NO, Proposition 25 NO, Corollary 26 NO, Corollary 40

PIG YES, Theorem 20 YES, Proposition 23 ?

Table 6: Overview which protocols are super-successful under which semantics.

The gap in Table 6 is left for future research. Our results appear to generalize to
gossip protocols with the termination condition that it is common knowledge that all
agents are experts, which seems also worth to investigate later. It may finally be of
interest to investigate gossip protocols with very different epistemic calling conditions.
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Appendix A: Protocol-dependent knowledge is well-

defined

We show that protocol-dependent knowledge KP
a ϕ is well-defined. Define a relation <

as follows. For any call sequences σ, τ , formulas ϕ, ψ and agents a, b, c:

1. (σ, ϕ) < (τ, ψ) if ϕ is a subformula of ψ

2. (σ,Pab) < (τ,KP
c ϕ) where a 6= b

3. (σ,⊤) < (τ, ϕ) where ϕ is not an atom

4. (σ, Sab) < (τ, ϕ) where ϕ is not an atom

5. (σ, Cab) < (τ, ϕ) where ϕ is not an atom and a 6= b

The relation < is a well-founded partial order, with pairs (any call sequence, any atom)
at the bottom. Recalling that KP

aϕ can be interpreted as Ka(X,ϕ) where X = {Pbc |
b 6= c ∈ A}, clause 2. that (σ,Pab) < (τ,KP

c ϕ) is already subsumed by clause 1., as Pab

is then a subformula of KP
c ϕ.

We now show that the satisfaction relation |= is well-defined using that relation <
is well-founded. We do this for the engaged agents semantics, without that it is even
simpler. The proof is by structural induction. All clauses are trivial except knowledge.
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In order to determine σ |= KP
aϕ, we need to determine for all τ such that τ ∼P

a σ
(where τ may be σ) that τ |= ϕ, as well as (for the engaged agents semantics) τ |=
KP

b ExpA or τ |= ¬KP

b ExpA for agents b possibly different from a.

• Concerning τ |= ϕ, from clause 1. we obtain (τ, ϕ) < (σ,KP
a ϕ).

• Concerning τ |= KP

b ExpA, this can be determined by checking that ρ |= ExpA

for any ρ ∼P

b τ . Determining ρ ∼P

b τ introduces another obligation that will
be honoured below. Now ρ |= ExpA means that ρ |= Scd for any c, d ∈ A
(not necessarily different from a or b). We then obtain from clause 4. that
(ρ, Scd) < (σ,KP

a ϕ). The case τ |= ¬KP

b ExpA is treated similarly, first using
that (τ,KP

b ExpA) < (τ,¬KP

b ExpA), by clause 1.

• Concerning τ ∼P
a σ, this requires to establish τ ′ |= Pcd for c, d ∈ A (where c or d

may be a) and prefixes τ ′ of τ . We now use clause 2. that (τ ′,Pcd) < (σ,KP
aϕ).

Similarly, concerning the novel obligation ρ ∼P

b τ we need to establish ρ′ |= Pcd

for prefixes ρ′ of ρ. Again, we use clause 2. to get (ρ′,Pcd) < (σ,KP
a ϕ).

Note that it plays no role whether τ or ρ are ∼a or ∼b related to σ or even by some
chain of such indistinguishability links.

Further note that τ and ρ may in length largely exceed σ (and even may have σ as a
prefix themselves) given asynchrony. But this does not matter, the length of sequences
does not play a role in the order (it is of some importance to observe this).

A particular case of clause 1. is when ψ = [τ ]ϕ, such that for any call sequence τ ,
(σ; τ, ϕ) < (σ, [τ ]ϕ).

Appendix B: Adding skip calls

Syntax and semantics — skip

In this section we investigate how adding a skip program to the language and semantics
makes a difference in the termination of gossip protocols. We assume all prior enrich-
ments of the semantics: known protocols and engaged agents. We will later see that
our skip is different from the PDL-skip program defined as the test program ?⊤ [19]. It
rather is the skip featuring in some other publications on epistemic gossip [1, 6], that
should be seen as an explicit tick of the clock, during which no call is made. Given
that it means absence of a call, such a skip program should not be named a skip call.
However, as we wish to continue to name call sequences to which skip programs have
been added ‘call sequences’, we stick to the term skip call.

We first change the program part of the BNF of the logical language to also take
into account skip calls. The relevant part of Definition 1 was

π := ?ϕ | ab | (π; π) | (π ∪ π) | π∗

and the new definition is:

36



Definition 41 (Programs — skip)

π := ?ϕ | skip | ab | (π; π) | (π ∪ π) | π∗

where different a, b range over A. ⊣

To allow skip calls, we change the crucial Definition 2 of protocol. Let us recall the
original definition:

P := (
⋃

a6=b∈A

(?(¬KP

aExpA ∧ Pab); ab))
∗

; ?EPExpA

We now get:

Definition 42 (Protocol — skip)

P := (
⋃

a6=b∈A(?(¬K
P
aExpA ∧ Pab); ab))

∗
;

?¬
∨

a6=b∈A(¬K
P
aExpA ∧ Pab);

(
⋃

a6=b∈A(?(¬K
P
aExpA ∧ ¬Pab); skip))

∗
;

?EPExpA

where for all a 6= b ∈ A, Pab ∈ L is the protocol condition for call ab of protocol P. ⊣

Formula ¬
∨

a6=b∈A(¬K
P
aExpA∧Pab) is the stop condition for the first arbitrary iteration.

It is equivalent to the more intuitive
∧

a6=b∈A(Pab → KP
aExpA), which we will use further

below. Given its position in the program, we could replace the second arbitrary iteration
(
⋃

a6=b∈A(?(¬K
P
aExpA ∧ ¬Pab); skip))

∗
by the shorter (

⋃

a∈A(?¬K
P
aExpA; skip))

∗
without

changing the meaning of the protocol: the stop condition in the middle enforces that
any agent satisfying ¬KP

aExpA also satisfies ¬Pab. We left the condition ¬Pab in place
for intuitive clarity.

The second arbitrary iteration only fires if anyone satisfying the protocol condition
is already a super expert, but when there still are agents who are not super experts
(so that the protocol has not terminated super-successfully) but who do not satisfy the
protocol condition.

We continue with the epistemic relations. Just as for the engaged agents semantics,
the semantic relation |= remains unchanged (Definition 4), we merely need to define
the interpretation of program skip.

Definition 43 (Epistemic relations and semantics of programs — skip)
Let a ∈ A. The synchronous accessibility relation ≈P

a between call sequences is the
smallest symmetric and transitive relation satisfying all the clauses of Definition 22
plus the following two inductive clauses involving skip.

• if σ ≈P
a τ , a /∈ {b, c}, σ |=

∧

d6=e∈A(Pde → KP

dExpA) and τ |= ¬KP

b ExpA∧Pbc, then

σ; skip ≈P
a τ ; bc
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• if σ ≈P
a τ , σ |=

∧

d6=e∈A(Pde → KP

dExpA) and τ |=
∧

d6=e∈A(Pde → KP

d ExpA), then

σ; skip ≈P
a τ ; skip

The asynchronous epistemic relation ∼P
a is defined similarly, by adding the single clause:

• if σ ∼P
a τ and σ |=

∧

c 6=d∈A(Pcd → KP
c ExpA) then σ; skip ∼P

a τ

To the semantics of programs (Definition 4) we add the interpretation of skip:

σ[[skip]]τ iff τ = σ; skip

where Iσ;skip := Iσ. ⊣

Note that skip calls can only occur at the postfix of a permitted call sequence. In
other words, all call sequences σ that are executions of protocols according to the skip
semantics have shape σ1; σ2 where σ1 only contains calls ab for some a, b ∈ A, whereas
σ2 only contains skip calls. This also holds for infinite call sequences, i.e., an infinite
call sequence may consist of calls ab only, or of a finite prefix of such calls followed by
an infinite postfix of skip calls.

Recalling the semantics of programs (Definition 4) we see that the PDL-skip defined
as ?⊤ is defined as

σ[[?⊤]]τ iff τ = σ.

Note that this does not extend the call sequence, unlike our ‘clock tick’ skip.
Skip calls do not have factual consequences (changes of the value of atomic propo-

sitions): atoms Sab do not change value because Iσ;skip = Iσ, and atoms Cab do not
change value as skip is not a call ab. However, skip calls may have other informative
consequences.

In the asynchronous semantics, skip calls do not have informative consequences.
They go, so to speak, unnoticed. This is expressed by the following proposition.

Proposition 44 Assume asynchrony. Let call sequence σ be given such that σ |=
∧

c 6=d∈A(Pcd → KP
c ExpA). Then σ |= KP

a ϕ↔ [skip]KP
aϕ. ⊣

Proof First note that for any ϕ and σ: σ |= [skip]ϕ, iff τ |= ϕ for all τ such that
σ[[skip]]τ , iff σ; skip |= ϕ.

Let now ϕ ∈ L and call sequence σ such that σ |=
∧

c 6=d∈A(Pcd → KP
c ExpA) be

given. Then: σ |= KP
a ϕ, iff τ |= ϕ for all τ ∼P

a σ, iff (*) τ |= ϕ for all τ ∼P
a σ; skip, iff

σ; skip |= KP
a ϕ, iff σ |= [skip]KP

a ϕ. Therefore σ |= KP
a ϕ↔ [skip]KP

a ϕ.
In (*) we use that if σ |=

∧

c 6=d∈A(Pcd → KP
c ExpA), then from Definition 43 it follows

that τ ∼P
a σ iff τ ∼P

a σ; skip. �

If skip calls can take place any time we even have |= ϕ↔ [skip]ϕ, as suggested by Wiebe
van der Hoek in the context of [1, 6]. However, for our semantics only permitting skip
when all agents are super experts, this is false. For example, given a super-successful
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sequence σ for a protocol P, we have that σ |= [skip]KP
a⊥, as skip is not permitted after

termination. On the other hand, evidently, σ 6|= KP
a⊥. So, σ 6|= KP

a⊥ ↔ [skip]KP
a⊥.

In the synchronous semantics, skip calls may have informative consequences, as we
will now see. Because the agents become aware of time, this may result in knowledge
gain.

Results for the protocol CMO

Theorem 45 Synchronous known CMO with engaged agents and skip is super-successful.⊣

Proof Let σ be a maximal CMO-permitted sequence. Since CMO is successful, af-
ter executing σ all agents are experts: ExpA holds. If ECMOExpA now also holds,
we are done. If ECMOExpA does not hold, then, since σ is maximal, any agent who
has not yet been involved in a call with some other agent, is already a super expert:
∧

b6=c∈A(CMObc → KCMO

b ExpA). Also, since σ is maximal but not super-successful, there
is an agent a who is not a super expert but who has been involved in a call with all
other agents ¬KCMO

a ExpA ∧
∧

b∈A ¬CMOab.
Because a is not a super expert, there is a call sequence τ such that σ ≈a τ and

τ 6|= ExpA, i.e., there are b, c ∈ A such that τ 6|= Sbc. Therefore τ 6|= Cbc and τ 6|= Ccb,
so that τ |= CMObc. Protocol-dependent knowledge is truthful after the CMO-permitted
sequence τ , therefore, from τ 6|= ExpA it also follows that τ 6|= KCMO

b ExpA.
From all this it therefore follows that σ; skip ≈a τ ; bc. If we now have that σ; skip |=

ECMOExpA, we are done. Otherwise, we repeat the procedure until the maximum
number

(
n

2

)
of CMO-permitted calls has been reached. After that, ECMOExpA is a

property of that horizon. �

Example 46 We recall Figure 1, Theorem 29, and Theorem 39. Synchronous known
CMO is super-successful, however with engaged agents it is not.

Reconsider σ = ab; bc; cd; ad; bd and τ = ab; bc; ac; ad; bd, and recall that σ ≈b τ .
After σ all agents are experts. Agent b does not know that, because b considers τ
possible. Call ac is not CMO-permitted after σ, because a is a super expert. After τ
agent c does not know the secret of d and so cd is CMO-permitted. We now have that
σ; skip ≈b τ ; cd and σ; skip |= ECMOExpA. ⊣

Appendix C: GoMoChe Scripts

Here we list the commands which can be used to verify some of the examples mentioned
throughout the text with GoMoChe, the model checker for gossip protocols available at
https://github.com/m4lvin/GoMoChe. Each command below should be run in GHCi,
the interactive Haskell compiler. For more details how to compile and use GoMoChe
we refer to its readme.

GoMoChe uses Dynamic Gossip [34, 35] where also phone numbers are exchanged.
But here we are interested in static gossip where agents only exchange secrets. We also
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assume that everyone can call everyone from the beginning. Fortunately the second
assumption means we do not have to worry about the first one. We can simply use the
totalInit function from GoMoChe in our queries below.

Also note that GoMoChe usually assumes synchrony. An experimental version
of the program to deal with asynchrony is available in the ‘async’ branch under
https://github.com/m4lvin/GoMoChe/tree/async. Most commands below are for
the synchronous version, unless ASync is explicitly mentioned.

After these preliminary explanations, we now continue with the scripts verifying the
examples.

Example 7 (page 13):
Find the shortest super-successful sequence for three agents using asynchronous ANY.

λ> let myState = (ASync , totalInit 3, [])

λ> charSequence $ head $ concat [ filter (isSuperSuccSequence anyCall myState )

(sequencesUpTo anyCall myState n)

| n <- [1..] ]

"ab;ac;ab;bc"

This uses the following function included in GoMoChe:

isSuperSuccSequence :: Protocol -> State -> Sequence -> Bool

isSuperSuccSequence proto (g,sigma ) cs =

isSuccSequence (m,g,sigma) cs &&

(g, sigma ++ cs) |= ForallAg (‘superExpert ‘ proto )

Note that |= is |= and that superExpert takes a protocol as a second argument. This
is the protocol which is assumed to be common knowledge as discussed in Section 3.

Example 9 (page 14):
We check that ab; cd; ac; ad; bc; ba; bd is super-successful:

λ> isSuperSuccSequence anyCall

(totalInit 4, [])

( parseSequence "ab;cd;ac;ad;bc;ba;bd")

True

Example 9 involves generating Table 2 (page 14) for the sequence ab; cd; ac; ad; bc; ba; bd
with ANY:

λ> knowledgeOverview (totalInit 4, parseSequence "ab;cd;ac;ad;bc;ba;bd") anyCall

a b c d

ab ab ab c d

cd ab ab cd cd

ac abcd A C ab abcd A C cd

ad abcd A CD ab abcd A C abcd A CD

bc abcd A CD abcd BC abcd ABCD abcd A CD

ba abcd ABCD abcd ABC abcd ABCD abcd A CD

bd abcd ABCD abcd ABCD abcd ABCD abcd ABCD

Further to Example 9, we also check that with asynchronous ANY all call sequences of
at most 7 calls are not super-successful. To restrict the search space, w.l.o.g. we fix the
first two calls to be ab; bc or ab; cd. Moreover, also w.l.o.g., we use a version of ANY
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that only allows one of the two calls xy or yx for each pair of agent. Note that these
queries still take multiple minutes.

λ> :set +s

λ> all (\ sigma -> (ASync , totalInit 4, [(0 ,1) ,(1,2)] ++ sigma )

|= Neg ( allSuperExperts (wlog anyCall )))

( sequencesUpTo (wlog anyCall ) (ASync , totalInit 4, [(0 ,1) ,(1,2) ]) 5)

True

(169.25 secs , 735 ,797 ,981 ,656 bytes )

λ> all (\ sigma -> (ASync , totalInit 4, [(0 ,1) ,(2,3)] ++ sigma )

|= Neg ( allSuperExperts (wlog anyCall )))

( sequencesUpTo (wlog anyCall ) (ASync , totalInit 4, [(0 ,1) ,(2,3) ]) 5)

True

(386.56 secs , 1 ,664 ,502 ,795 ,960 bytes )

Example 12 (page 15):
Search for a sequence where a is a super expert after the last call, but was not even an
expert just before this last call.

λ> let myState = (totalInit 4, [])

λ> let myfilter = filter (\ sigma ->

( (totalInit 4, sigma ) |= superExpert 0 anyCall )

&& ( (totalInit 4, init sigma ) |= Neg (expert 0) ) )

λ> charSequence $ head $ myfilter ( sequencesUpTo anyCall myState 6)

"ab;ac;cd;ab;bc;ab"

Further to Example 12, we generate Table 3 (page 15) for the sequence ab; ac; cd; ab; bc; ab
with ANY:

λ> knowledgeOverview (totalInit 4, parseSequence "ab;ac;cd;ab;bc;ab") anyCall

a b c d

ab ab ab c d

ac abc ab abc d

cd abc ab abcd CD abcd CD

ab abc CD abc abcd CD abcd CD

bc abc CD abcd BCD abcd BCD abcd CD

ab abcd ABCD abcd ABCD abcd BCD abcd CD

Finally, in Example 12 we check that there is no sequence of at most 7 calls which
is super-successful in the asynchronous setting. Again we separately consider the two
cases of overlap or no overlap in the first two calls.

λ> :set +s

λ> let myState = (ASync , totalInit 4, [(0 ,1) ,(1,2)])

λ> print [ (n+2, filter ( isSuperSuccSequence (wlog anyCall ) myState )

( sequencesUpTo (wlog anyCall ) myState n)) | n <- [1..5] ]

[(3 ,[]) ,(4,[]) ,(5,[]) ,(6,[]) ,(7,[])]

(155.12 secs , 520 ,606 ,884 ,592 bytes )

λ> let myState = (ASync , totalInit 4, [(0 ,1) ,(2,3)])

λ> print [ (n+2, filter ( isSuperSuccSequence (wlog anyCall ) myState )

( sequencesUpTo (wlog anyCall ) myState n)) | n <- [1..5] ]

[(3 ,[]) ,(4,[]) ,(5,[]) ,(6,[]) ,(7,[])]

(450.96 secs , 1 ,292 ,209 ,208 ,208 bytes )

Generating Table 4 (page 25) for the sequence ab; cd; bd; ac; bc with known CMO:
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λ> knowledgeOverview (totalInit 4, parseSequence "ab;cd;bd;ac;bc") cmo

a b c d

ab ab ab c d

cd ab ab cd cd

bd ab abcd B D cd D abcd B D

ac abcd ABCD abcd AB D abcd ABCD abcd BCD

bc abcd ABCD abcd ABCD abcd ABCD abcd ABCD

Generating Table 5 (page 25) for the sequence ab; bc; cd; ad; bd; ac with CMO:

λ> knowledgeOverview (totalInit 4, parseSequence "ab;bc;cd;ad;bd;ac") cmo

a b c d

ab ab ab c d

bc ab abc abc d

cd ab abc abcd CD abcd CD

ad abcd A D abc abcd CD abcd A CD

bd abcd ABCD abcd B D abcd ABCD abcd ABCD

ac abcd ABCD abcd ABCD abcd ABCD abcd ABCD
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