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Abstract.  DLoVe (Distributed Links over Variables evaluation) is a new model for specifying and 
implementing virtual reality and other next-generation or "non-WIMP" user interfaces.  Our approach 
matches the parallel and continuous structure of these interfaces by combining a data-flow or constraint-
like component with an event-based component for discrete interactions.  Moreover, because the 
underlying constraint graph naturally lends itself to parallel computation, DLoVe provides for the 
constraint graph to be partitioned and executed in parallel across several machines, for improved 
performance.  With our system, one can write a program designed for a single machine but can execute it in 
a distributed environment with minor code modifications. The system also supports mechanics for 
implementing or transforming single user programs into multi-user programs.  We present experiments 
demonstrating how DLoVe improves performance by dramatically increasing the validity of the rendered 
frames.  We also present performance measures to measure statistical skew in the frames, which we believe 
is more suitable for interactive systems than traditional measures of parallel systems, such as throughput or 
frame rate, because they fail to capture the freshness of each rendered frame. 
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1.  Introduction 
 
The state of practice in user-interfaces today is the familiar direct manipulation, GUI (Graphical User 
Interface), or WIMP (Window, Icon, Menu, Pointer) style interface [3].  The next generation’s computer 
interfaces have been called non-WIMP [22] and are characterized by parallel and continuous interactions 
and some examples include virtual reality and virtual environments [14].  Existing languages and models, 
event-based software, methods and tools do not satisfy the next generation requirements.  Most of today’s 
examples of non-WIMP interfaces have been designed and implemented with event-based models that are 
more suited to previous interface styles.  Because there is no software that can describe continuous, parallel 
interaction explicitly (which is needed for virtual reality) and the old models (event-driven) fail to capture 
continuous, parallel interaction explicitly, new interfaces have required considerable low-level 
programming.  While some of these interfaces are very inventive, they have made such systems difficult to 
develop, reuse, and maintain. 
DLoVe (Distributed Links over Variables evaluation) is a new model for next generation dialogues.  This 
model expresses non-WIMP formal structure in the same way that existing technology expresses 
command-based, textual and event-based dialogues.  This model combines a data-flow or constraint-like 
component for the continuous relationships with an event-based component for discrete interactions.  The 



 

modules describing the continuous relationships between objects form a constraint graph, which can be 
evaluated by DLoVe’s constraint engine.  The constraint engine ensures that all relationships between the 
related objects are satisfied.  Individual continuous relationships can be enabled or disabled on the fly.  
Programs designed in this framework, not only capture continuous and parallel interaction explicitly, but 
also allow programs to be executed in parallel when there is a need for faster computation [28]. 
In DLoVe, one can write programs designed for a single machine but can execute them in a distributed 
environment with minor code modifications.  The majority of research done in parallel systems has 
concentrated either upon computational models, parallel algorithms, or machine architectures.  By contrast, 
little attention has been given to software development environments or program construction techniques 
required in order to translate algorithms into operational programs [38].  
For implementing this framework, DLoVe assigns roles to different machines.  For example, one machine, 
the Coordinator, is responsible for rendering the graphics on the screen and reading all input devices, and 
all other machines, the Workers, are responsible for keeping the constraints between Variables up-to-date 
and serving requests to the Coordinator.  The Workers work in parallel on different parts of the constraint 
to bring the entire constraint graph up-to-date.  As a result, the Coordinator has more time to spend 
refreshing the screen and providing an immersive environment to the user, because the responsibility of 
keeping all the Variables up-to-date is taken away from it and given to other machines, the Workers, which 
are dedicated to this task.  All machines/processes involved in executing a program in parallel have an 
identical copy of the constraint-graph so that every machine/process works on the same constraint graph.  
However, each machine/process is only responsible for evaluating part of the constraint graph.   
Often when you have a more expressive language, it costs you something in performance.  But in our case, 
the better language improves performance because of the parallelization techniques utilized. 
 
 
2.  Parallel and distributed systems 
 
The need for more and more computing speed in rendering and simulating Virtual Environments has 
caused many people to consider use of parallel or distributed computing.  In parallel computing, several 
machines or processors are devoted to solving one problem in the shortest possible time.  In distributed 
computing, system resources from a network of general-purpose computers work on solving many 
problems at the same time.   
Very often applications need more computational power than a sequential computer can provide.  One way 
of overcoming this limitation is to improve the operating speed of processors and other components so that 
they can offer the power required by computationally intensive applications such as Virtual Environments 
[29] [30]. 
A computing cluster is a collection of interconnected computers working together.  This cluster functions 
as a single system from the point of view of users and applications.  Such clusters can provide a cost-
effective way to gain features and benefits that have historically been found only on more expensive 
proprietary shared memory systems [29].  Shared memory clusters offer a simple and general programming 
model, but they suffer from scalability problems. 
Parallel and distributed programming involves more challenges than serial programming, such as data and 
task partitioning, task scheduling, and synchronization [10] [16] [37].  Writing parallel and distributed 
software may require substantial investment of time and effort [11].  Software performance is greatly 
affected by bandwidth and message latency, both of which are difficult to predict without direct 
measurement. 
 
 
3.  DLoVe and other distributed systems 
 
There are three main differences between DLoVe and other parallel systems.  While DLoVe’s tasks appear 
externally similar to those in Parallel Virtual Machine (PVM), task allocation is done at compile time, so 
that there is not appreciable overhead for task management.  The purpose of task allocation, in DLoVe, is to 
allow the Coordinator to always request the same Variables from the same Workers.  In other words, the 
queries the Coordinator sends to the Workers are partitioned, so that the Workers can execute multiple 
different queries in parallel. 



 

DLoVe’s task handling, unlike PVM or Message Passing Interface (MPI), is designed to support multi-
user, multi-input application development.  Adding a second user to DLoVe’s framework, adds a second 
Coordinator.  This means that the Workers now have to serve requests for both Coordinators making each 
of the Workers work harder, consume more resources, and load the network with more messages. 
The third difference concerns performance requirements.  DLoVe is designed primarily for Virtual Reality 
applications and thus requires high frame rate.  Distributed applications using DLoVe’s framework are 
characterized by real-time computations and constraints.  Thus, not only number of evaluations, but also 
timing factors need to be taken into account when evaluating DLoVe [15].   
Timing constraints in DLoVe arise from interaction requirements between the Coordinator and the user, 
and between the Coordinator and the Workers.  The communication between the Coordinator and the 
Workers is described by three operations: sampling, processing, and responding.  The Coordinator 
continuously samples data from the input devices.  Sampled data is sent to the Workers that process it 
immediately.  Then the Workers send the processed data back to the Coordinator in response to its request.  
All three operations must be performed within specified times; these are the timing constraints [15] [36].  
For example, if the user moves his real hand, and the movement of his virtual hand appears after a couple 
of seconds on the screen, the user may be confused and disoriented, making the application unusable. 
 
 
4.  Constraints and solving 
 
Our continuous model is similar to a data-flow graph or a set of one-way constraints between actual inputs 
and outputs and draws on research in constraint systems [31] [33].  The model provides the ability to “re-
wire” the graph from within the dialogue. Several researchers are using constraints for 2-D graphical 
interfaces [4] [5] [26] [27] [32].  Kaleidoscope [2] is a constraint-based language motivated by 2-D WIMP 
interfaces, and it explicitly supports temporary constraints. 
VIVA [35] introduced some level-of-detail time management techniques in a data-driven, real-time 
constraint application.  The CONDOR system uses a constraint or data-flow model to describe interactive 
3-D graphics [23].  TBAG also uses constraints effectively for graphics and animation in the interface [7].  
Gleicher provides constraints that are turned on and off by events [21].  Other recent work in 3-D interfaces 
uses a continuous approach [24] or a discrete, but data-driven approach [19]. 
Software architectures for virtual reality interfaces have been developed by Feiner and colleagues [34] and 
by Pausch and colleagues [20].  Green and colleagues developed a toolkit for building virtual reality 
systems [9].  Most of this work has thus far concentrated on the architecture or toolkit level, rather the user 
interface description language.  Lewis, Koved, and Ling, addressed non-WIMP interfaces with one of the 
first UIMSs for virtual reality using concurrent event-based dialogues [13]. 
 
 
5.  The paradigm 
 
DLoVe is designed on a two-component model for describing and programming the fine-grained aspects of 
non-WIMP interaction (such as virtual environments).  It is based on the notion that the essence of a non-
WIMP dialogue is a set of continuous relationships, most of which are temporary.  This model combines a 
data-flow or constraint-like component for the continuous relationships with an event-based component for 
the discrete interactions, which can enable or disable individual continuous relationships. 
Other current Graphical User Interfaces (GUIs) or (WIMP) interfaces, also involve parallel, continuous 
interaction with the user.  But, most other user interface description languages and software systems are 
based on serial, discrete, token-based interaction.   
DLoVe is designed to provide a fundamentally continuous, rather than discrete, treatment of naturally 
continuous phenomena such as time and motion.  However, it does treat discrete events as discrete events 
and it provides a mechanism for communication between the continuous and the discrete sub-system. 
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5.1.  Continuous Subsystem 
 
DLoVe’s sub-system consists of object elements that define the relationship between variables.  The entire 
set of these elements connected together form a constraint-like graph.  Changes on one end of the graph 
propagate to the other end.  Interaction that is conceptually continuous is encoded directly into these 
elements, and thus the application does not need to deal with tracking events from conceptually continuous 
devices.  Examples of conceptually continuous interaction include, drinking from a cup in a virtual world, 
throwing a ball in a virtual park, and driving a car in a virtual city. 
Continuous time in DLoVe is handled via Variables and Links, explained below.  Based on these Links and 
Variables a network can be designed to describe the behavior of objects and interaction techniques.  
Variables are objects in DLoVe that store values and know which Links need them as inputs and which for 
output.  They are invariant data flow graph elements that serve as both continuous and short-term data 
repositories.  Some Variables are directly connected to input devices, some to outputs and some to 
application semantics.  They are used for communication within the user interface model or they are just 
used to hold intermediate results of Link calculations.   
Links are objects that contain functions and are attached at both ends to Variables.  Links get input from 
Variables and place the result of their calculations into other Variables.  The body of a Link specifies how 
the attached Variables are related.  Links can be enabled or disabled in response to user inputs.  When a 
Link is disabled, it is as if this Link were not part of the constraint network anymore.  By enabling and 
disabling Links we can quickly change the constraint network on the fly since only a flag needs to be set or 
cleared to indicate that a Link is enabled or disabled.  
Conditions are also provided to enable and disable groups of Links instead of enabling or disabling Links 
individually.  For example, we can attach five Links to a Condition; every time we want to enable all five 
Links we can just enable this particular Condition, which then enables all five Links individually. 

 
 
 
 
 

Figure 1.  Constraint graph consisting of Links and Variables. 
 
Figure 1 shows the Variables as circles and the Links as rectangles.  When a Link is created, it is enabled 
by default.  A DLoVe graph is read from left to right.  For example, the Variables ‘A’ and ‘B’ are inputs to 
Link L1, and the Variable ‘C’ is its output Variable.  When L1 is disabled, it is as if this Link was deleted 
from the network.  However, a disabled Link is still part of the data structure and when it becomes enabled 
again it knows how it is supposed to be attached to its Variables.  The relationship between ‘A’, ‘B’ and 
‘C’ is terminated temporarily until ‘L1’ becomes enabled again.   
 
 
5.2.  Discrete Subsystem 
 
There are however, other interactions that are fundamentally discrete (event-based) and for that we use the 
event-based component of DLoVe.  Such examples include button presses, menu choices and gesture 
recognition verifications.  TBAG applications [8] generally deal with such discrete input events by 
retracting some existing constraints and asserting new ones.  Bramble uses a similar mechanism [25].   
DLoVe handles the discrete time using Event Handlers, objects that capture tokens and respond to them.  
Event handlers contain a user specified body that describes the response to tokens.  The application sends a 
token to all event handlers, and only those event handlers that are interested in the token execute their body.  
The responses might include setting Variables, making custom procedure calls and setting or clearing 
Conditions on Links.  Event handlers recognize states and state transitions, and can provide different 
services depending on the state they are in.  For example, the user might intersect his/her virtual hand with 
a virtual object.  The event handler will receive an INTERSECT token and it will move to its ‘intersect’ 
state.  In this state if the user presses the left mouse button, the event handler enables a Condition and 
transitions to the ‘dragging’ state.  As a result the object is now attached to the virtual hand so that 
wherever the user moves his/her hand the object follows the movement of the virtual hand.  When the user 



 

releases the mouse button, the event handler disables the Condition, transitions to the ‘start’ state, and the 
continuous relationship hand-object is terminated.  
A token is a structure similar to a record in Pascal or struct in C.  It contains a timestamp, an id, and other 
optional fields such as position and other user defined variables.  For instance, when the user’s virtual hand 
intersects with a virtual object, the user can press the left mouse button to send a token.  This token 
indicates that the virtual object should be attached to the user’s hand position in space, so that when the 
user moves his/her hand, the object moves along with his/her hand.  Releasing the mouse button sends 
another token that indicates that this hand–object relation should be terminated.  In this case, when the 
user’s hand intersects with the virtual object and then the user presses the left button; the LEFTDN token is 
send to all event handlers.  The event handler that is responsible for attaching the virtual object to the user’s 
virtual hand enables the appropriate Link so that a hand-object relation is established.  
The application reads all X events and hands them over to a DeviceXWindow DLoVe object.  This object 
then turns X events into tokens and sends them to all event handlers.   
Enabling a Link is similar to asserting a constraint, and disabling a Link is similar to retracting a constraint 
from the constraint graph.  Even though enabling and disabling Links is similar to retracting and asserting 
constraints, enabling and disabling occurs more quickly; Enable only marks a Link as part of the graph and 
Disable as not.  The global structure of the constraint graph does not vary.  When a Link becomes enabled, 
a single flag is cleared to indicate that this particular Link is part of the constraint graph again.  There is no 
need to remember and set all the dependencies, since the object was never deleted from the memory.  This 
makes DLoVe very efficient for modifying the constraint graph on the fly.  At creation time the 
programmer specifies the dependencies of a Link and does not have to remember them ever again when 
he/she needs to assert/retract a constraint. 
Let us say that in a virtual factory there are moving objects on an assembly line.  Let us also assume that 
Variable v2 is time and Variable v1 is the position of a virtual hand.  When the object on the assembly line 
is moving, only Link L2 is enabled.  This way, the object’s position depends on time.  However, if the user 
grabs the object with his virtual hand to examine the moving part/object, Link L2 becomes disabled, while 
Link L1 becomes enabled.  Now the user has the ability to lift the object off the assembly line and examine 
it.  The object is no longer on the assembly line, and its position does not depend on time.  The constraint 
graph in the following figure is (a) when the user examines the object, and is (b) when the object is moving 
on the assembly line. 

Figure 2.  Enabling and disabling Links 
 
The state machine that depicts the virtual factory example is given below.  Tokens are fired when there is a 
specific transition in the state machine which enable or disable Links in the constraint graph. 
 
 

 
Figure 3.  State Diagram of the Event Handler in the factory example 
 

Hand – object, intersect Right mouse button Pressed 

Right mouse button Released 

Start 

Intersect

Follow Hand

• Disable  L1 
• Enable L2 

Hand – object, do not intersect 

• Enable  L1 
• Disable L2 

(a) (b)

L2

L1v1

v2
v3

L2

L1v1 

v2 
v3



 

When the user’s hand intersects with the moving object, the event handler receives a token (e.g. 
“ENTER”), the object becomes highlighted, and the event handler transitions to the ‘Intersect’ state.  At 
this state, if the user presses the right mouse button, the event handler receives another token (e.g. 
“LEFTDN”), transitions to the “Follow Hand” state, enables Link L1, and disables Link L2.  Now a Hand – 
object relation has been established, and the object follows the movement of the hand.  When the mouse 
button is released, the event handler receives another token (e.g. “LEFTUP”), transitions to the ‘start’ state, 
disables Link L1, and enables Link L2.  At this point, the hand-object relationship is terminated. 
 
 
6.  Architecture for parallel processing  
 
One of the major difficulties with existing software lies in transforming a program written for a sequential 
machine into a program that runs on multiple machines on a network in parallel.  A program written in 
DLoVe however, can be initially written to execute on a single sequential machine; with minor 
programming effort the same program can execute in parallel on multiple workstations.  The only 
difference between the parallel and serial versions is that different libraries are used in linking against this 
program.  When compiling for parallel execution, compilation generates two different executables, the 
executable for the Coordinator (the machine mainly responsible for the graphics and the input devices), and 
another executable for the Workers (the machines responsible for doing constraint calculations).  The 
Coordinator is a workstation with a display device and input devices.  It is responsible for reading all data 
from the input devices and generating the graphics.  Workers are only responsible for doing calculations 
based on the Coordinator’s requests.  Workers are workstations that do not need to have any input or output 
devices attached to them: “headless workstations”. 
Every program that utilizes the DLoVe framework must call in the beginning of their main() the 
Link::InitCommunication() and Link::InitSystem() calls.  When a DLoVe program is executed in non-
distributed mode, the Link::InitCommunication() and Link::InitSystem() calls do not do anything and 
simply return.  But, when the program executes in distributed mode, these calls partition the constraint 
graph and set up the connections between the Coordinator and the Workers to enable the application to 
perform parallel evaluations on the constraint graph.   
The only information that needs to be shared among all machines in the distributed environment is the IP 
address and the port number the Coordinator is listening on.  When multiple Coordinators participate, one 
of them is designated as the “Master” Coordinator and the rest as “Slaves”.   All Workers and all Slave 
Coordinators connect to the Master Coordinator that coordinates who connects to whom and when.  The 
difference between the Master and the Slave Coordinators is that the Master Coordinator accepts 
connections from all Workers and all Slave Coordinators.  Additionally, the Master Coordinator instructs 
the Slave Coordinators to accept connections from the Workers, and it also instructs the Workers to connect 
to the Slave Coordinators; all information about IP addresses and port numbers is distributed from the 
Master Coordinator.  Figure 4 shows the sequence of message exchanges and connection setup between the 
Coordinator (referred as Master) and the Workers.  Each Worker requests a connection to the Coordinator 
and identifies itself.  Then the Coordinator partitions the constraint graph and assigns tasks to each Worker.  
Then the application starts executing and the Coordinator sends requests to the Workers that process data in 
parallel and send the results back to the Coordinator. 
 

 
Figure 4 . Master – Workers, connection set up. 
 
When there are multiple Coordinators, figure 5, initially Workers and Slave Coordinators request a 
connection to the Master Coordinator.  After accepting all connections from all the Workers and all Slave 
Coordinators, the Master Coordinator partitions the constraint graph, assigns tasks to the Workers and 
instructs the Slave Coordinators to start accepting connections from the Workers.  Then, the Master 
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Coordinator instructs each Worker to connect to each Slave Coordinator.  When all Workers connect to all 
Slave Coordinators, the application starts executing and the Coordinators (Master and Slaves) send requests 
to Workers that process data in parallel and send the results back to the appropriate Coordinators. 

 
Figure 5.  Master – Slaves – Workers, connection set up. 
 
In the distributed mode, several modules (called “managers”) cooperate during the connection setup (‘Set 
up’ section of figure 6).  Runtime managers (‘Run Time’ section in figure 6) handle communication 
between Coordinator and Workers when the application is in execution.  This communication always 
consists of requests from the Coordinator(s) that invoke responses from Worker(s).  There is no direct 
communication between Workers other than though the Coordinator(s).  The “Connection Manager” is a 
module that accepts connections from the Workers.  On the Workers’ side, the Connection manager is a 
module that initiates connections to Coordinators.  During this process, each authenticates itself, 
exchanging information with the Coordinator and establishes a communication channel.  The “Executive 
Manager” on the Coordinator is only involved when the system executes in Multi-user mode and the Slave 
Coordinators connect to the Master Coordinator.   
 

 
Figure 6.  DLoVe’s managers 
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After the Master Coordinator accepts all connections from all machines, partitions the constraint graph and 
assigns a disjoined subset of Variables to each Worker using its “Load Manager”.  These are the Variables 
a Worker will be “responsible for computing/keeping up to date”.  When each Worker receives its 
assignment, it executes its own algorithm in the “Constraint Graph Optimizer” manager to determine which 
sub-graph of the whole graph it will need to evaluate in order to compute its assigned Variables.  For 
example, the following graph will be partitioned into two sub-graphs as shown below: 
 

Figure 7.  Partition into two sub-graphs 
 
Even though Worker 1 has been assigned 3 Variables, by bringing the rightmost Variable up to date, all the 
assigned Variables become up to date because of the dependencies in the constraint graph.  After 
partitioning is completed, the Coordinator(s) begins executing the main application and the Workers start 
listening to requests from the Coordinator(s).  The Coordinator reads all its input devices, requests 
Variables in parallel from the Workers, and renders the screen.  The Workers handle all requests from the 
Coordinator.  We should note that the Coordinators own a copy of the constraint engine as well.  Variables 
that describe the field of view of the immersed person are updated locally by the Coordinators; since the 
calculations involved are computationally inexpensive. 
The last set of Managers in the ‘Run Time’ section handle all request-reply pairs between the Coordinator 
and Worker(s).  The Coordinator executes the user’s program.  Using the “Message Manager” it 
incorporates requests into network messages that can be passed to Workers over the network.  The 
“Network Optimizer” in the Coordinator is responsible for building large messages out of smaller ones, so 
that it can use the network more efficiently.  It also makes sure not to overflow network capacity by 
sending too many messages over the network, similar to a technique used in [39].   
Critical messages, such as commands that enable or disable a Link, are always sent.  Non-critical messages 
may be dropped if Workers seem overloaded.  Each Worker uses the “Poll Facility” to get requests from 
the Coordinator and unpacks messages that may contain multiple requests.  Then the “Constraint Engines” 
in the Workers process all the requests; updating the constraint graph and communicate the result back to 
the Coordinator.   

 
Figure 8.  Partitioned graph to two Workers. 
 
Every Worker and the Coordinator owns the same constraint graph representation.  However, the 
Coordinator partitions the graph and assigns Variables to Workers.  The Workers pay attention only to 
Variables that they have been assigned by the Coordinator.  The set of Variables assigned to them 
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represents a sub-graph of the entire constraint graph.  For example, in the above example (a) where only 
two Workers are participating, Worker 0 will be assigned the Variables in (b) and Worker 1 will be 
assigned the Variable in (c).  After the Workers run the optimization function, the Worker 0 will pay all its 
attention to Variable ‘D’ as shown in (a) below and Worker 1 to Variable ‘E’ as shown in (b) below.  This 
way the Worker 0, for example, knows that by bringing the Variable ‘D’ up-to-date, all its Variables 
assigned by the Coordinator, are also up-to-date. 

 
Figure 9.  Partitioned graph after the optimization algorithm is run on the Workers. 
 
 
7.  Performance evaluation 
 
Two factors greatly influence the goodness of a graph partition.  A given graph should be partitioned into 
concurrent modules to obtain the shortest possible program execution time.  Secondly, one must choose the 
best size for each concurrent module that will result in fastest execution, while using a minimal number of 
processors.  The grain-packing problem is related to optimal scheduling where an “optimal” scheduler 
executes in minimum time, well known to be NP complete in general. 
DLoVe’s partition algorithm may be compared against load balancing and scheduling, but in reality it is 
someplace in between. Load Balancing, and more precisely Dynamic Load Balancing, tries to keep all 
processors equally busy, but does not try to reduce overall execution time.  Only when the calculations are 
more expensive than the communication, the applications may run faster [12].  Dynamic Load Balancing 
handles process migration and reacts to conditions that vary in the network.  DLoVe’s partition algorithm 
determines at compile time how to partition the constraint graph.  DLoVe does not modify the partition of a 
given graph dynamically to efficiently implement Dynamic Load Balancing.  It tries to partition the graph 
assuming that all Links are equally computationally expensive.   
DLoVe assigns tasks to Workers in a manner similar to a scheduler.  A single task in a scheduler 
corresponds to a single Link where in DLoVe a task corresponds of a set of interconnected Links.  DLoVe 
uses the constraint graph itself to give extra information, making determining task allocation easier.  
Though a real scheduler allows tasks to have any cost, DLoVe assumes that all Links comprising a task 
have the same cost.  This may cause DLoVe to create unbalanced task schedules but seems to work fine for 
many constraint graphs used in Virtual Reality. 
DLoVe uses a greedy round-robin scheduling algorithm, which is not optimal in general.  For example, 
assume there are 5 tasks with costs 3, 2, 2, 1, 1, and suppose there are two Workers available.  Using 
greedy round-robin assignment, Worker 1 will be assigned tasks with costs 3+2+1=6 while Worker 2 will 
be assigned tasks with costs 2+1=3.  An optimal scheduler might assign tasks of cost 3+1+1=5 to Worker 1 
and tasks of cost 2+2=4 to Worker 2, with imbalance of 1 time unit. 
 
 
7.1.  Strategy for analysis 
 
One of the applications we designed to analyze the characteristics of the DLoVe framework was a Virtual 
Park.  In the Virtual Park there were 32 Humanoids that were interacting among themselves, a virtual ball, 
and the user(s), the fully immersed person(s).   
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Figure 10.  DLoVe Virtual Park 
 
We measured the number of evaluations and the frame rate we were getting out of the system.  We had two 
versions of the program, the first one that run on a single machine, and the second version that run on a 
distributed environment utilizing three machines.  In conventional parallel processing systems the number 
of evaluations, throughput, is what counts.  However, in Virtual Reality latency is also very critical.  High 
throughput that produce frames in front of the fully immersed person that are out-of-date make Virtual 
Reality unusable.  Results of these experiments show that traditional techniques for performance analysis 
do not accurately describe distributed VR performance.   
Initial measurements suggested that conventional measures used to evaluate parallel processing systems are 
less useful in VR [1] [6] [11].   
Table 1 shows that by using more Workers, we increase the throughput of the system but we decrease the 
frame rate.  The throughput increase is due to parallel computations performed by the multiple Workers, 
where the decrease in frame rate is due to the fact the DLoVe is implemented on top of TCP.  The 
Coordinator needs to send multicasts to all Workers and thus it has to simulate multicasting [17], since it is 
not supported by TCP.  By simulating multicasting, the Coordinator spends more time trying to send the 
requests to the Workers and less time to render the display.  We measured the number of evaluations of one 
of the Links in the Humanoids which was needed in every frame to figure out how many times a Humanoid 
was brought up to date. 

Table 1. Throughput and frame rate performance. 
Number of 
Workers 

Number of 
Evaluations 

Frame 
Rate 

1 1700 20 
2 3500 18 
3 4500 15 

 
When we use more Workers, we get fewer frames per second because the Coordinator saturates the 
network faster due to sending the same messages to multiple Workers.  The Coordinator sends the same 
messages to all Workers.  For example, when there are three Workers the Coordinator has to send the same 
message three times, once for each Worker. This adds a lot of overhead to the Coordinator and as a result it 
spends less time updating the display.  This is because the Coordinator is trying to write too many messages 
on the network, and the network becomes saturated.  The Coordinator keeps trying until it successfully 
writes the messages on the network, losing critical time on updating the display.   
The distributed version outperformed the non-distributed version in frame rate, because in the non-
distributed version one machine is trying to simulate all 32 Humanoids, leaving it no time to update the 
display.  In fact, the non-distributed version was so slow (2 frames per second) that it would disorient any 
person using it.  The frame rate on the distributed version could be improved if a different technique was 
used, for network communication, such as multicasting instead of unicasting.  If DLoVe outperforms the 
non-distributed version using TCP/IP for point-to-point communication, it promises even greater 
performance if it is re-implemented using multicasting. 
However, throughput of a Virtual Reality system does not describe how well it performs.  A more critical 
factor in VR is how high a frame rate it can achieve, and how accurately each frame represents the virtual 
world. 



 

Accuracy of rendition is difficult to measure.  The Coordinator sends requests to Workers to have certain 
Variables updated so it can render its display.  The Workers update the requested Variables and the results 
are sent back to the Coordinator.  These replies are not instantaneous, but arrive with some latency that 
depends on performance upon the network.  So, one measure of accuracy is message latency.  Another is 
how up-to-date the frames are when rendered, relative to user input and the real state of the virtual world. 
For more information on the configuration of the machines, the network, and the software utilized refer to 
[17]. 
 
 
7.2.  State machine of the run time system 
 
The Coordinator can be thought of as possessing five independent states as shown in Figure 11.  The 
Coordinator builds a message consisting of several requests and sends it out to the Worker(s).  Initially, the 
Coordinator is in a ‘start’ state.  When it sees a need to request Variable’s value or to enable or disable a 
Link, it transitions to the ‘build’ state within which it builds the message that it may send to the Workers.  
At the end of the main loop, just before sending the message, it checks its internal counters, which indicate 
the number of pending requests on the network to each Worker.  If a counter is below a chosen threshold, it 
transitions to ‘send’ state, sends the message, and returns to the ‘start’ state.  Else, it discards the message 
and returns to the ‘start’ state.   
While in the ‘start’ state, it checks to see if any replies came back from the Workers.  If replies have 
arrived, it transitions to the ‘get’ state and processes all the replies.  When all replies are processed, it 
transitions back to the ‘start’ state where it starts building messages all over again.  The ‘start’ state is a 
state indicating idle time and it is used as a starting point in describing the functionality of the Coordinator.  
The fifth state is the ‘render’ state in which the Coordinator transitions to render the display.  The following 
figure shows the five states and the transitions between them.  It also shows where we placed application 
hooks to measure the number of messages DLoVe transmitted (# of Sends), number of messages discarded 
(# of Drops) and finally the number of messages that the Workers sent to the Coordinator (# of Gets). 
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Figure 11.  State machine of the run-time system 
 
Performance in time required measuring the elapsed time between pairs of state transitions as shown in the 
figure 12.  tbuild is the time it takes the Coordinator to build a message before sending it to the Workers or 
discarding it, which is the difference between tbuild_end and tbuild_start , or between tbuild_start and tbuild_discard 
representing the time at which the build ended and when it started.  tsend is the time it takes the Coordinator 
to put the message on the network, which is the difference between tsend_end and tsend_start indicating the time 
the Coordinator completed the transmition of the message and the time it started transmitting.  tget is the 
time it takes the Coordinator to process the replies from the Workers, which is the difference between 
tget_start and tget_end indicating the time it started reading replies and the time it read all replies from all 
Workers.  tcycle indicates the time it takes a request to come back as a reply, which is the difference between 
tbuild_end and tget_end.  This is the latency of each message and this is what in which we were the most 
interested.  One of the goals we want to achieve is for the Coordinator to receive as many replies as 
possible from the Workers.  However, if the messages are all too old, then user interaction is minimized 
and this is not what we want since DLoVe is designed for real-time applications such as Virtual Reality. 



 

 

Figure 12.  Measuring latency in the internal state machine 
 
 
7.3.  Frame Validity and Statistical Skew 
 
Latency shows how long a message spends on the network to get to the Workers and then come back to the 
Coordinator - time required by a Worker to evaluate a Link is not counted.  However, this does not show 
how accurate the frame rendering is and it does not capture the interactive performance of such user 
interfaces.  The system might be doing a great deal of processing by generating many frames, but 
displaying each of them late.  It would score well by traditional parallel processing measures, but would 
seem very sluggish to the user.  We therefore used total throughput along with total latency of a displayed 
video frame to measure performance. That is, when a frame is displayed, what is the oldest piece of data 
that was used to generate that frame?  We believe that frame latency, in conjunction with frame rate, 
captures the interactive performance of a VR user interface better than total processing throughput.  Frame 
latency shows how valid or how late the information is at the time the Coordinator renders the display. 
To perform this analysis, we tracked each message through the network.  Message latency shows how long 
a message spends on the network to get to the Workers and then to come back to the Coordinator (minus 
the time required by a Worker to bring the requested Variable up-to-date).  Message latency is the time this 
request spent in the network.  However, this does not show how accurate a rendered frame is.  To visualize 
how valid the frames are, we used a statistical clock skew that plots the oldest information used to render 
the display [18]: 
 

skew = (wall clock) minus min(time of request of all Variables) 
 
For every frame, the minimum time of request of all output Variables is subtracted from the current time 
(wall clock).  This skew describes the worst difference between what is rendered and what the user is 
doing.  We plotted many graphs that show this skew over time [17].  Every time a request comes back from 
a Worker it is time-stamped with the current time indicating the time the Variable is lastly updated.  When 
the Coordinator is about to render the display it gets the system’s clock and subtracts from it the minimum 
time of the Variables in the state “render”. 
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7.4.  Throughput in DLoVe 
 
To better understand the characteristics of DLoVe, we designed a very simple application where the 
rendering of the display took zero time.  We designed this program to see the how much the network 
impacts the performance of an application that utilizes DLoVe’s framework.  The application was simply 
sending requests to the Workers as fast as possible.  There were three Workers performing parallel 
computation on a constraint graph that is shown below: 

Figure 13.  Partitioned constraint graph. 
 
Using the statistical skew described above, we plotted the latency of each frame (see [17] for many more 
graphs).  The graph below shows the latency of each frame that describes the worst difference between 
what is rendered and what the user is doing. 
 

Figure 14.  Frame Latency Graph. 
 
The message latency stays consistent through out the execution of the application while keeping the frame 
rate as high as possible.  Finally, observe that these speedups are made possible by a high-level constraint-
based UIDL, which placed no assumptions or restrictions on the processing sequence.  Our experience with 
DLoVe demonstrates that introducing a higher-level, declarative user interface description language 
provided extra degrees of freedom to the underlying implementation. Rather than causing a performance 
penalty, the constraint-based language made possible the increased performance we obtained through 
parallel processing. 
 
 
8. Conclusion 
 
The experiments demonstrated that DLoVe not only describes specification of Virtual Reality programs 
well, but also improves overall performance of applications designed in its framework by dramatically 
increasing the validity of the rendered frames.  In addition, DLoVe supports mechanics for implementing or 
transforming single user programs into multi-user programs.  DLoVe can be used to implement large-scale 
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Virtual Reality applications, and when speed is required, DLoVe’s framework is able to provide the 
additional CPU cycles needed by real time applications by utilizing multiple machines.   
We showed the need for a different method of measuring performance that describes DLoVe accurately, 
where traditional methods fail by providing seemingly acceptable performance measures that in actuality 
reflected poor performance.  Throughput is not enough to describe performance, but throughput and frame 
rate in conjunction with statistical skew, which measures the freshness of each rendered frame, do 
accurately describe DLoVe’s performance. 
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