
J Supercomput (2007) 42: 33–58
DOI 10.1007/s11227-006-0035-y

Dynamic resource allocation heuristics that manage
tradeoff between makespan and robustness

Ashish M. Mehta · Jay Smith · H.J. Siegel ·
Anthony A. Maciejewski · Arun Jayaseelan · Bin Ye

Published online: 31 March 2007
© Springer Science+Business Media, LLC 2007

Abstract Heterogeneous parallel and distributed computing systems may operate in
an environment where certain system performance features degrade due to unpre-
dictable circumstances. Robustness can be defined as the degree to which a system
can function correctly in the presence of parameter values different from those as-
sumed. This work develops a model for quantifying robustness in a dynamic het-
erogeneous computing environment where task execution time estimates are known
to contain errors. This mathematical expression of robustness is then applied to two
different problem environments. Several heuristic solutions to both problem varia-
tions are presented that utilize this expression of robustness to influence mapping
decisions.

A.M. Mehta · J. Smith · H.J. Siegel · A.A. Maciejewski · A. Jayaseelan · B. Ye
Electrical and Computer Engineering Department, Colorado State University, Fort Collins,
CO 80523-1373, USA

A.M. Mehta
e-mail: ammehta@engr.colostate.edu

A.A. Maciejewski
e-mail: aam@engr.colostate.edu

A. Jayaseelan
e-mail: arun@engr.colostate.edu

B. Ye
e-mail: binye@engr.colostate.edu

J. Smith
IBM, 6300 Diagonal Highway, Boulder, CO 80301, USA
e-mail: bigfun@us.ibm.com

H.J. Siegel (�)
Computer Science Department, Colorado State University, Fort Collins, CO 80523-1373, USA
e-mail: hj@engr.colostate.edu

34 A.M. Mehta et al.

Keywords Resource management · Robustness · Dynamic mapping · Makespan ·
Resource allocation

1 Introduction

Heterogeneous parallel and distributed computing is defined as the coordinated use of
compute resources—each with different capabilities—to optimize certain system per-
formance features. Heterogeneous systems may operate in an environment where sys-
tem performance degrades due to unpredictable circumstances or inaccuracies in esti-
mated system parameters. The robustness of a computing system can be defined as the
degree to which a system can function correctly in the presence of parameter values
different from those assumed [3]. Determining an assignment and scheduling of tasks
to machines in a heterogeneous computing system (i.e., a mapping or resource alloca-
tion) that maximizes the robustness of a system performance feature against perturba-
tions in system parameters is an important research problem in resource management.

This research focuses on a dynamic heterogeneous mapping environment where
task arrival times are not known a priori. A mapping environment is considered dy-
namic when tasks are mapped as they arrive, i.e., in an on-line fashion [24]. The gen-
eral problem of optimally mapping tasks to machines in heterogeneous parallel and
distributed computing environments has been shown in general to be NP-complete
(e.g., [10, 13, 17]). Thus, the development of heuristic techniques to find a near-
optimal solution for the mapping problem is an active area of research (e.g., [2, 5, 6,
8, 12, 14, 22, 24, 26, 32]).

The tasks considered in this research are assumed to be taken from a frequently
executed predefined set, such as may exist in a military, lab or business computing
environment. The estimated time to compute (ETC) values of each task on each ma-
chine are assumed to be known based on user supplied information, experiential data,
task profiling and analytical benchmarking, or other techniques (e.g., [1, 15, 16, 19,
25, 34]). Determination of ETC values is a separate research problem, and the as-
sumption of such ETC information is a common practice in mapping research (e.g.,
[16, 18, 19, 21, 30, 33]).

For a given set of tasks, estimated makespan is defined as the completion time
for the entire set of tasks based on ETC values. However, these ETC estimates may
deviate from actual computation times; e.g., actual task computation times may de-
pend on characteristics of the input data to be processed. For this research, the actual
makespan of a resource allocation is required to be robust against errors in estimated
task execution times. Two variations to this basic problem are considered in this work.

The first problem variation (robustness constrained) focuses on determining a dy-
namic mapping for a set of tasks that minimizes the estimated makespan (using the
estimated ETC values) while still being able to tolerate a quantifiable amount of vari-
ation in the ETC values of the mapped tasks. Therefore, the goal of heuristics in this
problem variation is to obtain a mapping that minimizes makespan while maintaining
a certain level of robustness at each mapping event.

In the second problem variation (makespan constrained), the goal of the heuris-
tics is to maximize the robustness of a resource allocation while ensuring that the

Dynamic resource allocation heuristics 35

makespan for the resource allocation is below a specified limit. Maximizing robust-
ness in this context is equivalent to maximizing the amount of tolerable variation
that can occur in ETC times for mapped tasks while still ensuring that a makespan
constraint can be met by the resource allocation.

Dynamic mapping heuristics can be grouped into two categories: immediate mode
and batch mode [24]. Immediate mode heuristics immediately map a task to some
machine in the system for execution upon the task’s arrival. In contrast, batch mode
heuristics accumulate tasks until a specified condition is satisfied before mapping
tasks—e.g., a certain number of tasks accumulate, or a specified amount of time
elapses. When the specified condition is satisfied a mapping event occurs and the
entire batch of tasks is considered for mapping. A pseudo-batch mode can be de-
fined where the batch of tasks considered for mapping is determined upon the arrival
of a new task (i.e., a mapping event occurs) that consists of all tasks in the system
that have not yet begun execution on some machine and are not next in line to begin
execution, i.e., previously mapped but unexecuted tasks can be remapped.

One of the areas where this work is directly applicable is the development of re-
source allocations in enterprise systems that support transactional workloads sensitive
to response time constraints, e.g., time sensitive business processes [27]. Often, the
service provider in these types of systems is contractually bound through a service
level agreement to deliver on promised performance. The dynamic robustness metric
can be used to measure a resource allocation’s ability to deliver on a performance
agreement.

The contributions of this paper include:

1. a model for quantifying dynamic robustness,
2. heuristics for solving the two resource management problem variations,
3. simulation results for the proposed heuristics for each problem variation, and
4. a mathematical bound on the performance feature for each of the resource man-

agement problem variations.

The remainder of the paper is organized as follows. Section 2 formally states the
investigated research problem. Section 3 describes the simulation setup. Heuristic
solutions to the robustness constrained problem variation of the presented problem
including an upper bound on the attainable robustness value are presented and eval-
uated in Sect. 4. Section 5 presents heuristics for the makespan constrained problem
variation of the dynamic robustness problem along with their evaluation and a bound
on the performance feature. Related work is considered in Sect. 6 and Sect. 7 con-
cludes the paper.

2 Problem statement

In this study, T independent tasks (i.e., there is no inter-task communication) arrive at
a mapper dynamically, where the arrival times of the individual tasks are not known
in advance. Arriving tasks are each mapped to one machine in the set of M ma-
chines that comprise the heterogeneous computing system. Each machine is assumed
to execute a single task at a time (i.e., no multitasking). In this environment, the ro-
bustness of a resource allocation must be determined at every mapping event—recall

36 A.M. Mehta et al.

that a mapping event occurs when a new task arrives to the system. Let T (t) be the
set of tasks either currently executing or pending execution on any machine at time t ,
i.e., T (t) does not include tasks that have already completed execution. Let Fj (t) be
the predicted finishing time of machine j for a given resource allocation μ based on
the given ETC values. Let MQj (t) denote the subset of T (t) previously mapped to
machine j ’s queue and let scetj (t) denote the starting time of the currently executing
task on machine j . Mathematically, given some machine j

Fj (t) = scetj (t) +
∑

∀i∈MQj (t)

ETC(i, j). (1)

Let β(t) denote the maximum of the finishing times Fj (t) for all machines at time
t—i.e., the predicted makespan at time t . Mathematically,

β(t) = max∀j∈M
{Fj (t)}. (2)

The robustness metric for this work has been derived using the procedure defined
in [3]. In our current study, given uncertainties in the ETC values, a resource alloca-
tion is considered robust if, at a mapping event, the actual makespan is no more than
τ seconds greater than the predicted makespan. Thus, given a resource allocation μ at
time t , the robustness radius rμ(Fj (t)) of machine j can be quantitatively defined as
the maximum collective error in the estimated task computation times that can occur
where the actual makespan will be within τ time units of the predicted makespan.
Mathematically, building on a result in [3],

rμ(Fj (t)) = τ + β(t) − Fj (t)√|MQj (t)|
. (3)

The robustness metric ρμ(t) for a given mapping μ is simply the minimum of the
robustness radii over all machines [3]. Mathematically,

ρμ(t) = min∀j∈M

{
rμ

(
Fj (t)

)}
. (4)

With the robustness metric defined in this way, ρμ(t) corresponds to the collective
deviation from assumed circumstances (relevant ETC values) that the resource allo-
cation can tolerate and still ensure that system performance will be acceptable, i.e.,
the actual makespan will be within τ time units of the predicted makespan.

For the robustness constrained problem variation, the dynamic robustness metric
is used as a constraint. Let α be the minimum acceptable robustness of a resource
allocation at any mapping event; i.e., the constraint requires that the robustness metric
at each mapping event be at least α. Thus, the goal of the heuristics in the robustness
constrained problem variation is to dynamically map incoming tasks to machines
such that the total makespan is minimized, while maintaining a robustness of at least
α i.e., ρμ(t) ≥ α for all mapping events. The larger α is, the more robust the resource
allocation is.

For the makespan constrained problem variation, let Te be the set of all mapping
event times. The robustness value of the final mapping is defined as the smallest ro-
bustness metric that occurs at any mapping event time in Te. The primary objective

Dynamic resource allocation heuristics 37

of heuristics in the makespan constrained problem variation is to maximize the ro-
bustness value, i.e.,

maximize

(
min∀te∈Te

ρμ(te)

)
. (5)

In addition to maximizing robustness, heuristics in this problem variation must com-
plete all T incoming tasks within an overall makespan constraint (γ). Therefore, the
goal of heuristics in this problem variation is to dynamically map incoming tasks
to machines such that the robustness value is maximized while completing all tasks
within an overall makespan constraint (based on ETC values).

3 Simulation setup

The simulated environment consists of T = 1024 independent tasks and M = 8 ma-
chines for both problem variations. This number of tasks and machines was chosen
to present a significant mapping challenge for each heuristic and to make an exhaus-
tive search for an optimal solution infeasible (however, the presented techniques can
be applied to environments with different numbers of tasks and machines). As stated
earlier, each task arrives dynamically and the arrival times are not known a priori. For
the robustness constrained problem variation, 100 different ETC matrices were gen-
erated, 50 with high task heterogeneity and high machine heterogeneity (HIHI) and
50 with low task heterogeneity and low machine heterogeneity (LOLO) [8]. While for
the makespan constrained problem variation, 200 different ETC matrices were gen-
erated, 100 each for HIHI, and LOLO. The larger number of ETC matrices (for the
makespan constrained problem variation) was needed to produce statistically reliable
results. The LOLO ETC matrices model an environment where different tasks have
similar execution times on a machine and also, the machines have similar capabili-
ties, e.g., a cluster of workstations employed to support transactional data processing.
In contrast, the HIHI ETC matrices model an environment where the computational
requirements of tasks vary greatly and there is a set of machines with diverse capa-
bilities, e.g., a computational grid comprised of SMPs, workstations, and supercom-
puters, supporting fast compilations of small programs as well as time-consuming
complex simulations.

All of the ETC matrices generated were inconsistent (i.e., machine A being faster
than machine B for task 1 does not imply that machine A is faster than machine B for
task 2) [8]. All ETC matrices were generated using the gamma distribution method
presented in [4]. The arrival time of each incoming task was generated according to
a Poisson distribution with a mean task inter-arrival rate of eight seconds. In order
to accentuate the difference in performance of the pseudo-batch mode heuristics in
the robustness constrained problem variation, the mean task inter-arrival rate was
decreased to six seconds.

In the gamma distribution method of [4], a mean task execution time and co-
efficient of variation (COV) are used to generate ETC matrices. In the robustness
constrained problem variation, the mean task execution time was set to 100 seconds
while, for the makespan constrained problem variation, the mean task execution time
was 120 seconds. For both problem variations, a COV value of 0.9 was used for HIHI

38 A.M. Mehta et al.

and a value of 0.3 was used for LOLO. The value of τ chosen for this study was 120
seconds. The performance of each heuristic, was studied across all simulation trials,
i.e., a trial corresponds to a different ETC matrix.

4 Robustness constrained heuristics

4.1 Heuristics overview

Five immediate mode and five pseudo-batch mode heuristics were studied for this
variation of the problem. For the task under consideration, a feasible machine is de-
fined to be a machine that will satisfy the robustness constraint if the considered task
is assigned to it. This subset of machines is referred to as the feasible set of machines.

4.2 Immediate mode heuristics

The following is a brief description of the immediate mode heuristics for this problem
variation. Recall that in immediate mode, only the new incoming task is considered
for mapping. Thus, the behavior of the heuristic is highly influenced by the order in
which the tasks arrive.

4.2.1 Feasible robustness minimum execution time (FRMET)

FRMET is based on the MET concept in [8, 24] where each incoming task is mapped
to its minimum execution time machine regardless of the number of pending tasks on
that machine. However, for each incoming task, FRMET first identifies the feasible
set of machines. The incoming task is assigned to the machine in the feasible set of
machines that provides the minimum execution time for the task. The procedure at
each mapping event can be summarized as follows:

i. for the new incoming task find the feasible set of machines. If the set is empty,
exit with error (“constraint violation”)

ii. from the above set, find the minimum execution time machine
iii. assign the task to the machine
iv. update the machine available time

4.2.2 Feasible robustness minimum completion time (FRMCT)

FRMCT is based on the MCT concept in [8, 24] where each incoming task is mapped
to its minimum completion time machine. However, for each incoming task, FRMCT
first identifies the feasible set of machines for the incoming task. From the feasible set
of machines, the incoming task is assigned to its minimum completion time machine.
The procedure at each mapping event can be summarized as follows:

i. for the new incoming task find the feasible set of machines. If the set is empty,
exit with error (“constraint violation”)

ii. from the above set, find the minimum completion time machine
iii. assign the task to the machine
iv. update the machine available time

Dynamic resource allocation heuristics 39

4.2.3 Feasible robustness K-percent best (FRKPB)

FRKPB is based on the KPB concept in [20, 24]. FRKPB tries to combine the aspects
of both MET and MCT. FRKPB first finds the feasible set of machines for the newly
arrived task. From this set, FRKPB identifies the k-percent feasible machines that
have the smallest execution time for the task. The task is then assigned to the machine
in the set with the minimum completion time for the task. For a given α the value of k

was varied between 0 and 100, in steps of 12.5, for sample training data to determine
the value that provided the minimum makespan. A value of k = 50 was found to give
the best results. The procedure at each mapping event can be summarized as follows:

i. for the new incoming task find the feasible set of machines. If the set is empty,
exit with error (“constraint violation”)

ii. from the above set, find the top m = 4 machines based on execution time
iii. from the above find the minimum completion time machine
iv. assign the task to the machine
v. update the machine available time

4.2.4 Feasible robustness switching (FRSW)

FRSW is based on the SW concept in [20, 24]. As applied in this research, FRSW
combines aspects of both the FRMET and the FRMCT heuristics. A load balance
ratio (LBR) is defined to be the ratio of the minimum number of tasks enqueued on
any machine to the maximum number of tasks enqueued on any machine. FRSW
then switches between FRMET and FRMCT based on the value of the load balance
ratio. The heuristic starts by mapping tasks using FRMCT. When the ratio rises above
a high set point, denoted Thigh, FRSW switches to the FRMET heuristic. When the ra-
tio falls below a low set point, denoted Tlow, FRSW switches to the FRMCT heuristic.
The values for the switching set points were determined experimentally using sample
training data. The procedure at each mapping event can be summarized as follows:

i. for the new incoming task find the feasible set of machines. If the set is empty,
exit with error (“constraint violation”)

ii. calculate the load balance ratio (LBR)
iii. initial mapping heuristic—FRMCT

if LBR > Thigh map using FRMET
else if LBR < Tlow map using FRMCT

else if Tlow ≤ LBR ≤ Thigh map using previous mapping heuristic

4.2.5 Maximum robustness (MaxRobust)

MaxRobust has been implemented for comparison only, trying to greedily maximize
robustness without considering makespan. MaxRobust calculates the robustness ra-
dius of each machine for the newly arrived task, assigning the task to the machine
with the maximum robustness radius. The procedure at each mapping event can be
summarized as follows:

i. for the new incoming task find the robustness radius for each machine, consider-
ing the previous assignments

40 A.M. Mehta et al.

ii. assign task to maximum robustness radius machine
iii. update the machine available time

4.3 Pseudo-batch heuristics

The pseudo-batch mode heuristics implement two sub-heuristics, one to map the task
as it arrives, and a second to remap pending tasks. For the pseudo-batch mode heuris-
tics, the initial mapping is performed by the previously described FRMCT heuristic
(except for the MRMR heuristic). The remapping heuristics each operate on a set of
mappable tasks; a mappable task is defined as any task pending execution that is not
next in line to begin execution. The following is a brief description of the pseudo-
batch mode re-mapping heuristics.

4.3.1 Feasible robustness minimum completion time-minimum completion time
(FMCTMCT)

FMCTMCT uses a variant of Min-Min heuristic defined in [2, 17]. For each map-
pable task, FMCTMCT finds the feasible set of machines, then from this set deter-
mines the machine that provides the minimum completion time for the task. From
these task/machine pairs, the pair that gives the overall minimum completion time is
selected and that task is mapped onto that machine. This procedure is repeated until
all of the mappable tasks have been remapped. The procedure at each mapping event
can be summarized as follows:

i. map the new incoming task using FRMCT
ii. if set of mappable tasks is not empty

(a) for each task, find the set of feasible machines. If the set is empty for any task,
exit with error (“constraint violation”)

(b) for each task find the feasible machine that minimizes computation time (first
Min), ignoring other mappable tasks

(c) from the above task/machine pairs, find the pair that gives the minimum com-
pletion time (second Min)

(d) assign the task to the machine and remove it from the set of mappable tasks
(e) update the machine available time
(f) repeat a–e until all tasks are remapped

4.3.2 Feasible robustness maximum robustness-minimum completion time
(FMRMCT)

FMRMCT builds on concept of the Max-Min heuristic [2, 17]. For each map-
pable task, FMRMCT first identifies the feasible set of machines, then from this
set determines the machine that provides the minimum completion time. From these
task/machine pairs, the pair that provides the maximum robustness radius is selected
and the task is assigned to that machine. This procedure is repeated until all of the
mappable tasks have been remapped. The procedure at each mapping event can be
summarized as follows:

i. map the new incoming task using FRMCT

Dynamic resource allocation heuristics 41

ii. if set of mappable tasks is not empty
(a) for each task, find the set of feasible machines. If the set is empty for any task,

exit with error (“constraint violation”)
(b) for each task find the feasible machine that minimizes computation time

(Min), ignoring other mappable tasks
(c) from the above task/machine pairs, find the pair that gives the maximum ro-

bustness radius (Max)
(d) assign the task to the machine and remove it from the set of mappable tasks
(e) update the machine available time
(f) repeat a-e until all tasks are remapped

4.3.3 Feasible minimum completion time-maximum robustness (FMCTMR)

For each mappable task, FMCTMR first identifies the feasible set of machines, then
from this set determines the machine with the maximum robustness radius. From
these task/machine pairs, the pair that provides the minimum completion time is se-
lected and the task is mapped to that machine. This procedure is repeated until all of
the mappable tasks have been remapped. The procedure at each mapping event can
be summarized as follows:

i. map the new incoming task using FRMCT
ii. if set of mappable tasks is not empty

(a) for each task, find the set of feasible machines. If the set is empty for any task,
exit with error (“constraint violation”)

(b) for each mappable task find the feasible machine that gives maximum robust-
ness radius (Max), ignoring other mappable tasks

(c) from the above task/machine pairs, find the pair that gives the minimum com-
pletion time (Min)

(d) assign the task to the machine and remove it from the set of mappable tasks
(e) update the machine available time
(f) repeat a-e until all tasks are remapped

4.3.4 Maximum weighted Sum-maximum weighted Sum (MWMW)

MWMW builds on a concept in [29]. It combines the Lagrangian heuristic technique
[9, 23] for deriving an objective function with the concept of Min-Min heuristic [17],
to simultaneously minimize makespan and maximize robustness. For each mappable
task, the feasible set of machines is identified and the machine in this set that gives
the maximum value of the objective function (defined below) is determined. From
this collection of task/machine pairs, the pair that provides the maximum value of
the objective function is selected and the corresponding assignment is made. This
procedure is repeated until all of the mappable tasks have been remapped.

When considering assigning a task i to machine j , let F ′
j (t) = Fj (t)+∑

ETC(i, j)

for all tasks currently in the machine queue and the task currently under considera-
tion. Let β ′(t) be the maximum of the finishing times F ′

j (t) at time t for all machines.
Let r ′

μ(F ′
j (t)) be the robustness radius for machine j . Let maxrob(t) be the maxi-

mum of the robustness radii at time t . Given η, an experimentally determined constant

42 A.M. Mehta et al.

using training data, the objective function for MWMW is defined as

s(j, t) = η

(
1 − F ′

j (t)

β ′(t)

)
+ (1 − η)

(
r ′
μ(F ′

j (t))

maxrob(t)

)
(6)

The procedure at each mapping event can be summarized as follows:

i. map the new incoming task using FRMCT
ii. if set of mappable tasks is not empty

(a) for each task, find the set of feasible machines. If the set is empty for any task,
exit with error (“constraint violation”)

(b) for each task find the feasible machine that gives maximum value of the ob-
jective function (s(j, t)), ignoring other mappable tasks

(c) from the above task/machine pairs, find the pair that gives the maximum value
of s(j, t)

(d) assign the task to the machine and remove it from the set of mappable tasks
(e) update the machine available time
(f) repeat a-e until all tasks are remapped

4.3.5 Maximum robustness-maximum robustness (MRMR)

MRMR is provided here for comparison only as it optimizes robustness without con-
sidering makespan. When a task arrives it is initially mapped using the MaxRobust
heuristic. Task remapping is performed by a variant of the Max-Max heuristic [17].
For each mappable task, the machine that provides the maximum robustness radius
is determined. From these task/machine pairs, the pair that provides the maximum
overall robustness radius is selected and the task is mapped to that machine. This
procedure is then repeated until all of the mappable tasks have been remapped. The
procedure at each mapping event can be summarized as follows:

i. map the new incoming task using MaxRobust
ii. if set of mappable tasks is not empty

(a) for each task find the machine that gives maximum robustness radius (first
Max), ignoring other mappable tasks

(b) from the above task/machine pairs, find the pair that gives the maximum value
(second Max)

(c) assign the task to the machine and remove it from the set of mappable task
(d) update the machine available time
(e) repeat a-d until all tasks are remapped

4.4 Lower bound

A lower bound on makespan for the described system can be found by identifying the
task whose arrival time plus minimum execution time on any machine is the greatest.
More formally, given the entire set of tasks T where each task i has an arrival time
of arv(i), the lower bound is given by

LB1 = max∀i∈T

(
(arv(i) + min∀j∈M

ETC(i, j)

)
. (7)

Dynamic resource allocation heuristics 43

Unfortunately, this bound neglects any time that the task spends waiting to execute.
This can be significant in highly loaded systems. Therefore, a second lower bound
that considers the total computational load was also used. This bound is given by,

LB2 =

T∑

i=0

{ min∀j∈M
ETC(i, j)}

M
. (8)

The lower bound on makespan can then be given by the maximum of the two bounds,
i.e.,

LB = max(LB1,LB2). (9)

Clearly, this lower bound may not be achievable even by an optimal mapping, how-
ever, it is a tight lower bound because the case described by LB1 is possible if a
system is very lightly loaded.

4.5 Results

In Figs. 1 through 4, the average makespan results (with 95% confidence interval
bars) are plotted, along with a lower bound on makespan. Figures 1 and 2 present
the makespan results for the immediate mode heuristics for HIHI and LOLO het-
erogeneity, respectively. While, Figs. 3 and 4 present the makespan results for the
pseudo-batch mode heuristics for HIHI and LOLO heterogeneity, respectively. Each
of the heuristics was simulated using multiple values for the robustness constraint α.
For each α the performance of the heuristics was observed for 50 HIHI and 50 LOLO
heterogeneity trials. In Figs. 1 through 4, the number of failed trials (out of 50) is in-
dicated above the makespan results for each heuristic, i.e., the number of trials for
which the heuristic was unable to successfully find a mapping for every task given
the robustness constraint α.

The average execution times for each heuristic over all mapping events (on a typ-
ical unloaded 3 GHz Intel Pentium 4 desktop machine) in all 100 trials are shown in
Table 1 and Table 2 for immediate and pseudo-batch mode, respectively. For the im-
mediate mode heuristics, this is the average time for a heuristic to map an incoming
task. For the pseudo-batch mode heuristics, this is the average time for a heuristic to
map an entire batch of tasks.

For the immediate mode heuristics, FRMET resulted in the lowest makespan for
HIHI, and FRMET and FRSW performed the best for LOLO. The immediate mode
FRMET heuristic for both HIHI and LOLO heterogeneity performed better than an-
ticipated based on prior studies including a minimum execution time (MET) heuristic
in other environments (that did not involve robustness and had different arrival rates
and ETC matrices). It should be noted, however, that its performance in the HIHI
case did result in multiple instances where it failed to find a mapping.

It has been shown, in general, that the minimum execution time heuristic is not
a good choice for minimizing makespan for both the static and dynamic environ-
ments [8, 24], because it ignores machine loads and machine available times when
making a mapping decision. The establishment of a feasible set of machines by the

44 A.M. Mehta et al.

Fig. 1 Simulation results of makespan for different values of robustness constraint (α) for immediate
mode heuristics for HIHI heterogeneity

FRMET heuristic indirectly balances the incoming task load across all of the ma-
chines. Also, because of the highly inconsistent nature of the data sets coupled with
the high mean execution time (100 seconds), FRMET is able to maintain a lower
makespan compared to FRMCT.

To illustrate this, consider the following ETC matrix:

t0 t1 t2 t3 t4

M1 10 150 180 150 100

M2 100 70 170 100 150

M3 180 100 60 140 300

If the tasks arrive in the above order and the robustness constraint is α = 22, the
mapping obtained by FRMET would be:

M1 t0(10) t4(100)

M2 t1(70) t3(100)

M3 t2(60)

whereas using FRMCT results in the following mapping:

Dynamic resource allocation heuristics 45

Fig. 2 Simulation results of makespan for different values of robustness constraint (α) for immediate
mode heuristics for LOLO heterogeneity

Fig. 3 Simulation results of makespan for different values of robustness constraint (α) for pseudo-batch
mode heuristics for HIHI heterogeneity

46 A.M. Mehta et al.

Fig. 4 Simulation results of makespan for different values of robustness constraint (α) for pseudo-batch
mode heuristics for LOLO heterogeneity

Table 1 Average execution
times, in seconds, of a mapping
event for the proposed
immediate mode heuristics

Heuristics avg. exec. time (sec.)

FRMET 0.001

FRMCT 0.0019

FRKPB 0.0019

FRSW 0.0015

MaxRobust 0.0059

Table 2 Average execution
times, in seconds, of a mapping
event for the proposed
pseudo-batch mode heuristics

Heuristics avg. exec. time (sec.)

FMCTMCT 0.023

FMRMCT 0.028

FMCTMR 0.028

MWMW 0.0211

MRMR 0.0563

M1 t0(10) t3(150)

M2 t1(70) t4(150)

M3 t2(60)

Thus, the makespan obtained using FRMET is 170 while that obtained using FRMCT
is 220.

Dynamic resource allocation heuristics 47

Table 3 Maximum and average number of mapping events (over successful trials) for which the MET
machine was not feasible for HIHI and LOLO heterogeneity

HIHI

Robustness constraint (α) 22.00 24.00 25.00 26.00 27.00

max 41 54 73 79 88

avg 14 22 30 36 42

LOLO

Robustness constraint (α) 18.00 19.00 20.00 21.00 21.21 22.00

max 5 10 14 26 26 56

avg 0 1 3 6 6 7

Table 3 shows the maximum and average number of mapping events (out of a pos-
sible 1024) over successful trials (out of 50) for which the MET machine was not
feasible. That is, the table values were calculated based on only the subset of the 50
trials for which FRMET could determine a mapping that met the constraint. For each
of these trials, there were 1024 mapping events. Thus, even though the vast majority
of tasks are mapped to their MET machine, it is important to prevent those rare cases
where doing so would make the mapping infeasible.

The FRKPB heuristic performed better than FRMCT (in terms of makespan) for
LOLO heterogeneity and comparable to FRMCT for HIHI heterogeneity. FRKPB
selects the k-percent feasible machines that have the smallest execution time for the
task and then assigns the task to the machine in the set with the minimum comple-
tion time for the task. Thus, rather then trying to map the task to its best completion
time machine, it tries to avoid putting the current task onto the machine which might
be more suitable for some task that is yet to arrive. This foresight about task het-
erogeneity is missing in FRMCT, which might assign the task to a poorly matched
machine for an immediate marginal improvement in completion time. This might
possibly deprive some subsequently arriving better matched tasks of that machine,
and eventually leading to a larger makespan than FRKPB.

The FRSW heuristic switches between FRMCT and FRMET depending on the
LBR. In the HIHI case Tlow was set to 0.6 and Thigh was set to 0.9. With these values
of the threshold, FRSW used FRMCT, on average, for 96% of the mapping events
(out of total 1024) to map the incoming task. In the LOLO case Tlow was set to 0.3
and Thigh was set to 0.6. For these values of the thresholds FRSW used FRMET, on
average, for 80% of the mapping events (out of total 1024) to map the incoming task.
As stated earlier FRMET performs much better than FRMCT for both the HIHI and
LOLO cases. Thus the better performance of FRSW, for LOLO heterogeneity, can be
attributed to the fact that it maps a large number of tasks using FRMET as opposed
to FRMCT. In contrast, for HIHI heterogeneity, a larger number of tasks are mapped
using FRMCT and so the makespan is comparable to that of FRMCT.

An interesting observation was that the FRMCT heuristic was able to mantain
a robustness constraint of α = 27 for all 50 trials used in this study, but only for
48 trials when α = 26 (for HIHI heterogeneity). This could be attributed to the

48 A.M. Mehta et al.

volatile nature of the greedy heuristics. The looser robustness constraint (α = 26)
allowed for a pairing of task to machine that was disallowed for a tighter robustness
constraint (α = 27). That is, the early greedy selection proved to be a poor decision
because it ultimately led to a mapping failure.

For the HIHI case all of the heuristics (except MaxRobust) failed for at least 4%
(20% on average) of the trials (out of 50) for the robustness constraint achieved by
MaxRobust heuristic.

When considering the performance of the pseudo-batch mode heuristics (Figs. 3
and 4) recall that they were evaluated across a different set of ETC matrices (mean
task inter-arrival rate of six seconds as opposed to eight seconds for ETC matrices
for immediate mode). The MWMW heuristic used a value of η = 0.6 for HIHI and
η = 0.3 for LOLO.

For the HIHI heterogeneity trials, FMCTMCT and FMRMCT performed com-
parably, in terms of makespan, though FMRMCT had a higher failure rate than
FRMCTMCT for high values of α. The inclusion of the concept of feasible ma-
chines helped FMCTMCT and FMRMCT maintain a high level of robustness. The
FMCTMR heuristic had a higher makespan as compared to FMRMCT. The reason
being the first stage choice of machines for these two-stage greedy heuristics. The
FMRMCT heuristic tries to minimize the completion time in the first stage and then
selects the task/machine pair that maximizes the robustness radius, as opposed to
maximizing the robustness radius in stage one and then selecting the task/machine
pair that minimizes the completion time as used by FMCTMR.

For the LOLO heterogeneity trials, FMCTMCT performed the best on average,
while MWMW performed comparably (in terms of makespan). The motivation be-
hind using MRMR was to greedily maximize robustness at every mapping event. As
can be seen from Figs. 3 and 4, the MRMR heuristic was able to maintain a high level
of robustness, however, it had the worst makespan among the heuristics studied.

5 Makespan constrained heuristics

5.1 Heuristics overview

Five pseudo-batch mode heuristics were studied for this research. All of the heuris-
tics used a common procedure to identify a set of feasible machines, where a machine
is considered feasible if it can execute the task without violating the makespan con-
straint that is, for a task under consideration, a machine is considered feasible if that
machine can satisfy the makespan constraint when the task is assigned to it. The
subset of machines that are feasible for the task is referred to as the feasible set of
machines.

5.2 Heuristic descriptions

5.2.1 Minimum completion time-minimum completion time (MinCT-MinCT)

The MinCT-MinCT heuristic is similar to the FMCTMCT heuristic studied in the
robustness constrained problem variation but with the new definition of the feasible
machine.

Dynamic resource allocation heuristics 49

5.2.2 Maximum robustness-maximum robustness (MaxR-MaxR)

As was seen in the robustness constrained problem variation, the MRMR heuristic
was able to maintain a high level of robustness, but had a higher makespan. The goal
in this problem variation is to maximize the robustness at each mapping event, and
hence a variation of the MRMR heuristic is employed. However, unlike the MRMR
heuristic, for each mappable task, MaxR-MaxR identifies the set of feasible ma-
chines. From each task’s set of feasible machines, the machine that maximizes the ro-
bustness metric for the task is selected. If for any task there are no feasible machines
then the heuristic will fail. From these task/machine pairs, the pair that maximizes
the robustness metric is selected and that task is mapped onto its chosen machine.
This procedure is repeated until all of the mappable tasks have been mapped. The
procedure at each mapping event can be summarized as follows:

i. A task list is generated that includes all mappable tasks.
ii. For each task in the task list, find the set of feasible machines. If the set is empty

for any task, exit with error (“constraint violation”).
iii. For each mappable task (ignoring other mappable tasks), find the feasible ma-

chine that maximizes the robustness radius.
iv. From the above task/machine pairs select the pair that maximizes the robustness

radius.
v. Remove the task from the task list and map it onto the chosen machine.

vi. Update the machine available time.
vii. Repeat ii-vi until task list is empty.

5.2.3 Maximum robustness-minimum completion time (MaxR-MinCT)

MaxR-MinCT is similar to the FMRMCT heuristic studied in robustness constrained
problem variation, but with the new definition of a feasible machine.

5.2.4 Minimum completion time-maximum robustness (MinCT-MaxR)

The MinCT-MinCT heuristic is similar to the FMCTMR heuristic studied in the ro-
bustness constrained problem variation but with the new definition of a feasible ma-
chine.

5.2.5 MaxMaxMinMin (MxMxMnMn)

This heuristic makes use of two sub-heuristics to obtain a mapping. It uses a combina-
tion of Min-Min with a robustness constraint (to minimize makespan while maintain-
ing the current robustness value) and Max-Max (based on robustness) to maximize
robustness while still finishing all T tasks within the overall makespan constraint. The
mapping procedure begins execution using the Min-Min heuristic with τ as the ro-
bustness level to be maintained—τ was chosen based on the upper bound discussion
presented in Subsect. 5.4. The procedure at each mapping event can be summarized
as follows:

i. A task list is generated that includes all mappable tasks.

50 A.M. Mehta et al.

ii. Min-Min component
(a) For each task in the task list, find the set of machines that satisfy the robust-

ness level if the considered task is assigned to it. If the set is empty for any
task, go to step iii.

(b) From the above set of machines, for each mappable task (ignoring other
mappable tasks), find the feasible machine that minimizes the completion
time.

(c) From the above task/machine pairs select the pair that minimizes completion
time.

(d) Remove the task from the task list and map it onto its chosen machine.
(e) Update the machine available time.
(f) Repeat a-e until task list is empty, exit.

iii. Max-Max component
(g) A task list is generated that includes all mappable tasks (any task mapped by

Min-Min in this mapping event are remapped).
(h) For each task in the task list, find the set of feasible machines. If the set is

empty for any task, exit with error (“constraint violation”)
(i) For each mappable task (ignoring other mappable tasks), find the feasible

machine that maximizes the robustness metric.
(j) From the above task/machine pairs select the pair that maximizes the robust-

ness metric.
(k) Remove the task from the task list and map it onto the chosen machine.
(l) Update the machine available time.
(m) Repeat h-l until task list is empty.

iv. Update the robustness level to the new robustness value (the smallest robustness
metric that has occurred).

5.3 Fine tuning (FT)

A post-processing step, referred to as fine tuning (FT) was employed to improve the
robustness value produced by a mapping. Fine tuning reorders tasks in the machine
queues in ascending order of execution time on that machine (as done for a different
problem environment in [35]), i.e., smaller tasks are placed in the front of the queues.
This procedure is performed at each mapping event after executing one of the above
heuristics. This procedure will not directly impact the overall finishing times of the
machines, but does help in getting the smaller tasks out of the machine queues faster
and thus helps reduce the numerator in Eq. 3, which correspondingly improves the
robustness metric.

5.4 Upper bound

Let the provided constant τ be the upper bound on robustness. To prove that robust-
ness can be no higher than τ is to show that at least one machine will have at least one
task assigned to it during the course of the simulation. When the first task is assigned
to some machine in the system the robustness radius of that machine becomes τ . In
Eq. 3, β(t) − Fj (t) goes to zero for the makespan machine. Because the machine
with the first and only task assigned to it is now the makespan defining machine, its

Dynamic resource allocation heuristics 51

robustness radius is now τ . The robustness radius of this machine defines the robust-
ness metric for the system because it is the smallest of the robustness radii at this
mapping event. Because the robustness value is defined as the smallest robustness
metric over all mapping events, that value can be no greater than τ .

5.5 Results

In Figs. 5 and 6, the average robustness value (over all mapping events) for each
heuristic is plotted with their 95% confidence intervals. The average execution time
of each heuristic over all mapping events in all 200 trials is shown in Table 4. Recall
that the heuristics operate in a pseudo-batch mode, therefore, the times in Table 4 are
the average time for each heuristic to map an entire batch of tasks.

As can be seen from Figs. 5 and 6, MxMxMnMn with fine tuning gives the best ro-
bustness result for both the HIHI and LOLO cases (although there is one failure). The
good performance of MxMxMnMn can be attributed to the fact that the maintainable
robustness value is by definition monotonically decreasing, and its approach tries to
minimize makespan (using Min-Min) while maintaining the current robustness value.
If that is not possible it instead maximizes robustness using Max-Max-attempting to
minimize the degradation in the robustness value.

Although, MinCT-MinCT is able to achieve one of the best makespan (Figs. 7
and 8) for both the HIHI and LOLO cases, its robustness value is not one of the best,
which confirms the fact that just minimizing the finishing times of the machines does
not guarantee a higher value of robustness.

The high number of failed trials for MaxR-MaxR for both the HIHI and LOLO
cases can be attributed to the fact that the heuristic tries to maximize the robustness
metric at all mapping events, but in doing so neglects the corresponding increase in

Fig. 5 Average robustness value (over all mapping events) for the HIHI case with γ = 14000

52 A.M. Mehta et al.

Fig. 6 Average robustness value (over all mapping events) for the LOLO case with γ = 12500

Fig. 7 Average makespan for the HIHI case with γ = 14000

machine finishing times. For example, consider the following two machine system
with a current robustness value of 60 and machine queues with the task execution
times as shown,

m1: t1(10) t3(10)

m2: t2(50)

Dynamic resource allocation heuristics 53

Fig. 8 Average makespan for the LOLO case with γ = 12500

Assume that a new task t4 arrives with execution times of 10 and 50 time units
on machines m1 and m2, respectively. The MaxR-MaxR heuristic will map task t4 to
machine m2, which increases makespan because assigning t4 to machine m1 would
decrease the robustness metric. However, mapping t4 to m1 would give a new robust-
ness metric of 80.8 that is still greater than the current robustness value of 60.

For both the HIHI and LOLO cases, MinCT-MaxR performed relatively better
than MaxR-MinCT in terms of robustness. This can be explained in terms of the first
stage choice of machines for this pair of two-stage greedy heuristics. MinCT-MaxR
places more emphasis on directly optimizing the primary objective of maximizing
the robustness value as opposed to minimizing makespan. By minimizing completion
time in the second stage, MinCT-MaxR is able to stay within the overall makespan
constraint while still maximizing robustness. This is evident from zero failures that
occurred for MinCT-MaxR in both the LOLO and HIHI cases.

The process of fine tuning did improve the results of the heuristics, though not
substantially (less than 12% for the best HIHI case and less than 5% for the best
LOLO case). Further, it is possible that fine tuning when used with MxMxMnMn
can cause some trials to fail to meet the makespan constraint. This occurs because
fine tuning attempts to reduce the number of tasks in the machine queues by moving
small tasks up in the queues. Thus, it is possible for the heuristic to maintain a higher
robustness value over its execution, but at certain mapping events when the Min-Min
component of the heuristic tries to map a task using a higher robustness constraint,
it is likely that it will not choose the minimum completion time machine for the
task because it is not feasible, which results in a higher finishing time. For example,
consider a two machine system with the following machine queues,

m1: t1(150)

m2: t2(30) t3(80)

54 A.M. Mehta et al.

Table 4 Average execution
times, in seconds, of a mapping
event for the proposed heuristics

Heuristic Average execution time (sec.)

MinCT-MinCT 0.023

MaxR-MinCT 0.028

MinCT-MaxR 0.028

MaxR-MaxR 0.0563

MxMxMnMn 0.0457

Assume that a new task t4 arrives with execution times of 80 and 20 on machines
m1 and m2, respectively. If MxMxMnMn maps this task using the Min-Min compo-
nent with a robustness level of τ/

√
2, the mapping would be:

m1: t1(150) t4(80)

m2: t2(30) t3(80)

But if MxMxMnMn uses the Min-Min component with a robustness level of τ/2,
the mapping would be:

m1: t1(150)

m2: t2(30) t3(80) t4(20)

Finally, because MxMxMnMn uses a Max-Max heuristic to maximize robustness
it is prone to the same issues discussed previously for the MaxR-MaxR heuristic.

6 Related work

The research presented in this paper was designed using the four step FePIA proce-
dure described in [3]. A number of papers in the literature have studied robustness in
distributed systems (e.g., [7, 11, 28, 31]).

The research in [7] considers rescheduling of operations with release dates using
multiple resources when disruptions prevent the use of a preplanned schedule. The
overall strategy is to follow a preplanned schedule until a disruption occurs. After
a disruption, part of the schedule is reconstructed to match up with the pre-planned
schedule at some future time. Our work considers a slightly different environment
where task arrivals are not known in advance. Consequently, in our work it was not
possible to generate a preplanned schedule.

The research in [11] considers a single machine scheduling environment where
processing times of individual jobs are uncertain. Given the probabilistic information
about processing times for each job, the authors in [11] determine a normal distribu-
tion that approximates the flow time associated with a given schedule. The risk value
for a schedule is calculated by using the approximate distribution of flow time (i.e.,
the sum of the completion times of all jobs). The robustness of a schedule is then
given by one minus the risk of achieving sub-standard flow time performance. In our
work, no such stochastic specification of the uncertainties is assumed.

Dynamic resource allocation heuristics 55

The study in [28] defines a robust schedule in terms of identifying a Partial Order
Schedule (POS). A POS is defined as a set of solutions for the scheduling prob-
lem that can be compactly represented within a temporal graph. However, the study
considers the Resource Constrained Project Scheduling Problem with minimum and
maximum time lags, (RCPSP/max), as a reference, which is a different problem do-
main from the environment considered here.

In [31], the robustness is derived using the same FePIA procedure used here. How-
ever the environment considered is static (off-line), as opposed to the dynamic (on-
line) environment in this research. The robustness metric and heuristics employed in
a dynamic environment are substantially different from those employed in [31].

7 Conclusion

This research presented a model for quantifying robustness in a dynamic environ-
ment. It also involved the characterization and modeling of two dynamic heteroge-
neous computing problem environments, and examined and compared various heuris-
tic techniques for each of the two problem variations. This work also presented the
bounds on the highest attainable value of the system performance feature for both
problem variations.

The robustness constrained problem variation presented five immediate and five
pseudo-batch mode heuristics. For the immediate mode heuristics, FRMET gave the
lowest makespan for both the heterogeneity trials, but it also had a high number of
failed trials (for HIHI heterogeneity). The FRKPB heuristic had the lowest number
of failed trials for HIHI heterogeneity. For the pseudo-batch mode, FMCTMCT per-
formed the best in terms of both makespan and failed number of trials. The immediate
mode heuristics described here can be used when the individual guarantee for the sub-
mitted jobs is to be maintained (as there is no reordering of the submitted jobs), while
the pseudo-batch heuristics can be used when the overall system performance is of
importance.

For the makespan constrained problem variation five pseudo-batch heuristics were
designed and evaluated. A process of fine tuning was also adapted to maximize the ro-
bustness level. Of the proposed heuristics, MxMxMnMn with fine tuning performed
the best for the proposed simulation environment.

Acknowledgement This research was supported by the DARPA Information Exploitation Office under
contract No. NBCHC030137, by the Colorado State University Center for Robustness in Computer Sys-
tems (funded by the Colorado Commission on Higher Education Technology Advancement Group through
the Colorado Institute of Technology), and by the Colorado State University George T. Abell Endowment.

Preliminary portions of this material were accepted for presentation at the 2006 International Con-
ference on Parallel & Distributed Processing Techniques & Applications (PDPTA 2006) and the 12th
International Conference on Parallel & Distributed Systems (ICPADS 2006).

References

1. Ali S, Braun TD, Siegel HJ, Maciejewski AA, Beck N, Boloni L, Maheswaran M, Reuther AI, Robert-
son JP, Theys MD, Yao B (2005) Characterizing resource allocation heuristics for heterogeneous
computing systems. In: Hurson AR (ed), Advances in computers vol 63: parallel, distributed, and
pervasive computing. Elsevier, Amsterdam, Netherlands, pp 91–128

56 A.M. Mehta et al.

2. Ali S, Kim J-K, Yu Y, Gundala SB, Gertphol S, Siegel HJ, Maciejewski AA, Prasanna V (2002)
Utilization-based techniques for statically mapping heterogeneous applications onto the HiPer-D het-
erogeneous computing system. Parallel Distrib Comput Pract, Special issue on parallel numerical
algorithms on faster computers 5(4)

3. Ali S, Maciejewski AA, Siegel HJ, Kim J-K (2004) Measuring the robustness of a resource allocation.
Trans Parallel Distrib Syst 15(7):630–641

4. Ali S, Siegel HJ, Maheswaran M, Hensgen D, Ali S (2000) Representing task and machine hetero-
geneities for heterogeneous computing systems. Tamkang J Sci Eng, Special 50th anniversary issue
(invited), 3(3):195–207

5. Barada H, Sait SM, Baig N (2001) Task matching and scheduling in heterogeneous systems using sim-
ulated evolution. In: 10th IEEE heterogeneous computing workshop (HCW 2001), 15th international
parallel and distributed processing symposium (IPDPS 2001), Apr 2001

6. Banicescu I, Velusamy V (2001) Performance of scheduling scientific applications with adaptive
weighted factoring. In: 10th IEEE heterogeneous computing workshop (HCW 2001), 15th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2001), Apr 2001

7. Bean J, Birge J, Mittenthal J, Noon C (1991) Matchup scheduling with multiple resources, release
dates and disruptions. J Oper Res Soc Am 39(3):470–483

8. Braun TD, Siegel HJ, Beck N, Boloni L, Freund RF, Hensgen D, Maheswaran M, Reuther AI, Robert-
son JP, Theys MD, Yao B (2001) A comparison of eleven static heuristics for mapping a class
of independent tasks onto heterogeneous distributed computing systems. J Parallel Distrib Comput
61(6):810–837

9. Castain R, Saylor WW, Siegel HJ (2004) Application of lagrangian receding horizon techniques to re-
source management in ad-hoc grid environments. In: 13th heterogeneous computing workshop (HCW
2004), in the proceedings of the 18th international parallel and distributed processing symposium
(IPDPS 2004), Apr 2004

10. Coffman EG, Jr (ed), (1976) Computer and job-shop scheduling theory. Wiley, New York
11. Daniels RL, Carrilo JE (1997) β-Robust scheduling for single-machine systems with uncertain

processing times. IIE Trans 29(11):977–985
12. Eshaghian MM (ed) (1996) Heterogeneous computing. Artech House, Norwood
13. Fernandez-Baca D (1989) Allocating modules to processors in a distributed system. IEEE Trans Softw

Eng SE-15(11):1427–1436
14. Foster I, Kesselman C (eds) (1999) The grid: Blueprint for a new computing infrastructure. Morgan

Kaufmann, San Fransisco
15. Freund RF, Siegel HJ (1993) Heterogeneous processing. IEEE Comput 26(6):13–17
16. Ghafoor A, Yang J (1993) A distributed heterogeneous supercomputing management system. IEEE

Comput 26(6):78–86
17. Ibarra OH, Kim CE (1977) Heuristic algorithms for scheduling independent tasks on non-identical

processors. J ACM 24(2):280–289
18. Kafil M, Ahmad I (1998) Optimal task assignment in heterogeneous distributed computing systems.

IEEE Concur 6(3):42–51
19. Khokhar A, Prasanna VK, Shaaban ME, Wang C (1993) Heterogeneous computing: challenges and

opportunities. IEEE Comput 26(6):18–27
20. Kim J-K, Shivle S, Siegel HJ, Maciejewski AA, Braun T, Schneider M, Tideman S, Chitta R, Dil-

maghani RB, Joshi R, Kaul A, Sharma A, Sripada S, Vangari P, Yellampalli SS (2003) Dynamic
mapping in a heterogeneous environment with tasks having priorities and multiple deadlines. In: 12th
Heterogeneous computing workshop (HCW 2003), in the proceedings of the 17th international paral-
lel and distributed processing symposium (IPDPS 2003), Apr 2003

21. Leangsuksun C, Potter J, Scott S (1995) Dynamic task mapping algorithms for a distributed heteroge-
neous computing environment. In: 4th IEEE heterogeneous computing workshop (HCW ’95), 1995,
pp 30–34

22. Leon VJ, Wu SD, Storer RH (1994) Robustness measures and robust scheduling for job shops. IIE
Trans 26(5):32–43

23. Luh P, Zhao X, Wang Y, Thakur L (2000) Lagrangian relaxation neural networks for job shop schedul-
ing. IEEE Trans Rob Autom 16(1):78–88

24. Maheswaran M, Ali S, Siegel HJ, Hensgen D, Freund RF (1999) Dynamic mapping of a class of
independent tasks onto heterogeneous computing systems. J Parallel Distrib Comput 59(2):107–121

25. Maheswaran M, Braun TD, Siegel HJ (1999) Heterogeneous distributed computing. In: Webster JG
(ed) Encyclopedia of electrical and electronics engineering, vol 8, Wiley, New York, pp 679–690

26. Michalewicz Z, Fogel DB (2000) How to solve it: modern heuristics. Springer, New York

Dynamic resource allocation heuristics 57

27. Naik VK, Sivasubramanian S, Bantz D, Krishnan S (2003) Harmony: a desktop grid for delivering
enterprise computations. In: Fourth international workshop on grid computing (GRID 03), Nov 2003

28. Policella N (2005) Scheduling with uncertainty, A proactive approach using partial order schedules.
PhD thesis, Dipartimento di Informatica e Sistemistica “Antonio Ruberti” Universit‘a degli Studi di
Roma “La Sapienza”, 2005

29. Shivle S, Siegel HJ, Maciejewski AA, Sugavanam P, Banka T, Castain R, Chindam K, Dussinger S,
Pichumani P, Satyasekaran P, Saylor W, Sendek D, Sousa J, Sridharan J, Velazco J (2006) Static allo-
cation of resources to communicating subtasks in a heterogeneous ad hoc grid environment. J Parallel
Distribut Comput, Special Issue on Algorithms for Wireless and Ad-hoc Networks 66(4):600–611

30. Singh H, Youssef A (1996) Mapping and scheduling heterogeneous task graphs using genetic algo-
rithms. In: 5th IEEE heterogeneous computing workshop (HCW ’96), pp 86–97

31. Sugavanam P, Siegel HJ, Maciejewski AA, Oltikar M, Mehta A, Pichel R, Horiuchi A, Shestak V,
Al-Otaibi M, Krishnamurthy Y, Ali S, Zhang J, Aydin M, Lee P, Guru K, Raskey M, Pippin A, Ro-
bust static allocation of resources for independent tasks under makespan and dollar cost constraints,
J Parallel Distrib Comput accepted, to appear

32. Wu M-Y, Shu W, Zhang H, (2000) Segmented min-min: A static mapping algorithm for meta-tasks on
heterogeneous computing systems. In: 9th IEEE Heterogeneous Computing Workshop (HCW 2000),
May 2000, pp 375–385

33. Xu D, Nahrstedt K, Wichadakul D (2001) QoS and contention-aware multi-resource reservation. Clust
Comput 4(2):95–107

34. Yang J, Ahmad I, Ghafoor A (1993) Estimation of execution times on heterogeneous supercomputer
architectures. In: International conference on parallel processing, Aug 1993, pp I-219–I-226

35. Yarmolenko V, Duato J, Panda DK, Sadayappan P, (2000) Characterization and enhancement of dy-
namic mapping heuristics for heterogeneous systems. In: International conference on parallel process-
ing workshops (ICPPW 00), Aug 2000, pp 437–444

Ashish M. Mehta is pursuing his M.S. degree in Electrical and Computer Engineering at Colorado State
University, where he is currently a Graduate Teaching Assistant. He received his Bachelor of Engineering
in Electronics from University of Mumbai, India. His research interests include resource management in
distributed computing systems, computer architecture, computer networks, and embedded systems.

Jay Smith is a software Engineer in the Integrated Technology Delivery center of the IBM corporation.
Prior to joining IBM, he studied at the University of Colorado at Boulder, where he earned his Bachelors
degree in Mathematics. During his tenure at IBM, Jay has earned an Outstanding Technical Achievement
ward for his work on Scanning Technology. He is also the co-inventor on over 21 patents filed in that
and other areas. In addition to his duties within ITD, Jay is currently pursuing his Ph.D. in Electrical and
Computer Engineering at Colorado State University. He is a member of the IEEE and the ACM.

58 A.M. Mehta et al.

H.J. Siegel was appointed the George T. Abell Endowed Chair Distinguished Professor of Electrical and
Computer Engineering at Colorado State University (CSU) in August 2001, where he is also a Professor of
Computer Science. In December 2002, he became the first Director of the university-wide CSU Informa-
tion Science and Technology Center (ISTeC). From 1976 to 2001, he was a professor at Purdue University.
He received two B.S. degrees from MIT, and the MA, M.S.E., and Ph.D. degrees from Princeton Uni-
versity. Prof. Siegel has co-authored over 300 published papers on parallel and distributed computing and
communication. He is a Fellow of the IEEE Fellow and a Fellow of the ACM. He was a Coeditor-in-
Chief of the Journal of Parallel and Distributed Computing, and was on the Editorial Boards of both the
IEEE Transactions on Parallel and Distributed Systems and the IEEE Transactions on Computers. He was
Program Chair/Co-Chair of three major international conferences, General Chair/Co-Chair of six interna-
tional conferences, and Chair/Co-Chair of five workshops. He has been an international keynote speaker
and tutorial lecturer, and has consulted for industry and government. For more information, please see
www.engr.colostate.edu/~hj.

Anthony A. Maciejewski received the BSEE, M.S., and Ph.D. degrees from Ohio State University in
1982, 1984, and 1987. From 1988 to 2001, he was a professor of Electrical and Computer Engineering
at Purdue University, West Lafayette. He is currently the Department Head of Electrical and Computer
Engineering at Colorado State University. He is a Fellow of the IEEE. A complete vita is available at:
http://www.engr.colostate.edu/~aam.

	Dynamic resource allocation heuristics that manage tradeoff between makespan and robustness
	Abstract
	Introduction
	Problem statement
	Simulation setup
	Robustness constrained heuristics
	Heuristics overview
	Immediate mode heuristics
	Feasible robustness minimum execution time (FRMET)
	Feasible robustness minimum completion time (FRMCT)
	Feasible robustness K-percent best (FRKPB)
	Feasible robustness switching (FRSW)
	Maximum robustness (MaxRobust)

	Pseudo-batch heuristics
	Feasible robustness minimum completion time-minimum completion time (FMCTMCT)
	Feasible robustness maximum robustness-minimum completion time (FMRMCT)
	Feasible minimum completion time-maximum robustness (FMCTMR)
	Maximum weighted Sum-maximum weighted Sum (MWMW)
	Maximum robustness-maximum robustness (MRMR)

	Lower bound
	Results

	Makespan constrained heuristics
	Heuristics overview
	Heuristic descriptions
	Minimum completion time-minimum completion time (MinCT-MinCT)
	Maximum robustness-maximum robustness (MaxR-MaxR)
	Maximum robustness-minimum completion time (MaxR-MinCT)
	Minimum completion time-maximum robustness (MinCT-MaxR)
	MaxMaxMinMin (MxMxMnMn)

	Fine tuning (FT)
	Upper bound
	Results

	Related work
	Conclusion
	Acknowledgement

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

