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Abstract. Traditionally, loop nests are fused only when the data de-
pendences in the loop nests are not violated. This paper presents a new
loop fusion algorithm that is capable of fusing loop nests in the presence
of fusion-preventing anti-dependences. All the violated anti-dependences
are removed by automatic array copying. As a case study, this aggressive
loop fusion strategy is applied to a Jacobi solver. The performance of it-
erative methods is typically limited by the speed of the memory system.
Fusing the two loop nests in the Jacobi solver into one reduces data cache
misses, and consequently, improves the performance results of both se-
quential and parallel versions of the Jacobi program, as validated by our
experimental results on an HP AlphaServer SC45 supercomputer.

1 Introduction

Due to the increasing performance mismatch between processors and main mem-
ories, modern computer systems are equipped with increasingly more levels of
caches (e.g., three levels in the Intel TA-64 processors) to prevent performance
degradation. However, caches help speed up only those programs that exhibit
good data locality. For programs that do not reuse data, their execution times are
limited by the poor latency and bandwidth values of the main memory. There-
fore, cache-conscious programs are important for CPU-intensive applications,
where the most computations are carried out inside loop nests.

There has been a great deal of work on the exploitation of cache locality for
performance enhancement. For example, the design of LAPACK is influenced
by efficiency considerations in the presence of caches. The main motivation of
LAPACK was to recast the algorithms in EISPACK and LINPACK into blocked
versions in terms of calls to BLAS [1]. In parallel with the development of LA-
PACK, compiler researchers have successfully automated many of the loop trans-
formations used in LAPACK, such as loop fusion [7], loop distribution [8] and
loop tiling or blocking [12, 14, 15].

However, one fundamental limitation of existing loop transformations is that
they are dependence-preserving and thus inapplicable when the data depen-
dences in the program are violated. In [16], we introduced a new loop fusion
compiler algorithm that allows arbitrary loop nests with affine loop bounds and



affine array subscript expressions to be fused. In the fused program, all fusion-
preventing flow (i.e., true) and output dependences are eliminated by loop tiling
and all fusion-preventing anti-dependences by automatic array copying. Such
an aggressive loop fusion strategy has two important benefits. First, by fusing
the two loop nests that cannot be fused conventionally, we are able to exploit
the data reuse across the two loop nests. Second, by creating perfect loop nests
that cannot be obtained conventionally, we are able to exploit the data reuse
within perfect loop nests by further applying loop tiling to these perfect nests.
In [16], we demonstrated that our aggressive loop fusion can improve program
performance significantly on uniprocessors with cache memories. In this paper,
we show that our aggressive loop fusion can also improve the performance of par-
allel applications running on multi-processor computer systems. Our example is
an MPI program that uses the Jacobi method to solve the Helmholtz equation.
Iterative solvers for partial differential equations (PDEs) such as Jacobi are typi-
cally implemented using global sweeps over the whole data set. As a result, their
performance is limited by the speed of the memory system. Improving the cache
performance of iterative solvers is absolutely essential to achieving good perfor-
mance for these solvers on modern computer systems. We report and analyse
the performance results of our Jacobi application before and after loop fusion is
applied. The fused program yields improved performance due to improved data
locality and also slightly reduced message communication cost.

Like Gauss-Seidel and SOR (Successive Over-Relaxation) methods, Jacobi
is a classic iterative solver for PDEs. These solvers ares still important to-
day because they are useful either as models for more complex methods or as
building blocks from which more advanced methods, such as multigrid, can be
constructed. This paper is not concerned with designing fast iterative solvers.
Instead, the thesis of this work is that an aggressive loop fusion strategy can im-
prove the performance of parallel applications for which the existing loop fusion
is inapplicable. One future work is to apply our technique to multigrid methods.

The rest of this paper is organised as follows. Section 2 introduces an al-
gorithm that fuses loop nests in the presence of violated anti-dependences. In
Section 3, we apply this algorithm to transform a Jacobi program consisting
of two loop nests into one perfect loop nest. Section 4 presents and analyses
our experimental results on uniprocessor and multi-processor systems. Section 5
compares with the related work. Section 6 concludes the paper.

2 An Aggressive Loop Fusion Algorithm

We consider array-dominated programs consisting of multiple loop nests whose
loop bounds and array subscript expressions are affine expressions of the sur-
rounding loop variables. The fusion of two perfect loop nests is legal iff all depen-
dences from the first (i.e., the lexically earlier) nest to the second nest are not
reversed in the fused program [13, p. 315]. The dependences that are reversed
are known as the fusion-preventing dependences. There are three kinds of fusion-



preventing dependences: flow (i.e., write before read) dependences, output (i.e.,
write before write dependences) and anti- (i.e., read before write) dependences.

Suppose we are given two perfect loop nests that are to be fused by embedding
the iteration space of one nest inside that of the other in a certain way. The
two nests may not have the same loop bounds in a common dimension or even
the same number of loops. We propose to eliminate all the fusion-preventing
dependences between the two nests in two steps. We eliminate all the fusion-
preventing flow and output dependences by applying loop tiling or loop shifting
[4] to the first loop nest. In [16], loop tiling is used. This first step is omitted
but will be illustrated in Section ?? by an example. We eliminate all the fusion-
preventing anti-dependences by inserting array copy operations inside the second
loop nest. This second step is the topic discussed in Section 2.2.

2.1 Example

Consider the following two perfect loop nests, where N is assumed to be odd:

Lq: do i=2, N

do =2, N
St a(i,j)=b(i-1)+b(i+1) (1)
Ly :do i=2, N

do j=2, N

So:  b()=a(,j-1)+a(,j+1)

Suppose that one wants to fuse the two nests as follows:

do i=2, N
do j=2, N @)
S a(i,j)=b(i-1)+b(i+1)

S»:  b()=a(ij-1)+a(,j+1)

where the identical iteration points from both loop nests are fused together.

| Dependence | From S | To S» |

Flow a(l,)) a(i,j-1)
Flow a(l,)) a(i,j+1)
Anti- b(i-1) b(i)
Anti- b(i+1) b(i)

Table 1. The dependences from S; to Sz in (1).

To check whether the fusion is legal or not, let us examine the four dependence
relations from S to Sy as summarised in Table 1. In the fused program (2), the
first and last are preserved but the other two are violated.

We can eliminate the fusion-preventing flow dependence, i.e., the second flow
dependence in Table 1, by applying loop tiling to £;. In the fused program (2),



this dependence can be described by dependence vector (0, 1). To avoid reversing
this dependence, we tile the inner loop j only for Sy by a tile size of 2 to get:

do i=2, N
do j=2, N
if (j<=(N-1)/2+1) ;
do jj=2j-2, 2j-1 (3)
S a(i,ji)=b(i-1)+b(i+1)
S: b()=aij-1)+a(i,j+1)

Recall the oddness of Nis assumed. To enhance instruction-level parallelism, the
compiler typically unrolls the jj loop:

do i=2, N
do =2, N
if (j <= (N-1)/2+1) (4)
a(i,2j-2)=b(i-1)+b(i+1)

a(i,2j-1)=b(i-1)+b(i+1)
b(i)=a(i,j-1)+a(i,j+1)

The effect of loop tiling can also be understood as follows. First, the loop j
in £1 in (1) is tiled by a tile size of 2:

L) :do i=2, N
do j=2, (N-1)/2+1
S do jj=2j-2, 2j-1
a(i,jj)=b(i-1)+b(i+1) (5)
Ly :do i=2, N
do =2, N
Sy : b(i)=a(i,j-1)+a(i,j+1)

where £] is the tiled version of £; and S} (including the jj loop) is the body
of E'l. Fusing E'l and Lo in the same way as £1 and Ly before (i.e., the identical
iterations of £} and Ly are fused together) yields the program given in (3).
Consider the fused program (4) again. The first anti-dependence, i.e., the
third dependence listed in Table 1 is still violated. We eliminate this dependence
via automatic array copying. In the following program, a 1-D array, H, is intro-
duced. The copy statements are inserted in lines 1 and 8 so that the copied (i.e.,
correct) rather than overwritten (i.e., incorrect) values are read in lines 5 — 6:

1 H(1)=b(1) / array copying

2do i=2, N

3 do j=2, N

4 if (j<=(N-1)/2+1)

5 a(i,2(j-1))=H(i-1)+b(i+1) (6)
6 a(i,2j-1)=H(i-1)+b(i+1)

7 if (i<=N-1 && j==2)

8 H(@i)=b(i) // array copying

9 b(i)=a(i,j-1)+a(i,j+1)



In this final program, all the four dependence relations given in Table 1 are
satisfied. In addition, the final program has the same input/output behaviour as
the original program. As one single perfect loop nest, the final program can be
tiled in the normal manner [13, 14].

2.2 Algorithm

In the case of multiple loop nests, our fusion strategy is applied iteratively
bottom-up, starting from the last two nests. Let there be K perfect loop nests,
identified by L4, ..., Lk, from the beginning to the end of the program:

,Cl: do Il =5 L171, U171

do Inl = Ll,n17 Ul,nl
BODY: (I, ..., I..,)

Lr:do Ix = Lrxq, Uk

do Iy = Licnges Urcinge
BODYk (I, ..., Iny)

where the loop bounds of each loop nest are affine. Two different loop nests
may not have the same loop bounds in a common dimension or even the same
number of loops. Let IS be the ni-dimensional iteration space of the k-th loop
nest Ly. Let n = max{ny | 1 < k < K}. If the dependences in the program (7)
are ignored for the moment, it is always possible to fuse the K nests into one
perfect loop nest whose n-dimensional iteration space is given by:

IS={(l1,...., L) |VI<i<n:L;<L; <U;} (8)
This consists of finding an injective mapping from ISy to IS for every nest Ly:
Fy, : ISy, +— IS 9)
The fused program becomes one single perfect loop nest as follows:

doly =L, Uy

do I, = Ln, U,
if (11, .. .,In) S F1(ISk)

BODY1(Fy ' (I, ..., 1)) 10)

if (I1,...,1,) € Fx(ISk)
BODYxk (Fi' (I, . .., In))

where all original K loop nests “share” the same iteration vector I = (I3, ..., I,).



Figure 1 illustrates that there are many different ways of fusing a sequence
of loop nests into a single loop nest. This paper is not concerned with finding
the best among all solutions for a given program. However, our aggressive loop
fusion algorithm works for any fused program thus obtained.
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Fig. 1. A geometrical illustration for two of many different ways of fusing four loop
nests. The iteration spaces of the four loop nests are depicted as rectangles.

The loop fusion used for transforming the original program (7) to the fused
program (10) are illegal when some dependences in the original program (7) are
violated. Figure 2 gives an algorithm for eliminating all the fusion-preventing
anti-dependences so that both programs have the same input/output behaviour.
As we mentioned earlier, we assume that the violated flow and output depen-
dences have already been eliminated by some other means such as loop tiling
[16] and/or loop shifting [4].

Our algorithm makes use of the following notations. A denotes an arbitrary
but fixed array in the original program (7), which may be accessed in all its
K loop nests, L1,...,Lk. All p; read references of A in L; are identified by
integers consecutively, starting from 1. Thus, a read reference identified by s
signifies that it is the s-th read reference accessed among all py read references.
Let Readsa(k) = {1,...,px}. Similarly, Writesa(k) = {1,...,qx} denotes the
set of all g, write references in Ly. SZ’S denotes the set of iterations at which the
s-th read or write reference is accessed and ff{s(l ) its array subscript expression,
where I = (I1,...,1I,) is the iteration vector of the fused program (10).



1 ALGORITHM: ElimRW(P)
2 INPUT: A program P of the form given in (7)
3 OUTPUT: A fused program P’ with same input/output behavior as P
4 Let P’ be the fused program (10) obtained from P
5 for every array A in the program P
6 for k=K-1,1
7 for ¥ =k+1,K
8 Compute RW4(k, k')
9 RWa(k):=Up_p i {U' K, 8") | (I, 1, 8) € RWa(k, k') }
10 Compute min RW (k)
11 Introduce a new array for A, Ha x, of size | min< RW (k)| in P’
12 Insert the copy operations at the beginning of £j1’s loop body in P’
if (I,k',s") € ming RW a(k)
Hak(frr,s (1)) = A(fwr,s (1))
13 for read reference s € Readsa(k), i.e., A(f5*(I)) in Ly
14 Chs = {I|T€ S5 A K >kAs € Writesa(k') AT € S5
A=A PR = f5 (1)
15 Replace A(f5°(I)) by:
if [ € Ch*
Haw(f3°(1))
else
A(f3°(D)

Fig. 2. An algorithm for fixing all the fusion-preventing data dependences.

Consider two loop nests L and Ly, where k < k. RW4(k, k) is the set of
anti-dependences of A that prevent £ and Ly from being fused:

RWa(k, k') ={(I,I',s') | s € Readsa(k) AT € S%*
A s € Writesa(K') AT € Sﬁ’s (11)
AT <IN () = i (1)}

where < denotes the lexicographc “less than” order between iteration vectors.

To eliminate the violated anti-dependences from Ly to Ly, where k < K/,
we insert array copy operations to copy the values of A just before they are
incorrectly overwritten by a write reference in Writes4 so that all read references
in Readss can be modified to access the original values of A correctly.

Let us explain the basic idea behind our algorithm ElimRW given in Figure 2.
Here RW stands for Read before Write dependences. Given the fused program
(10), we eliminate all the violated anti-dependences iteratively bottom-up across
the K loop nests starting from the last two loop nests Lx_1 and Lk . First, we
eliminate all the violated anti-dependences from Lx_1 to Lk . Next, we eliminate



all the violated anti-dependences from Lx_o to Lx_1 and L. This process is
repeated until £, is processed, in which case, we eliminate all the violated anti-
dependences from £; to the last n — 1 nests from Lo through L.

ElimRW takes as input a program P of the form (7) and produces as output
a fused program P’ that has the same input/output behavior as P. In line 4, we
obtain the fused program P’ of the form (10) from P as discussed earlier. In line
5, we process all arrays in the program, one by one, in any order. In the for loop
starting at line 6, we eliminate iteratively all violated anti-dependences bottom-
up across all K loop nests. During the k-th iteration of this for loop, we aim at
eliminating all the fusion-preventing anti-dependences from Ly to Lgy1,...,Lx.
In lines 7 — 9, RW 4(k) is calculated to be the set of all such violated anti-
dependences. To insert the required copy operations correctly, we must know the
earliest iteration at which a particular anti-dependence is violated. The set of
all these earliest points is given by mins RW 4 (k) in line 10, where the iteration
vector I is treated as a parameter and the iteration vector I’ as a variable. If
all constraints involved in defining RW 4 (k) are affine expressions of I’ and I,
min RW 4(k) can be computed parametrically (in terms of I) using the PIP [5]
or Omega Calculator [10] (both tools) are based on integer programming).

By definition, miny RW 4(k) contains the earliest writes at which some anti-
dependences are violated in the program P. In lines 11 — 12, we insert the copy
statements to copy the old values of A at these iterations just before they are
overwritten. In lines 13 — 15, we make sure that the copied values are used
correctly only at the iterations defined by the predicate CZ’S in line 14.

Note that the correctness of ElimRW relies on the fact that all the fusion-
preventing flow and output dependences have been eliminated first.

Theorem 1. The input program P to and the output program P’ from ElimRW
have the same input/output behaviour.

Proof. As aloop invariant at the beginning of the k-th iteration of the for loop in
line 6, all the violated anti-dependences in RW 4(k+1), ..., RW 4(K) have been
eliminated. During the k-th iteration, the violated anti-dependences in RW 4 (k)
are all eliminated by array copying. In addition, the copy array, H 4, introduced
in line 10 will not affect the values in the copy arrays, Ha y+1,...,Ha K, that
may have been introduced in the earlier iterations of the for loop in line 6. O

The number of copying arrays introduced for an existing array depends only
on the number of fused loop nests. If array expansion [6] is used to eliminate out-
put and anti-dependences, the amount of extra space introduced often depends
on the problem size. For example, a 2-D array of size N x N is often expanded
into a 3-D array of size N x N x N. In our case, the worst-case scenario is
N x N x L, where L is the number of loop nests in the program.

3 A Jacobi Program

Figure 3 gives a Fortran90 program for solving the Helmholtz equation on a reg-
ular mesh, using an iterative Jacobi method with over-relaxation. The program



is taken from [2] except that the roles of u and unew are swapped. There are
two loop nests in the while, i.e., the time loop. The two-dimensional array u is
used to store the results of the previous iteration and the two-dimensional array
unew is used to store the results of the current iteration. In the first loop nest,
the sweep operation is executed, including the sum of the squared residuals used
for the error estimation and the termination condition of the surrounding while
loop. In the second loop nest, unew is copied to u.

The two loop nests in the while loop cannot be fused by the conventional
loop fusion transformation because the cross-nest anti-dependences from the
two read references u(i-1,j) and u(i,j-i) in the first loop nest to the write
reference u(i, j) will be violated. Therefore, the inter-nest data reuse for the
two arrays cannot be exploited for a reasonably large mesh.

We can apply ElimRW to fuse the two loop nests legally as follows. The
input program P consists of the two loop nests in the Jacobi program. In line
4, we obtain the fused loop nest, P’, as depicted in Figure 4. There is only
one variable, u, whose anti-dependences may be violated. So the for loop in
line 5 has only one iteration. There are only two nests. So K = 2. The for
loop in line 6 also executes for only one iteration. Let the four read references
of u in the first nest be numbered as u(i—l,j)17 u(i+1,j)27 u(i,j—l)3 and
u(i,j+1)* So Reads, = {1,2,3,4}. There is only one write reference, u(i,j), in
the second loop nest. So Writes, = {1}. We note that all anti-dependences from
u(i+1,j) 2 andu(i, j +1)*tou(d, j) are respected. But all the anti-dependences
from u(i-1,3j)! and u(i,j-1)2 to u(i,j) are violated. In line 8, we obtain:

RW,(1,2) ={((4',7), (4,4),1) 7 <m—1A2<4,9 <n—-1
A (jlai/) = (.7’2) A ((j/ Z/) = (] - 1’2) \ (jlai/) = (.7’2 - 1))} (12)
={((",7),(4,4),1) "<m—1A2<i,9'<n—1
A1) =0 =

In line 9, we have RW (1) = RW,(1,2). In the fused program given in Figure 4,
all elements of u except those in row n-1 and column m-1 are written too earlier
before their values have been actually consumed by u(i-1,3j)! and u(i,j-1)3.

To fix these violated anti-dependences, we compute min RW,(1) in line 10.
In this case, we actually have min RW (1) = RW(1). The subscript expression
for u(i.j) is f21(i,5) = (i,4). According to lines 11 — 12, we introduce a new
array, H, and insert the following copy statement just before u(i, j)=unew(i, j):

if (§ .ne. m-1 .and. i .ne. n-1) then

H(i.j)=u(i.j) (13)
end if

where the if conditional is obtained from the specifying constraints of
min RW,(1) simplified under the context 2 < j < m —1A2 < i< n—1,
which defines the iteration space of the fused loop nest in Figure 4.

In lines 13 — 15, we need to examine all the four references u(i-1,j)1,
u(i+1,3)2 u(i,j-1)3 and u(i, j+1)* to see how they should be modified to



subroutine jacobi (n,m,dx,dy,alpha,omega,u,f,tol,maxi t)

double precision dx,dy,f(n,m),u(n,m),alpha, tol,omega
double precision error,resid,ax,ay,b
double precision unew(n,m)

ax = 1.0/(dx*dx) ! X-direction coef
ay = 1.0/(dy*dy) ! Y-direction coef
b = -2.0/(dx*dx)-2.0/(dy*dy) - alpha ! Central coeff

error = 10.0 * tol

k=1
do while (k.le.maxit .and. error.gt. tol)
error = 0.0
do j = 2m-1
doi =2n-1

resid = (ax*(u(i-1,j) + u(i+1,))) &
+ ay*(u(i,j-1) + u(i,j+1)) &
+ b * u(ij) - f(ij)b
unew(i,j) = u(i,j) - omega * resid
error = error + resid*resid
end do
enddo

do j=2,m-1
do i=2,n-1
u(i,j) = unew(,j)
enddo
enddo

k =k +1
error = sqrt(error)/dble(n*m)

enddo ! End time loop

print *, 'Total Number of lterations ’, k
print *, 'Residual ', error

maxit = k - 1

return
end

Fig. 3. A Jacobi program for solving the Helmholtz equation.
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subroutine jacobi (n,m,dx,dy,alpha,omega,u,f,tol,maxi t)

double precision dx,dy,f(n,m),u(n,m),alpha, tol,omega
double precision error,resid,ax,ay,b
double precision unew(n,m)

ax = 1.0/(dx*dx) ! X-direction coef
ay = 1.0/(dy*dy) ! Y-direction coef
b = -2.0/(dx*dx)-2.0/(dy*dy) - alpha ! Central coeff

error = 10.0 * tol

k=1
do while (k.le.maxit .and. error.gt. tol)
error = 0.0
do j = 2m-1
doi=2n-1
resid = (ax*(u(i-1,j) + u(i+1,j)) &
& + ay*(u(ij-1) + u(ij+l)) &
& + b * u@j) - f(i,))/b

unew(i,j) = u(i,j) - omega * resid
error = error + resid*resid
u@i,j) = unew(i,j)
enddo
enddo

k=k+1
error = sqrt(error)/dble(n*m)

enddo ! End time loop

print *, 'Total Number of Iterations ', k
print *, 'Residual ', error

maxit = k - 1

return
end

Fig. 4. The code obtained by fusing the two loop nests given in Figure 3.

read the copied values in H. We find that C}2 = C}* = (), meaning that the anti-
dependences originating from the second and fouth read references are not vio-
lated. However, C1:t = CL3 2 (). Under the context 2 < j < m—1A2 <i < n—1,
the specifying constraint for C1'! is simplified to i > 3 and that for C}3 to j > 3.
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Therefore, in line 15, the read reference u(i-1,3j)! should be replaced by:

if (i .ge. 3) then
H(i-1,j)

else (14)
u(i-1,))

end if

Similarly, the read reference u(i,j-1)! should be replaced by:

if (j .ge. 3) then
H(i,j-1)

else (15)
u(i,j-1)

end if

In practice, if we choose to copy redundantly some boundaries elements of
an array, then the if conditionals like those in (13 — (15) can often be simplified
or even completely eliminated. Under such optimisations, which can be incor-
porated into ElimRW, we obtain the final fused version of our Jacobi program
shown in Figure 5. By choosing to copy row n-1 and column m-1 redundantly,
the if conditional in (13) is removed. Similarly, by copying row 1 and column
1 redundantly just before the while loop, the if conditionals in (14) and (15)
have been removed. Note that the array unew is no longer needed. So the access
unew (i, j) has been replaced by a scalar, tmp. The copy array H has the same
size as unew. In this example, loop fusion has not caused any extra memory space
increase.

In the final program, the two arrays u and H are accessed within a single loop
nest. Therefore, their data elements exhibit better data reuse in cache memories.

4 Experiments

We evaluate this work using the Jacobi example on a 126-node HP AlphaServer
SC45 supercomputer. Each node has four 1GHz ev68 (Alpha 21264C) CPUs
running OSF1 sc0 V5.1. Each CPU has a 64KB (on-chip) write back and write
allocate data cache with FIFO replacement policy. The L1 data cache is 2-way
set-associative with a cache line size of 64B. Each CPU also has an (off-chip)
L2 unified cache, which is direct-mapped and has a capacity of SMB. Each node
has between 4GB and 16GB of RAM and between 2 and 6 36GB SCSI disks.
Due to the use of the fat-tree interconnect of the Quadrics “Elan3” network, the
SC45 computer system achieves an MPI latency of less than 5 usecs and an MPI
bandwidth of 250 Mbytes/sec (bi-directional).

In all our experiments, maxit=1000 is fixed and the while loop has always
completed in exactly 1000 iterations. The regular mesh on which the Jacobi
method operates is defined by two problem size parameters, m and n. In all our

12



subroutine jacobi (n,m,dx,dy,alpha,omega,u,f,tol,maxi t)

double precision dx,dy,f(n,m),u(n,m),alpha, tol,omega
double precision error,resid,ax,ay,b

double precision unew(n,m)

double precision H(n,m)

ax = 1.0/(dx*dx) ! X-direction coef
ay = 1.0/(dy*dy) ! Y-direction coef
b = -2.0/(dx*dx)-2.0/(dy*dy) - alpha ! Central coeff

error = 10.0 * tol
k=1

do j=2,_m-1 _
H(1.j) = u(1,)
enddo

do i=2,n-1
H(i,1) = u(i,1)
enddo

do while (k.le.maxit .and. error.gt. tol)

error = 0.0
do j = 2m-1
doi=2n-1
resid = (ax*(H(i-1,)) + u(i+1))) &
& + ay*(H(i,-1) + u(ij+1)) &
& + b * u(,j) - f(i,))/b
H(ij) = uij)

tmp = u(i,j) - omega * resid

error = error + resid*resid
u@j) = tmp
enddo
enddo
k=k+1

error = sqrt(error)/dble(n*m)
enddo ! End time loop

print *, 'Total Number of Iterations ', k
print *, 'Residual ', error

maxit = k - 1

return
end

Fig. 5. Final code from ElimRW with all violated anti-dependences of u fixed.
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Fig. 6. The execution times of Org and Fused.

experiments, a square mesh is used: n=m. All arrays are of double precision. So
an array of size 90 x 90 fills up roughly the 64KB L1 data cache and an array of
size 1024 x 1024 fills up exactly the 8MB L2 cache for the Alpha 21264 CPU.

In Section 4.1, we discuss our experimental results on a single CPU. In Sec-
tion 4.2, we discuss our experimental results on multi-processor platforms.

4.1 Uniprocessors

There are two sequential programs, Org and Fused, where Org is the original pro-
gram given in Figure 3 and Fused denotes the fused program shown in Figure 5.
We demonstrate the performance benefits of our aggressive loop fusion algorithm
using the Jacobi example on a single 21264 CPU. Both programs are compiled
by the HP Fortran90 compiler (V5.5A) at the optimisation level “-fast”.

Figure 6 compares the execution times of Org and Fused. The speedups of
fused program Fused over Org range from 19.62% to 29.27% with an average
of 24.38%. Figure 7 compares the L1 data cache misses of both programs. The
cache misses are estimated using the DinerolV cache simulator for the array
accesses only. In Org, the inter-nest data reuse for the two arrays u and unew
cannot be exploited. By fusing the two loop nests, the single loop nest in Fused
also contains two arrays of the same size. But better data reuse for the two
arrays can now be exploited. As a result, we observe some significant reductions
in the L1 cache misses across all the problem sizes used. In comparison with the
original program Org, Fused enjoys an average of 40% L1 cache miss reduction
for the problem sizes simulated. The decreases in cache misses have translated
into the performance improvements as shown in Figure 6.

4.2 Multiple Processors

The MPI versions of sequential programs Org and Fused are obtained using a
1D domain decomposition. This choice is made primarily to facilitate a simple
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Fig. 7. The simulated L1 data cache misses of Org and Fused.

boundary condition implementation. Suppose that P processors are available.
The regular mesh n x m is divided into P vertical strips, with one being allo-
cated to one processor. In other words, the columns of each array are blocked
distributed among the P processors. As a result, the part of the global array
u(n,m) allocated to the p-th processor, where 0 < p < P, is u(n,mlo:mhi),
where mlo = p x (m —2)/P + 1 and mhi = min(p + 1) X (m — 2)/P + 2,m). The
array unew (n,m) in the program Org and the array H(n,m) in the program Fused
are both distributed in the same manner.

The processor p is responsible for computing the values for the sub-mesh
n x (mlo+1l:mhi-1). During each iteration of the while, i.e., the time loop, the
processor p first sends asynchronously column mlo+1 to its left neighbouring
processor p — 1 and column mhi-1 to its right neighbouring processor p + 1. In
addition, the processor receives synchronously column mlo from its left neigh-
bouring processor p — 1 and column mhi from its right neighbouring processor
p+1. Only after having received both columns, can the processor p start working
on its allocated columns. At the end of each while loop, MPI_ALLREDUCE is called
to calculate the error for the current iteration.

The MPI versions of Org and Fused are referred to as Org-MPI and Fused-MPI,
respectively. Both programs are compiled by the HP Fortran90 compiler (V5.5A)
on the SC45 supercomputer at the optimisation level “-fast”. The SC45 uses a
version of MPI that is based on MPICH 1.2.4. In this particular supercomputer,
we are allowed to use a maximum of 60 CPUs. In all our experiments on MPI
applications, a regular mesh of 5000 x 5000 is used. As before, we set maxit=1000
so that the while loop runs for exactly 1000 iterations in our experiments.

Figure 8 compares the execution times of Org-MPI and Fused-MPI. Figure 9
shows the performance improvements of Fused-MPI over Org-MPI. The perfor-
mance improvements range from 12.85% to 27.74% with an average of 19.35%.
Figure 10 illustrates quantitatively how the improvements in cache locality have
contributed to the overall speedups of our example application. For each pro-
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cessor configuration, the bottom bar represents the parallel speedup of Org-MPI
over Org and the entire bar the parallel speedup of Fused-MPI over Org. There-
fore, the top bar represents the increase in the parallel speedup (in absolute
terms) due to the improved cache locality. These increases range from 0.21 to
7.66 with an average of 2.38 for the processor configurations used.
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Fig. 11. Performance analysis of Org-MPI and Fused-MPI when P = 24.

We have also compiled and linked Org-MPI and Fused-MPI with Vampir-
trace 4.0 and analysed the performance results of both programs using Vampir.
Figure 11 shows the summary charts for both programs in the 24-processor con-
figuration. By performing loop fusion aggressively, we have reduced not only the
computation time but also slightly the communication time for the Jacobi pro-
gram. Since Fused-MPI exhibits better data reuse than Org-MPI, each processor
completes its allocated computations earlier. This may reduce the idle time that
the processors spend on waiting for messages. Therefore, the overall communi-
cation time in Fused-MPI is slightly reduced compared to Org-MPI. Note that
Vampirtrace does incur some instrumentation overhead. So the execution times
shown in Figure 11 are not exactly the same as those shown in Figure 8.

5 Related Work

Loop fusion is a standard compiler optimisation employed in a number of re-
search and commercial compilers. Some earlier work on the topic can be found
in [3,9,13] and the references therein. However, loop fusion is applicable only
when the dependences in the program are not violated. In [16], we presented the
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first algorithm that allows arbitrary affine loop nests to be fused in the presence
of the fusion-preventing flow, output and anti-dependences. The motivation of
our earlier work was to improve the cache performance of sequential programs
on uniprocessors. In this paper, we investigate the performance benefits of this
aggressive loop fusion algorithm for parallel applications.

Many scientific and engineering applications require the solution of partial
differential equations (PDEs). A common approach discretises the input domain,
thereby transforming a PDE problem into one of solving a linear system. For
large systems with several millions of unknowns, the methods of choice are all
iterative. Classic iterative solvers are Jacobi, Gauss-Seidel and SOR (Successive
Over-Relaxation) methods. These solvers remain important because they are
useful either as models for more complex methods or as building blocks from
which more advanced methods, such as multigrid, can be constructed.

However, iterative methods do not exhibit good data reuse since they are
typically implemented using global sweeps over the whole data set. Song and
Li [11] describe special-purpose techniques for tiling Jacobi-like codes to achieve
good performance improvements on uniprocessors. In this paper, we show that
fusing the loop nests in Jacobi-like codes can achieve good performance results
on both uniprocessor and multi-processor systems.

6 Conclusion

This paper presents a loop fusion algorithm that is capable of fusing loop nests
even when the conventional loop fusion optimisation fails. In the presence of
fusion-preventing anti-dependences, we eliminate all these violated dependences
by means of automatic array copying. We assume that all violated flow and out-
put dependences have been eliminated before our algorithm is applied. In [16],
we demonstrated that such an aggressive loop fusion strategy achieves good per-
formance improvements on uniprocessors with cache memories. Taking a Jacobi
program as an example, we show in this paper that such a strategy is also ef-
fective for improving the performance of MPI applications on multi-processor
systems. In general, the performance of stencil codes is limited by the speed
of the memory system. Our experimental results indicate that better perfor-
mance results for stencil codes can be obtained if the data reuse in these codes is
improved. One future work is to investigate the performance benefits of our tech-
nique for more advanced methods such as multigrid. How to effectively combine
loop fusion and loop tiling for multigrid methods is another interesting topic.
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