Skip to main content
Log in

The Grid-Pyramid: A Generalized Pyramid Network

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The Pyramid network is a desirable network topology used as both software data-structure and hardware architecture. In this paper, we propose a general definition for a class of pyramid networks that are based on grid connections between the nodes in each level. Contrary to the conventional pyramid network in which the nodes in each level form a mesh, the connections between these nodes may also be according to other grid-based topologies such as the torus, hypermesh or WK-recursive. Such pyramid networks form a wide class of interconnection networks that possess rich topological properties. We study a number of important properties of these topologies for general-purpose parallel processing applications. In particular, we prove that such pyramids are Hamiltonian-connected, i.e. for any arbitrary pair of nodes in the network there exists at least one Hamiltonian path between the two given nodes, and pancyclic, i.e. any cycle of length 3, 4 … and N, can be embedded in a given N-node pyramid network. It is also proven that two link-disjoint Hamiltonian cycles exist in the torus-pyramid and hypermesh-pyramid networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sarbazi-Azad, M. Ould-khaoua, L. M. Mackenzie. Algorithmic construction of Hamiltonians in Pyramids, Information Processing Letters, 80:75–79, (2001).

    Google Scholar 

  2. F. Cao, D. F. Hsu. Fault-tolerance properties of pyramid networks, IEEE Transactions on Computers, 48:88–93, (1999).

    Article  MathSciNet  Google Scholar 

  3. A. Dingle, H. Sudborough. Simulation of binary trees and x-trees on pyramid networks, In Proc. IEEE Symp. Parallel & Distributed Processing, 220–229, (1992).

  4. T. H. Lai, W. White. Mapping pyramid algorithms into hypercube, Journal of Parallel and Distributed Computing, 9:42–54, (1990).

    Article  Google Scholar 

  5. R. Miller, Q. Stout. Data movement techniques for the pyramid computer, SIAM Journal of Computing, 16:38–60, (1987).

    Article  MATH  MathSciNet  Google Scholar 

  6. S. G. Ziavras, M. A. Siddiqui. Pyramid mapping onto hypercube for computer vision, Concurrency: Practice & Experience, 471–489, (1993).

  7. Jing-Fu Jeng, et al. Image Shrinking and Expanding on a Pyramid, IEEE Transaction on parallel and distributed systems, 4:1291– 1296, (1993).

    Article  Google Scholar 

  8. C. K. Y Ng, Embedding pyramids into 3D meshes, Journal of Parallel & Distributed Computing, 36:173–184, (1996).

    Article  Google Scholar 

  9. A. Dingle, H. Barada, Optimum embedding of end-around meshes into pyramid networks, In Proc. Int’l Symp. Parallel Processing, 112–118, (1991).

  10. F. T. Leighton, Introduction to parallel algorithms and architectures: arrays, trees, hypercubes, Morgan Kaufmann Publishers, New York, (1992).

  11. J. A Bondy, Pancyclic graphs I, J. Combin. Theory Ser. B, 11:80–84, (1971).

    Article  MATH  MathSciNet  Google Scholar 

  12. S. M. Zhang, Pancyclism and bipancyclism of Hamiltonian graphs, J. Combin. Theory, 60:159–168, (1994).

    Article  MATH  Google Scholar 

  13. S. S. Brandt, R. J. Faudree and W. Goddard, Weakly pancyclic graphs, J. Graph Theory, 27: 141–176, (1998).

    Google Scholar 

  14. E. F. Schmeichal and S. L. Hakimi, A cycle structure theorem or Hamiltonian graphs. Combin. Theory Ser. B, 45:99–107, (1988).

    Article  MathSciNet  Google Scholar 

  15. Mekkia Kouider and Antoni Marczyk, On pancyclism in hamiltonian graphs, Discrete Mathematics, 251:119–127, (2002).

    Article  MATH  MathSciNet  Google Scholar 

  16. J. A. Bondy, Pancyclic Graphs: Recent Results, Infinite and Finite sets (Colloq. Keszthely, 1973; Dedicated to P. Erdos on his 60th birthday), Colloq. Math. Soc., 181–187, (1975).

  17. R. Haggkvist, R. J. Faudree, and R. H. Schelp, Pancyclic graphs-connected Ramsey number, Ars Combin. 11:37–49, (1991).

    Google Scholar 

  18. Della Vecchia, G. C. Sanges, Recursively Scalable Networks for Message Passing Architectures, In Proc. Conf. Parallel Processing and Applications, 33–40, (1987).

  19. Sheng Fu, Hamiltonian-connectedness of the WK-Recursive network, 7th international Symposium on Parallel Architecture, Algorithms and Networks, 569–574, (2004).

  20. J. Duato, S. Yalamanchili, L. M. Ni, Interconnection networks: An engineering approach, Morgan Kaufmann Publishers, New York, (2003).

  21. B. Bollobás, A. Thomason, Weakly Pancyclic Graphs, Journal of Combinatorial Theory, Ser. B, 7:121–137, (1999).

    Article  Google Scholar 

  22. H. J. Broersma, A note on the minimum size of a vertex pancyclic graph, Discrete Mathematics 164:29-32, (1997).

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Dingle, H. Barada, Optimum embedding of end-around meshes into pyramid networks, In Proc. Int’l Symp. Parallel Processing, 112–118, (1991).

  24. M. R. Hoseiny, H. Sarbazi-Azad, On the Hamiltonian Connectedness of Pyramids, 4th IASTED International Conference on Communication Systems and Networks, (2005).

  25. Ruei-Yu Wu, Dyi-Rong Duh, Pancyclicity of Pyramid Networks. In International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), 1523–1526, (2004).

  26. . M.R. Hoseiny and H. Sarbazi-Azad, WK-Recursive Pyramid: A High Performance Network Topology, In Proceedings of 8th IEEE International Symposium on Parallel Architectures, Algorithms and Networks (IEEE-ISPAN’05), 312–317, (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sarbazi-Azad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

HoseinyFarahabady, M.R., Sarbazi-Azad, H. The Grid-Pyramid: A Generalized Pyramid Network. J Supercomput 37, 23–45 (2006). https://doi.org/10.1007/s11227-006-4598-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-006-4598-4

Keywords

Navigation