
An Implementation of Parallel File Distribution
in an Agent Hierarchy

Munehiro Fukuda 1 Jumpei Miyauchi 2

1 Computing & Software Systems, University of Washington, Bothell, mfukuda@u.washington.edu
2 Computer Science, Ehime University, miyauchi@koblab.cs.ehime-u.ac.jp

Abstract

PC grid is a cost-effective grid-computing platform that attracts users by allocating to their massively

parallel applications as many desktop computers as requested. However, a challenge is how to distribute

necessary files to remote computing nodes that may be unconnected to the same network file system,

equipped with insufficient disk space to keep entire files, and even powered off asynchronously.

Targeting PC grid, the AgentTeamwork grid-computing middleware deploys a hierarchy of mobile

agents to remote desktops so as to launch, monitor, check-point, and resume a parallel and distributed

computing job. To achieve high-speed file distribution, AgentTeamwork takes advantage of its agent hi-

erarchy. The system partitions files into stripes at the tree root if they are random-access files, duplicates

them at each tree level if they are shared among all remote nodes, fragments them into smaller messages

if they are too large to relay to a lower tree level, aggregates such messages in a larger fragment if they

are in transit to the same sub-tree, and returns output files to the user along multi-paths established

within the tree. To achieve fault-tolerant file delivery, each agent periodically takes a snapshot of in-

transit and on-memory file messages with its user job, and thus resumes them from the latest snapshot

when they crash accidentally.

This paper presents an implementation and its competitive performance of AgentTeamwork’s file-

distribution algorithm including file partitioning, transfer, check-pointing, and consistency maintenance.

Keywords: parallel file distribution, fault tolerance, grid middleware, job deployment, mobile agents

1 Introduction

One of the main motivations for grid computing is to allocate to a massively parallel application

as many computing nodes as requested. PC grid [1, 2] is such a cost-effective platform that attracts

users by collecting clusters of research, instructional, and even office desktops. However, for data-

intensive applications, PC grid needs to pay more attention to file availability than other platforms. This

is because each computing node is necessarily not connected to the same network file system and in

most cases is equipped with insufficient disk space to store entire files. Furthermore, each desktop

computer may be powered on and off by its owner without any notification in advance, and thus it is not

guaranteed that remote nodes stay available as long as a given job is running. Therefore, the key to PC

grid implementation is to keep providing remote jobs with necessary file stripes in a timely fashion and

to redirect file transfer to a new node where a crashed job has resumed its execution.

We have implemented a file-distribution algorithm to address these requirements in the AgentTeam-

work system that deploys a hierarchy of mobile agents to remote sites in order to launch, monitor,

check-point, and resume a parallel and distributed computing job [3]. Our algorithm focuses on two

aspects of file access patterns: (1) all user processes may need the same file entirely and (2) they may

access a different portion of the same file. To be fitted to the former aspect, our algorithm takes advan-

tage of an agent hierarchy in AgentTeamwork by duplicating a file at each tree level. To be adjusted to

the latter aspect, the algorithm partitions a file into stripes and delivers each one to a different process.

(We define a file stripe as a collection of file blocks, each owned by the same process and appearing in a

cyclic location of a given file.)

To distribute an entire file to each destination, we use fragmentation and pipelined transfer that allows

a user process to advance its computation as far as only required file portions are made available. At the

same time, file stripes do not have to be delivered independently. They can be aggregated in one message

if they are in transit to the same sub-tree of descendant agents. Therefore, our file-distribution algorithm

transfers a collection of user files through an agent hierarchy where each agent at the same tree level

2

divides files in smaller messages, aggregates them in a larger message headed to the same descendant

tree, and duplicates them if necessary. Upon modification, files are returned back to the commander

in smaller messages, traveling through the same hierarchy but actually relayed over every other tree

layer to avoid traffic congestion toward the commander. (The following discussions use a file message

as a transfer unit that has been made through file fragmentation and aggregation. We also distinguish

partition and fragmentation as follows: the former divides a given file into stripes, whereas the latter

divides a file, a stripe, or a file message into smaller file messages to transfer over network.)

To deliver each file stripe to a different process, our design is based on MPI-I/O that facilitates a high-

level file interface to define file stripes and access patterns adapted to parallel-computing applications [4,

5]. Our GUI allows a user to instruct his/her file-partitioning scheme to the system that then partitions a

given file into stripes, delivers them through an agent hierarchy to remote sites, permits a remote process

to access a stripe through our MPI-I/O-oriented random-access file class (named RandomAccessFile),

and exchanges stripes among different processes in support with barrier synchronization.

To achieve fault-tolerant file delivery, each agent maintains in-coming file messages in its local mem-

ory (or /tmp disk), serializes them with an execution snapshot of its corresponding user process, and

sends them to a different remote agent in their hierarchy, so that the user process can keep accessing the

same files even upon a resumption from the very last snapshot. In other words, an agent keeps pumping

file messages to the corresponding user process by resuming only lost messages (rather than replicates

an entire file as performed in the conventional file replication.)

This paper presents an implementation and its convincing performance of file partitioning, stripe dis-

tribution, resumption, and consistency maintenance in AgentTeamwork. The rest of paper is organized

as follows: Section 2 gives an overview of the AgentTeamwork system; Section 3 describes our file dis-

tribution, resumption, and maintenance strategies; Section 4 shows the performance of our implementa-

tion; Section 5 compares AgentTeamwork with related work; and Section 6 presents our conclusions as

well as future plan.

3

2 AgentTeamwork

We start our discussions with an overview of the AgentTeamwork system, a basis of our parallel file

distribution in an agent hierarchy.

2.1 System Overview

AgentTeamwork is a grid-computing middleware system that coordinates parallel and fault-tolerant

job execution with mobile agents [3]. The system targets scientific-computing applications coded in

Java because of two reasons: (1) Java is an architecture-independent interpretive language and thus its

compiled programs are executable over heterogeneous grid-computing environments, and (2) Java’s

object serialization/de-serialization eases process check-pointing and error recovery, with which the

system can keep resuming and running a user program at available (but different) computing nodes till its

completion. Since many scientific applications tend to be written for parallel execution, AgentTeamwork

assumes users who are familiar with MPI, MPI-I/O, or even sockets for inter-process communication and

parallel file operations.

AgentTeamwork allows a new computing node to join the system by running a UWAgents mobile-

agent execution daemon to exchange agents with others [6]. UWAgents maintains a parent-child rela-

tionship among mobile agents in a hierarchy that behaves similar to a process tree in operating systems

but dynamically extends over network. Using this feature, AgentTeamwork deploys a user job to remote

computing nodes with a several types of agents in a hierarchy. They are distinguished as commander,

resource, sentinel, and bookkeeper agents, each specialized in job submission, resource selection, job

deployment and monitoring, and job-execution bookkeeping respectively.

Figures 1 and 2 illustrate a job deployment in an agent hierarchy and its execution through agent

interaction respectively.

First, a user submits a new job with a commander agent through AgentTeamwork’s GUI (named

SubmitGUI) or using some command line utilities. The commander agent migrates to a given XML

resource database (named XDBase) and spawns a resource agent (id 1 in Figure 2) that collects new

4

cmd: commander agent
bkp: bookkeeper agent

rsc: resource agent
snt: sentinel agent
i0: agent id
r0: processor rank

snt
i35

cluster 3

snt
i34

cluster 2
r6
i132
snt

cluster 0

i8
snt

cluster gateway 0 Desktop computers

i2
snt

i0
cmd

i1
rsc

r5

snt
i512

i128 − i131
r1 − r4

snt

r0
i32
snt

i3
r0

bkp

Descendant
bookkeepers

Descendant
sentinels

gateway 2 gateway 3

cluster 1

gateway 1

i33
snt

SNAPSHOT

snt
i9
rX

i528 − i531snt
r7 − r10

Figure 1. Job deployment by AgentTeamwork

computing-node information from a shared ftp server, registers it to the local XDBase, and retrieves a

list of remote machines fitted to the job execution, (named a resource itinerary) [7].

The commander thereafter spawns a pair of agents, a sentinel with id 2 and a bookkeeper with id 3,

each hierarchically deploying as many children as requested in the resource itinerary. (Figure 2 shows

only one child sentinel with id 9 for simplicity.) If these computing nodes reside over multiple clusters,

agents are deployed to a different cluster head or gateway where they further deploy a hierarchy of

children to cluster-internal nodes [8]. Figure 1 shows an example where 11 child sentinels are deployed

over clusters 0 and 1.

Before starting a user application, the commander, sentinels and bookkeepers exchange their IP ad-

dress information through their hierarchy (with talk(descendant location) and talk(all locations) in Fig-

ure 2). Thereafter, each sentinel starts a user program wrapper with a unique MPI rank, (rank 0 through to

10 in the example) at a different machine. Launched from the wrapper, a user process periodically takes

its computation snapshot and orders its local sentinel agent to send the snapshot to the corresponding

bookkeeper (with sendSnapshot() and talk(save snapshot)). At every checkpoint all the user processes

5

SubmitGUI:

id0:Commander

id1:Resource

XDBase:XDBase ftp.tripod.com

id2:Sentinel

id3:Bookkeeper

id9:Sentinel

Wrapper: Wrapper:

spawnRsc()

spawnSentinel()

return(XMLs)
getRscFromTcp()

return(status)
insert(XMLs)

queryForIpNames()
return(ipList)

talk(rsc_needed)

talk(rsrc_itinerary)

spawnBookkeeper()

spawnChildSentinel()

talk(descendant_location)

talk(all_lcatioins)

talk(end_user_program)talk(end_user_program)

talk(descendant_location)

talk(descendant_location)

talk(all_lcatioins)
talk(all_lcatioins)

talk(kill_agent)
talk(kill_agent)talk(kill_agent)

talk(kill_agent)

talk(grid_infile)

talk(grid_outfile)
gridfile.write()

talk(grid_infile)

gridfile.write()
gridfile.read()

sendSnapshot()
sendSnapshot()
talk(save_snapshot)

talk(save_snapshot)
tcp.commit()
tcp.commit()

return(status)return(status)

sendMsg(end_user)

sendMsg(file)

initSocket()

retriveGUIMsg()

java inject Commander

Figure 2. Job coordination through agent interaction

are automatically barrier-synchronized (with tcp.commit()) so as to prevent any process from advancing

too fast and thus from saving too many old messages in a snapshot. Each sentinel agent exchanges a

ping and an acknowledgment with its children for error detection, and resumes them upon a crash. A

bookkeeper maintains and retrieves the corresponding sentinel’s snapshot on demand.

With initSocket() and receiveGUIMsg(), the commander establishes a socket to SubmitGUI and keeps

receiving input files as well as the standard input in smaller packets. Repetitive calls of talk(grid infile)

relay these packets as inter-agent messages from the commander down to all user processes through their

agent hierarchy. On the other hand, talk(grid outfile) calls return output files and the standard output in

6

a reversed direction from each sentinel up to the commander agent.

Finally, a job termination is agreed among all agents with talk(end user program) and notified to

SubmitGUI with sendMsg(end user), upon which they are terminated with talk(kill agent).

2.2 Programming Model

Figure 3 shows the AgentTeamwork execution layers from the top application level to the underlying

operating systems. (Note that all components written in bold are AgentTeamwork’s components and

that all those in a shaded box are instantiated from a sentinel agent at each remote node.) The system

facilitates inter-process communication with mpiJava [9] as well as Java Sockets for Java-based parallel

applications. It also supports Java FileInputStream, FileOutputStream, and RandomAccessFile classes

for remote file accesses. Since mpiJava has no MPI-I/O support, we have implemented the same concept

in SubmitGUI and RandomAccessFile. The former assists a user in defining his/her file stripes with its

GUI menus, whereas the latter allows an application program to access different file stripes with the seek

method.

All these Java-based packages (including mpiJava) were re-implemented using GridTcp and GridFile

in that we have developed fault-tolerant TCP and file manipulation. GridTcp monitors TCP links ema-

nating from its local process, maintains the history of in-transit TCP messages, and restores all broken

communication upon a process resumption. It also supports multi-cluster communication as in MPICH-

G2 and tolerates cluster crashes [10]. GridFile implements an interface between a user program and

AgentTeamwork by maintaining file contents in its error-recoverable queues.

Below these components is Ateam that provides a user application with check-pointing methods to

explicitly take its computation snapshots through serialization of the application itself, GridTcp, and

GridFile, all referenced to from the Ateam object. Ateam is then wrapped with a user program wrapper,

one of the threads running within a sentinel agent. Recovered from a crash, the sentinel agent restarts its

user program wrapper that resumes all the wrapped components from the latest snapshot.

The sentinel and the other AgentTeamwork’s agents are executed on top of the UWAgents mobile

agent execution platform which we have developed with Java as an infrastructure for agent-based grid

7

mpiJava
FileInputStream

ServerSocket
Socket

GridTcp GridFile

Ateam

Operating Systems

Java Virtual Machine

UWAgent mobile−agent execution platform

User Program Wrapper

Java User Applications

registerLocalVar()

Commander
Agent

Resource
Agent

Sentinel
Agents

Bookkeeper
Agents

Sensor
Agents

takeSnapshot()
isResumed()

RandomAccessFile
FileOutputStream

retrieveLocalVar()

Figure 3. AgentTeamwork execution layer

computing.

Figure 4 shows a Java application executed on and check-pointed by AgentTeamwork. Besides all

its serializable data members (lines 3-4), the application can register local variables to save in execution

snapshots (lines 38-39) as well as retrieve their contents from the latest snapshot (lines 32-33). At any

point of time in its computation (lines 12-28), the application can take an on-going execution snapshot

that is serialized and sent to a bookkeeper agent automatically (lines 22 and 26). As mentioned above,

it can also use Java-supported files and mpiJava classes whose objects are captured in snapshots as well

(lines 14, 16, and 24).

Focusing on RandomAccessFile, a file can be shared among all processes, while each stripe is actually

allocated to and thus owned by a different process. Figure 4 assumes that each process owns and thus

writes its rank to a one-byte stripe (lines 17-18) that is read by another process with rank − 1 upon a

barrier synchronization (lines 19-21).

3 File Distribution Strategies

The AgentTeamwork system delivers files to each remote process through four distinctive steps: (1)

partitioning files into stripes, (2) transferring them through an agent hierarchy, (3) check-pointing them

8

1 import AgentTeamwork.Ateam.*;
2 public class MyApplication extends AteamProg {
3 private int phase; // snapshot phase
4 private RandomAccessFile raf; // RandomAccessFile
5 public MyApplication(Object o){} // the system-reserved constructor
6 public MyApplication() { // a user-own constructor
7 phase = 0;
8 }
9 private boolean userRecovery() {

10 phase = ateam.getSnapshotId(); // version check
11 }
12 private void compute() { // user computation
13 ...;
14 raf = new RandomAccessFile(// create a RandomAccessFile object
15 new File("infile"), "rw");
16 int rank = MPI.COMM_WORLD.Rank();
17 raf.seek(rank); // go to my stripe
18 raf.write(rank); // write my rank
19 raf.barrier(); // synchronize with other ranks
20 int[] data = new int[1]; // prepare a variable to store data
21 int data[0] = raf.read(); // read my rank + 1
22 ateam.takeSnapshot(phase++); // check-point intermediate computation
23 raf.close(); // close the RandomAccessFile object
24 MPI.COMM_WORLD.Reduce(data, 0, // an MPI function
25 data, 0, 1, MPI.INT, MPI.Sum, 0);// sum up what each rank has read
26 ateam.takeSnapshot(phase++); // check-point intermediate computation
27 ...;
28 }
29 public static void main(String[] args) { // start a user program
30 MyApplication program = null;
31 if (ateam.isResumed()) { // the program has resumed.
32 program = (MyApplication) // retrieve the latest snapshot
33 ateam.retrieveLocalVar("program");
34 program.userRecovery();
35 } else { // program has invoked from its beginning.
36 MPI.Init(args); // invoke mpiJava
37 program = new MyApplication(); // create an application
38 ateam.registerLocalVar("program", // register my program
39 program);
40 }
41 program.compute(); // now go to computation
42 MPI.Finalize(args); // end mpiJava
43 } }

Figure 4. File operations in AgentTeamwork’s application

for recovery purposes, and (4) maintaining file-stripe consistency among different processes. The fol-

lowing subsections describe details of each implementation.

3.1 File Partitioning

File partitioning in AgentTeamwork is based on the MPI-I/O concept [4]. A user is supposed to

instruct the system how to partition a given file into stripes and to allocate each to a different remote

process by specifying the corresponding rank’s file view, namely a repetition of an identical filetype that

9

Figure 5. An example of MPI filetypes

is tiled with multiple etypes and holes. Figure 5 gives an example of four different filetypes, where each

filetype allocates the (i × 2)th and (i × 2 + 1)th etypes (as a float and a double respectively) to rank i.

A user can define these filetypes through AgentTeamwork’s SubmitGUI when submitting his/her job.

Figure 6 captures a snapshot of SubmitGUI’s job-submission window that makes the 0th and 1st etypes

visible to rank 0. (Note that a user may skip this menu if s/he hopes to distribute a whole file to all ranks

rather than partition a file in stripes, each delivered to a different rank.)

Upon receiving user inputs, SubmitGUI automatically generates a data structure named RAFPartition-

Info for each rank. This data structure maintains a given rank’s file view with the rank information, its

filetype’s initial displacement from the beginning of the entire file, the filetype size in bytes, and a table of

etypes that tile up this filetype. Each table entry is identified with its primary data type, the displacement

from the top of the filetype it belongs to, the number of identical etypes tiled consecutively, and the etype

size in bytes. Figure 7 illustrates four RAFPartitionInfo structures that respectively correspond to ranks

0 through to 3’s file views given in Figure 5. For instance, rank 0’s RAFPartitionInfo includes two table

entries: the first defined as a float, starting from the 0th byte in the file view, tiled with only one etype

10

Figure 6. AgentTeamwork’s GUI

whose size is four bytes, whereas the second specified as a double, starting from the 4th byte, tiled with

one etype whose size takes eight bytes.

A challenge is how to physically partition a given file into stripes, each of which must correspond to

a different rank’s file view. A naı̈ve partitioning algorithm is to iterate a file scan for each rank where

SubmitGUI extracts necessary etypes from the file upon every occurrence of the filetype that has been

described in this rank’s RAFPartitionInfo. Its obvious drawback is the more ranks the more repetitive

scans of the same file. An improvement is to limit this file-scanning work to only once by reading an

input file with a byte basis, checking which ranks need each byte, and writing it to the corresponding

rank-based file stripes [11]. However, this scheme yet suffers from another drawback that cannot perform

bulk read/write operations to a file, thus increasing OS interventions.

11

Rank: 0

Barrier Status: WAITING

RAFPartitionInfo
Initial Displacement: 0

Collective Action: CLOSE

Total Bytes: 48

float 1 4 bytes0th byte

4th byte 1 8 bytesdouble

etype displacement #elements etype size

Rank: 2

Barrier Status: WAITING

RAFPartitionInfo
Initial Displacement: 0

Collective Action: CLOSE

Total Bytes: 48

float 4 bytes

1 8 bytesdouble

etype displacement #elements etype size

Rank: 3

Barrier Status: WAITING

RAFPartitionInfo
Initial Displacement: 0

Collective Action: CLOSE

Total Bytes: 48

float 1 4 bytes

1 8 bytesdouble

etype displacement #elements etype size

Rank: 1

Barrier Status: WAITING

RAFPartitionInfo
Initial Displacement: 0

Collective Action: CLOSE

Total Bytes: 48

float 1 4 bytes

1 8 bytesdouble

etype displacement #elements etype size

1

12th byte

16th byte 40th byte

36th byte

24th byte

28th byte

Figure 7. RAFPartitionInfo structures

Our final solution to file partitioning is to combine into one group all RAFPartitionInfos with the same

displacement and size, to read an input file every 16MB through Java’s FileChannel class1, and to write

as many bytes as tiled with consecutive etypes to the corresponding rank-based file stripes. For instance,

consider the four filetypes described in Figure 7, all with the same displacement and the same size. Each

rank has a pair of etype entries that occupy 12 consecutive bytes in total, (i.e., one float and one double)

but start from a different displacement within the filetype. Therefore, our algorithm can write 12 bytes

at a time to each rank-based file stripe. We assume that most parallel applications would have each rank

repeat accessing a file stripe with the same size and with the same interval. Our solution makes the best

effective use of this file-accessing pattern.

SubmitGUI completes this file-partitioning work with adding a RAFPartitionInfo to the top of the

corresponding rank-based file stripe. Launched by SubmitGUI, a commander agent then reads these

file stripes as independent files or receives them from SubmitGUI through ssh tunneling if it is running

remotely. Although (entire) sequential files are read similarly into the commander, they can be distin-

guished from files stripes, using their header. When relaying file messages through an agent hierarchy,

each agent duplicates them only if they are portions of a sequential file but not a file stripe. The next

section details this file-transfer mechanism.
116MB is our experimental block size that can optimize FileChannel’s file-reading performance.

12

3.2 File Transfer

Whichever files are sequential or striped, AgentTeamwork transfers them based on four strategies such

as (1) file distribution in a hierarchy, (2) file aggregation, (3) file fragmentation, and (4) file collection

along multi-paths.

First, file distribution in a hierarchy takes advantage of parallelism inherent to AgentTeamwork’s agent

tree for file distribution. (Although other network topologies could be conceivable, the underlying inter-

agent communication must use UWAgents’ agent hierarchy, and therefore we have selected a tree so as

to avoid any overhead incurred by topology conversion.) Our strategy relays a file from a commander

to all sentinel agents through their tree as duplicating the file at each tree level if necessary2. This

would mitigate repetitive disk accesses and file-copying operations at a client site in particular if remote

processes need to read the same collection of data files.

Second, file aggregation aims at mitigating inter-agent communication overheads by aggregating in

one message all files that should be delivered to descendant agents in the same sub-tree, which thus

reduces the number of file messages. Especially when random-access files are partitioned into stripes,

(each accessed by a different process), this aggregation would improve the system performance by send-

ing in one message all file stripes that will be accessed by agents in the same sub-tree.

Third, file fragmentation limits the size of each aggregated file message. If a file message is large

enough to dominate network links, it is fragmented into smaller messages with a system-defined size.

This strategy can also avoid the prolonged delay of user process executions.

Figure 8 describes an example flow for sending user files to sentinel agents, each dispatched to a

different remote node to run a user process. Using the UWAgents mobile-agent execution platform,

AgentTeamwork deploys a job in a new agent hierarchy where a commander recursively spawns sentinel

agents whose identifier (simplified as id) is calculated from their parent id × 4+ a sequential number

(1-based if the parent is the commander, otherwise 0-based). From its id, a sentinel agent can calculate

an MPI rank to be assigned to its user process.
2If a file is a rank-based file stripe, it is not duplicated on its way to the corresponding rank.

13

Each agent repeats a sequence of file aggregation, fragmentation, and hierarchical transfer every time

it receives a new file message from its parent. To be more specific, each file message includes an

additional set of name attributes formatted in a quartet of agentId, fileName, sequence and mpiRank,

where agentId is a destination sentinel’s id; fileName is the original name of the user file; sequence

indicates in bytes which portion of the file is carried in this message; and mpiRank is the MPI rank of a

process to read this file message. To aggregate file messages into one, an agent stores in a Java hash table

all these messages and their name attributes whose agentId belongs to the same child or its descendants.

This grouping work can be achieved by repeatedly dividing each file message’s agentId attribute by four

until it reaches an immediate child’s id. We limit the size of a new file message with this Java hash table

size, so that a large message destined for the same child agent will be sent in multiple hash tables. Upon

receiving a file message from its parent, an agent extracts all the hash table entries and sorts them in their

name attributes so as to regroup them in their same destination, namely their same agentId attribute.

The example in Figure 8 considers that a user has two data files named inputFile1 and inputFile2, the

former shared among three user processes with rank 1, 2, and 7; and the latter between two processes

with rank 1 and 7. It also assumes that both files are small enough to fit in one hash table. A commander

agent (denoted as cdr) reads and passes them in a hash table to the first sentinel (denoted as snt) with

id 2. Since all these files have an eight-divisible agentId, sentinel 2 simply passes the table to sentinel

8 that thereafter regroups the table entries into two new hash tables, one forwarded to sentinels 32 and

128 whereas the other passed through sentinels 33 and 132 all the way to sentinel 528.

File collection starts as soon as a user process writes data to files. It uses an agent hierarchy in similar

to file distribution while its direction is reversed from each sentinel to the commander agent. From its

nature, the closer to the commander a sentinel agent is located, the busier traffic of file messages it is

exposed to.

To alleviate this traffic congestion at higher-level agents, we have implemented two file-collection

paths in their hierarchy as shown in Figure 9. One is an ordinary path to transfer file messages from a

child to its parent agent. The other is a bypass (drawn thick in Figure 9) from a child to its grandparent as

skipping over its parent agent. More specifically, we permitted sentinel agents with rank 0, 1, 2, 3, and

14

Figure 8. File distribution to sentinels in an agent hierarchy (for file read)

4 to send their file messages directly to the commander. We also created a bypass to an agent from its

grandchild with a 4-divisible rank plus 1, (i.e., rank 5, 9, 13, 17, and 21 in Figure 9). This bypass allows

each agent to receive file messages from four of its grandchildren ahead, thus relieves it from being

stuck with accepting a bulk of messages from its children at once, furthermore alleviates the waste of

memory space to spool in-transit messages, and therefore prevents unnecessary paging-out operations.

In addition to file-collecting bypasses, each agent uses the conventional sliding-window algorithm to

control its message flow to the parent or grandparent. The window size is currently adjusted between 2

and 15 messages.

3.3 File-Stripe Check-Pointing and Recovery

As briefed in Section 2, each sentinel agent instantiates a user program wrapper that periodically

takes an execution snapshot of a given user program and resumes its execution from a crash at a new

15

cdr

Snt

Snt

SntSnt Snt

Snt Snt Snt Snt

Snt Snt Snt Snt Snt Snt Snt Snt Snt Snt Snt Snt Snt Snt Snt Snt

Snt

id = 0

id = 1

rank 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24

rank 0

rank 2rank 1 rank 3 rank 4

rank 9rank 5 rank 6 rank 7 rank 8

GUI

Figure 9. File collection to the commander in an agent hierarchy (for file write)

computing node. We perform this series of check-pointing and recovery work onto only file messages

that a user program is currently accessing. In other words, since we assume that entire user files are

always available from their original site, we only check-point file messages in transit through an agent

hierarchy rather than replicate the whole files.

To serialize and check-point file messages with a user program, the wrapper creates and captures in

a snapshot a GridFile object that buffers file messages to be read and written by the corresponding user

program. Figure 10 shows file-message maintenance with GridFile. In addition to the main thread that

executes a user program, an sentinel agent spawns two child threads named input and output threads.

These three threads take the following roles:

1. Input thread: assigns a Java vector queue to a new file, registers this queue with the file name in

GridFile’s hash table, and repeats receiving a new file message from its parent and storing it in the

corresponding queue. (Needless to say, if this sentinel agent has children, the input thread passes

incoming messages to its descendants.)

2. Main thread: retrieves a queue from GridFile, reads messages from it, and deletes the queue

in response to a user program’s file open, read, and close respectively. For file create and write

16

Figure 10. Files maintained by GridFile

operations, the main thread takes over the input thread’s task, namely registering a new queue in

GridFile and storing written data in the queue.

3. Output thread: takes charge of sending back user-written files to the commander agent. More

specifically, it keeps checking GridFile’s hash table to locate a user-registered queue, reading file

messages from the queue, and sending them to the commander agent that then writes them back

to a user-specified directory.

Of importance is to enforce mutual exclusion of GridFile’s queues that are accessed from these three

threads. Although the main thread can read from a file as many data as written by the input thread,

the current implementation suspends the main thread to append data to an existing file until the file is

completely filled by the input thread.

Another problem is how to handle a file whose total volume grows beyond memory space due to

the mismatching speed in file read and write between the input/output and main threads. Our tentative

solution provides a user with an option that temporarily stores files in each remote site’s /tmp directory,

17

in which case a sentinel agent, however, cannot resume those files with it upon a job migration.

Given the above check-pointing mechanism, we recover crashed file messages from their latest snap-

shot through the following three steps:

1. Crash detection: Since a parent and its child sentinels in their hierarchy exchange a ping and

an acknowledgment periodically, a crash of a user program, (namely the corresponding sentinel

agent) is detected by its parent or child. (A child detects a crash only when no action takes place

during a period of (a ping interval × its agent id), which prevents multiple agents from detecting

the same parent’s crash simultaneously.)

2. Snapshot retrieval: The sentinel that has detected a crash sends a query to the corresponding

bookkeeper agent, receives the crashed agent’s latest snapshot, and resumes it at a new site. The

crashed agent retrieves all file messages in its GridFile’s queues as well as those in transit to its

descendant agents. This in turn means that the descendants may receive duplicated file messages,

in which case they can detect such duplication with each message’s sequence attribute and simply

discard the same messages.

3. File-message resending: Each sentinel must also take into account that it may not receive certain

file messages from an agent crashed at a upper tree layer. This is because an agent may crash before

check-pointing all its previous in-transit messages. To retrieve missing messages, a sentinel sends

a query to the commander agent that then accesses the original user file and returns only missing

file messages to the requester agent.

A similar scenario is applied to output files where their file messages are sent from each sentinel back to

the commander and then written into its client user’s local disk. However, unlike input files, intermediate

agents do not use output files, and therefore their work is to simply discard duplicated file messages but

not to request their descendants to resend messages.

18

3.4 File-Stripe Consistency Maintenance

Needless to say, Java does not incorporate the MPI-I/O concept in its file manipulations. If each rank

accesses a different file stripe, it should use Java’s RandomAccessFile class whose seek, read, and write

methods allow each process to jump to and access its designated file stripe. We have reimplemented

RandomAccessFile using AgentTeamwork’s GridTcp and GridFile classes so as to facilitate data con-

sistency and crash recovery. Our RandomAccessFile implementation is based on the following three

strategies:

1. Data allocation: For each user process, the corresponding sentinel reconstructs a random-access

file locally by tiling the actual stripes received from the commander and by zero-initializing those

owned by the other processes.

2. Read-caching but write-through accesses: Each process can read and cache non-owning (and

thus remote) stripes with a 512-byte basis for better performance. However, every write to a non-

owning stripe flushes the corresponding local cache and sends new data immediately back to the

remote process.

3. Barrier synchronization: RandomAccessFile automatically gets all user processes synchronized

together so as to make a consensus on resizing or closing a shared file. It also facilitates this barrier

synchronization at a user level as RandomAccessFile.barrier().

RandomAccessFile.read() and write() enforce file-stripe consistency as follows. The read() function

starts with scanning a collection of RAFPartitionInfos to identify all ranks that share ownership in the

range to be read (task 1). Thereafter, for RAFPartitionInfo of each rank identified, read() must retrieve

all etypes that cover the range to be read (task 2), and read the file range overlapped with each etype

retrieved (task 3). If an identified rank is local to the read() call or the file range exists in the local cache,

tasks 2-3 are completed instantly. Otherwise, a read request is sent to a remote rank through a GridTcp

socket. Each rank spawns a RandomAccessFile communication thread that exchanges a request and

a response. Although a pair of threads perform tasks 2-3 respectively at a local and a remote side, a

19

remote thread reads the data from its file stripe into a socket output stream while the local thread reads

the data from a socket input stream into the user buffer. To reduce the number of read requests, the actual

data transfer is carried out in a 512-byte block. The write() basically works in the similar sequence of

those tasks except the following three details: (1) the data flow is reversed; (2) only a requested stripe is

transfered; and (3) the corresponding local cache is flushed.

Despite write-through stripe accesses, it is still anticipated that two or more user processes can read

different file portions from the same remote stripe, depending on various conditions that may interleave

their read requests with a write request. The purpose of RandomAccessFile.barrier() is to finish all on-

going stripe accesses, to flush cached stripes, and to thus allow all user processes to obtain identical stripe

contents in the conventional weak consistency model. Its implementation is straightforward. Each rank

broadcasts a synchronization message to and receives one from all the others upon encountering a barrier.

In addition to user-driven barrier synchronization, RandomAccessFile distinguishes three barrier types

such close, set length, and length inc, each used to reach a consensus among all ranks in terms of closing

the current file, resizing the file length, and increasing the file size. For this purpose, RAFPartitionInfo

maintains the current barrier type and its progress in its collective action and barrier status variables

respectively.

4 Performance Evaluation

We have measured AgentTeamwork’s file distribution performance over two cluster systems, named

cluster-s and cluster-d, which include single-core and dual-core computing nodes respectively as sum-

marized in Table 1. The following subsections evaluate the performance of our four file-distribution

techniques that have been discussed in Section 3: (1) file partitioning, (2) file transfer, (3) file check-

pointing and recovery, and (4) consistency maintenance.

4.1 File Partitioning

Our experiments have covered the following three partitioning cases with a 256MB file that has been

read every 16MB and partitioned into smaller stripes, each written back to the same directory where the

20

Cluster-s: a 32-node single-core cluster
Gateway node:

specification outbound
1.8GHz Xeon x2, 512MB memory, 70GB HD, and SunNFS 4.1.3 installed 100Mbps

Computing nodes:
#nodes specification inbound
8 2.8GHz Xeon, 512MB memory, and 60GB HD 2Gbps
24 3.2GHz Xeon, 512MB memory, and 36GB HD 1Gbps

Cluster-d: a 32-node dual-core cluster
Gateway node:

specification outbound
1.5GHz Xeon, 512MB memory, 40GB HD, and SunNFS 4.1.3 installed 100Mbps

Computing nodes:
#nodes specification inbound
16 2.13GHz Intel Core2, 1GB memory, and 40GB HD 100Mbps
16 1.8GHz Dual-CoreAMD Opteron, 1GB memory, and 40GB HD 1Gbps

Table 1. Cluster specifications

original file resides.

1. Best case: considers the entire file as one single filetype and partitions it by #processes into stripes,

each consecutively tiled with doubles and allocated to a different rank. Therefore, the filetype

is visible to each rank as 256MB/#processes contiguous etypes and 256MB/#processes ×

(#processes − 1) holes. This best case mimics file access patterns as seen in distributed grep

where each process searches for a given word by scanning a different contiguous file portion.

2. Reasonable case: first partitions the entire file by #processes into stripes and assumes each as

a filetype. This filetype is further divided by #processes into smaller pieces, each then consecu-

tively titled with doubles and allocated to a different rank. In other words, the filetype is com-

posed of a pair of contiguous etypes and holes with their respective 256MB/(#processes)2 and

256MB/(#processes)2
× (#processes − 1) size. This reasonable case abstracts mesh-based

computation such as parallel matrix multiplication that may distribute matrix data from files to

remote processes lined up in a mesh.

21

3. Worst case: assumes double×#processes as a filetype and allocates each double of it to a differ-

ent rank. To be more specific, each filetype is a pattern of an 8-byte etype and 8(#processes− 1)-

byte holes where 8 bytes are the size of Java’s double. While etype could even take a smaller data

type such as char or byte, this double-based test case would be pathetic enough to burden each

process with frequent file seeks and reads.

To compare with AgentTeamwork, we have also measured Java’s performance for 256MB-file reads

followed by writes to a different file. In particular for file reads, we distinguished two test cases: one

through BufferedInputStream and the other through FileChannel. The former shows performance of

typical file reads and writes, whereas the latter maps a file directly onto memory, performs fastest among

all the test cases, and thus shows the bottom line of file read/write overheads.

Figure 11 compares performance among all those five test cases. Needless to say, the worse test case

is the slowest, actually 10.7 times slower than FileChannel. On the other hand, the best and reason-

able cases performed 2.6 times slower than FileChannel and surprisingly only 1.4 times slower than

BufferedInputStream. To be even better, their growth rate has slowed down after 32 partitions, which

demonstrates the processor scalability of AgentTeamwork’s file-partitioning scheme for some applica-

tions including distributed grep and matrix multiplication.

4.2 File Transfer

We have analyzed AgentTeamwork’s file transfer performance from three different viewpoints includ-

ing: (1) hierarchical file duplication, (2) file fragmentation and pipelined transfer, and (3) random-access

file distribution and collection.

4.2.1 Performance of Hierarchical File Duplication

File duplication overheads have been measured by having each of 64 computing nodes read the same

file whose size varies from 8M to 256M bytes. We have compared the following three systems:

1. AgentTeamwork: Injected from the Unix shell, a commander agent accesses its local disk and

reads a given file every 16MB into file messages. Those file messages are then forwarded, dupli-

22

 100

 60

 40

 20

 0
 64 32 16 8 4 1

P
ar

tit
io

ni
ng

 ti
m

e
(s

ec
)

Partitions

Best case
Reasonable case

Worst case
Read/write through BufferedInputStream

Read/write through FileChannel

Figure 11. File-partitioning performance

cated, and delivered to 64 sentinels through their agent hierarchy. Upon receiving all messages,

each sentinel acknowledges to the commander.

2. Sun NFS: We have coded the corresponding Java program that makes all 64 processes read the

same file with a 16MB basis through SunNFS Version 4.1.3 and send a “completion” signal to

their master process.

3. User-Level Collective I/O: To mitigate disk accesses at a user level, we have also revised the

above NFS version using collective I/O [12] where the master process reads every 16MB block of

a given file and immediately broadcasts it through Java sockets to all the slaves until reading up

the file.

Figure 12 compares AgentTeamwork, Sun NFS, and user-level collective I/O. Despite that collective

I/O was expected to drastically reduce the number of disk accesses at a user level, it actually performed

only 0.8% to 4.1% faster than Sun NFS, (i.e., a non-collective I/O version). Two reasons are considered:

(1) Sun NFS itself caches file data at a server side, (as known as server caching), which results in the

23

same effect as collective I/O, and (2) Sun NFS implements each read operation with an independent

RPC, thus using a concurrent thread, whereas our collective I/O uses a single-threaded master process to

broadcast file data to all the slaves, which may be occasionally synchronized with TCP’s flow control.

On the other hand, AgentTeamwork ran faster than the others when broadcasting a 64MB or a larger

file, while performing worst below 64M bytes. This is because, for a larger file, AgentTeamwork not

only mitigates disk access overheads similarly to Sun NFS’ server caching and collective I/O, but also

distributes file duplication overheads across agents in their hierarchy. However, for a smaller file, each

disk access and even each file duplication become negligible as compared to repetitive file relays through

an agent hierarchy.

Additionally, we measured the performance of Sun NFS and user-level collective I/O that distributed

a given file at once, thus with no repetitive 16MB-block transfer. For a 256MB file distribution, Sun

NFS slightly improved its performance from 1478 to 1451 seconds, (i.e., 2.5% improvement), while

collective I/O slowed down from 1464 to 1589 seconds (i.e., 8.5% speed-down). Therefore, 16MB-basis

transfer did not benefit those two test cases.

4.2.2 Effect of File Fragmentation and Pipelined Transfer

We investigated the file-message size optimized to AgentTeamwork’s file fragmentation and pipelined

transfer as minimizing the size from 16M through 8M to 4M bytes. Similarly to hierarchical file duplica-

tion in Section 4.2.1, a commander agent reads a given file with a 16MB basis, however it immediately

fragments each 16MB data into smaller file messages that are concurrently passed to a hierarchy of

sentinel agents. Each sentinel multicasts an incoming file message to all its descendants, which in turn

means that each message is duplicated at each tree level, relayed to its one-lower layer, and eventually

delivered to all sentinels.

Figure 13 shows the performance of 16MB, 8MB, and 4MB fragmentation. The evaluation high-

lighted that, when transferring a 256MB file, 8MB fragmentation performed 1.16 times and 1.24 times

faster than 16MB and 4MB fragmentation respectively. However, there was no difference between 8MB

and 16MB fragmentation for smaller files than 256MB, while 4MB fragmentation performed slightly

24

 1600

 1400

 1200

 1000

 800

 600

 400

 200

 0
 300 250 200 150 100 50 0

tr
an

sf
er

 ti
m

e
(s

ec
)

file size (Mbytes)

Sun NFS
User-level collective I/O

AgentTeamwork

Figure 12. Performance comparison of file duplication

slower than the other two, (more specifically 1.02% to 1.19% slower than 8MB fragmentation).

Reasons for these results can be explained using two performance factors with regard to the fragment

size: (1) the number of fragments passing through each agent and (2) the time of network links used to

relay each fragment from one agent to another. The former grows as we decrease the fragment size to

4MB, which iterates more thread context switches within an agent to receive and relay each segment.

On the other hand, the latter lasts longer as we increase the fragment size to 16MB, which synchronizes

each agent more frequently with TCP’s flow control. Under the current cluster configuration and Agent-

Teamwork’s software setting, 8MB fragmentation balances these two factors and therefore works best

for larger file distribution.

However, we estimate that the fragment size could be enlarged to more than 8MB if we change

the current conditions. First, since our cluster nodes are mixed up with 100Mbps, 1Gbps, and 2Gbps

networks, we could at least upgrade 100Mbps links to 1Gbps, which will apparently reduce network

latency and thus allow a larger fragment size without increasing the transfer time. Furthermore, shorter

25

 1200

 1000

 800

 600

 400

 200

 0
 300 250 200 150 100 50 0

tr
an

sf
er

 ti
m

e
(s

ec
)

file size (Mbytes)

4MB fragmentation
8MB fragmentation

16MB fragmentation

Figure 13. Effect of file fragmentation and pipelined transfer.

network latency could even mitigate each agent’s overhead for periodical handshakes with its children,

which permits each agent to spawn more agents, thus reduces the depth of agent hierarchy, but requires

larger fragments so as to avoid frequent thread context switches.

4.2.3 Random-Access File Distribution and Collection

The performance of AgentTeamwork’s random-access file transfer was measured in both file read and

write operations, namely file distribution to and collection from remote processes.

The file-distribution experiment assumes that a random-access file has been partitioned into 64 file

stripes a priori. We have then measured the total time elapsed for the entire sequence where 64 file

stripes are read into a commander agent, relayed in parallel through an agent hierarchy, repeatedly

aggregated or fragmented into 16MB file messages, and finally delivered to a different sentinel agent.

(Note that this file-stripe transfer involves apparently no message duplication.)

On the other hand, the file-collection experiment first distributes a different file stripe to each of 64

sentinels, synchronizes all the sentinels, and starts a timer at the commander when receiving a signal

26

from the sentinel with rank 0. We have then measured the total time elapsed for the entire sequence

where 64 file stripes are written by and sent from their respective sentinels up to the commander agent

that stops the timer upon a completion.

Figure 14 demonstrates a substantial improvement by this parallel file-stripe distribution and collec-

tion. The file distribution performed 6.03 and 4.05 times faster than Sun NFS’ and AgentTeamwork’s

entire file distributions respectively when a random-access file is 256MB long. Even added with 256MB

file-partitioning overheads, (i.e., 20.8 and 93.5 seconds in the best and worst cases shown in Figure 11),

AgentTeamwork’s file-stripe distribution completes in a range between 265.9 and 338.6 seconds, which

still yields 4.37 times to 5.56 times better performance than Sun NFS’ entire file transfer. Obviously, the

more user processes the more parallelism can be expected when distributing file stripes.

Notable in Figure 14 is that file-stripe collection performed even better than distribution, (more specif-

ically 2.99 and 1.25 times better when handling a 16MB and 256MB random-access file respectively).

We explain that this distinctive performance was resulted from two file-collection paths and the sliding

window algorithm for flow control, both described in Section 3.2, which successfully avoided message

congestion.

Our next concern is AgentTeamwork’s performance for transferring larger files that may not be fitted

to memory. For file distribution, as far as a user application keeps reading files delivered through an

agent hierarchy, we estimate that AgentTeamwork could maintain its competitive performance. Our

justification is that the system always partitions a file into small file messages with the maximum size of

16MB, each sent in pipeline, fitted in memory, and therefore causing no paging or disk accesses in its

transit through intermediate nodes. However, if the final destinations do not read files immediately, file

messages are accumulated up in GridFile’s queues that eventually glow beyond memory space and thus

induce page-out operations.

For file collection, as we increase the file size, AgentTeamwork would receive a more negative impact

from message congestion that tends to be incurred on higher layers of its agent hierarchy. As a matter of

fact, the performance superiority of file collection over distribution diminished from 2.99 to 1.25 times

when increasing the file size from 16MB to 256MB. To be worse, if each process writes a different copy

27

 1600

 1400

 1200

 1000

 800

 600

 400

 200

 0
 300 250 200 150 100 50 0

tr
an

sf
er

 ti
m

e
(s

ec
)

file size (Mbytes)

Sun NFS’ entire file distribution (read direction)
AgentTeamwork’s entire file distribution (read direction)
AgentTeamwork’s file stripe distribution (read direction)

AgentTeamwork’s file stripe collection (write direction)

Figure 14. Performance of random-access file transfer

of an entire file rather than a file stripe, all copies must be collected at the commander, which significantly

slows down the system performance. For instance, AgentTeamwork took 4,475.163 seconds to collect

64 copies of a 128MB file from sentinels. This is 8.09 times slower than the file duplication performance

under the same conditions, (i.e., 128MB delivered to 64 sentinels.)

4.3 File-Stripe Check-Pointing and Recovery

We have assessed AgentTeamwork’s file recovery overheads by distributing a 256MB file to 12 com-

puting nodes with 8MB fragmentation and intentionally terminating a sentinel agent when it has received

only the first two file messages, (i.e., the first 16MB)3. We considered three test cases: (1) killing no sen-

tinel agent, (2) killing the rank-0 sentinel, and (3) killing the rank-11 sentinel. Test 1 simply distributes

an entire 256MB file. Test 2 evaluates the largest overheads incurred from rank 0 to all the other sen-

tinels. This is because rank 0 is located at the highest tree level among all sentinels. Test 3 evaluates the
3We are still working on AgentTeamwork’s job recovery over multi-clusters (with 64 nodes in total).

28

Test cases File distribution time
Test 1: no agent termination 262.60 seconds
Test 2: rank-0 termination 293.57 seconds
Test 3: rank-11 termination 266.68 seconds

Table 2. Agent recovery overheads

least overheads incurred by rank 11 at the lowest leaf, which thus affects no other agents.

Table 2 compares the file-transfer time of these three test cases. The results matched our estimation.

Test 2 was approximately 31 seconds slower than test 1 whereas there was little difference between test

1 and test 3. Although this 31-second delay occupied only 11% of the entire file distribution, it will grow

in linear to the number of sentinel agents, because each agent requests the commander agent to resend

missing file messages. Therefore, we anticipate that, with 64 computing nodes, test 2’s overheads would

become (31/11 × 63) = 178 seconds.

4.4 File-Stripe Consistency Maintenance

We have measured the performance of AgentTeamwork’s RandomAccessFile class by exchanging

etypes among different processes. Assuming N nodes involved in an experiment, all ranks are given

the same filetype that includes N etypes, each tiled with four doubles and owned by a different rank.

We have coded two test programs named master-workers and heartbeat on AgentTeamwork. Master-

workers makes rank 0 collect all etypes that the other ranks have modified, whereas heartbeat engages

each rank in modifying its own etypes and thereafter reading its neighboring rank’s etypes. These access

patterns represent typical bag-of-task applications and spatial simulations.

To compare AgentTeamwork with the ordinary Java environment, we have also written the corre-

sponding Java programs that use only Java-original classes (such as RandomAccessFile, Socket, and

Thread) and run on Java Virtual Machine but not on AgentTeamwork. Executed over 2 to 16 computing

nodes, they mimic AgentTeamwork’s RandomAccessFile class by maintaining a file locally, spawning a

thread for inter-process communication, and reading remote stripes through a socket.

Figure 15 shows time elapsed to run master-workers as increasing the file size up to 10MB as well

29

 16

 8

 4

 2

 10000

 1000

 100

 10

 1000
 500

 100

 10

 1

 0.1

elapsed time (sec)

AgentTeamwork
Java

#processors

file size (KB)

elapsed time (sec)

Figure 15. Performance of remote stripe accesses in master-workers

as the number of processors up to 16. Both AgentTeamwork and Java versions could not improve their

performance with more computing nodes. This is because all modified stripes had to stem into rank 0,

which thus could not obtain any benefit from parallelization. Although AgentTeamwork displayed its

more overhead for stripe transfer as increasing the file size, its 512-byte stripe cache worked out better

for small files, (more specifically a 10KB file in most cases).

Figure 16 compares heartbeat’s performance between AgentTeamwork and the corresponding Java

program. Contrary to master-workers, both AgentTeamwork and Java versions improved their per-

formance as increasing the number of computing nodes. The file size has impacted to both versions

in the similar manner to master-workers. The Java version performed 1.38 to 2.55 times better than

AgentTeamwork on 10MB-file exchange, whereas AgentTeamwork utilized its file-stripe cache more

effectively on small files whose size is up to 1MB in most cases.

In summary, the results have demonstrated that AgentTeamwork’s RandomAccessFile can allow mul-

tiple processes to share file stripes if they are exchanged uniformly as seen in heartbeat.

30

 16

 8

 4

 2

 10000

 1000

 100

 10

 1000
 500

 100

 10

 1

 0.1
 0.05

elapsed time (sec)

AgentTeamwork
Java

#processors

file size (KB)

elapsed time (sec)

Figure 16. Performance of remote stripe accesses in heartbeat

5 Related Work

This section intends to clarify that AgentTeamwork’s parallel file distribution differs from other grid

systems in terms of (1) file caching and process invocation, (2) file partitioning and parallel transfer,

(3) file duplication through a hierarchy, (4) data sieving and collective I/O, (5) replica management

and file recovery, and (6) process check-pointing and recovery. In addition, as discussion item (7),

we estimate the benefit of AgentTeamwork’s file-distribution algorithm if it is applied to other grid-

computing environments.

1. File caching and process invocation

File caching at remote sites (where user processes are running) is a classical and typical technique

to reduce both disk access and network traffic as seen in the most distributed and grid-computing

systems. Legion provides a user with its low impact buffered interface that caches entire files in

memory local to each user process [13]. Globus GASS facilitates open delegation where multiple

31

user processes can share a copy of the same file as far as they run on the same site [14]. Condor

allows a user process to cache files in its local tmp disk as well as to access a remote file server on

demand through Condor’s remote system calls and I/O sockets [15]. Similarly, AgentTeamwork

caches user files at each remote site. However, without waiting for entire files to be delivered, a

sentinel agent starts a user program that can proceed its execution as far as file messages are made

available in pipeline.

2. File partitioning and parallel transfer

File partitioning permits multiple clients to retrieve a large file in parallel from a disk array or a

collection of file servers. PVFS (Parallel Virtual File System) is such a system that has focused on

parallel file access [16]. GridFTP uses multiple peer-to-peer channels to transfer a huge volume

of data in parallel [17]. Parallel File Transfer Protocol has further accelerated cluster-to-cluster,

more specifically PVFS-to-PVFS file transfer through a direct TCP connection between each pair

of disk-dedicated cluster nodes [18]. Contrary to those systems, AgentTeamwork can neither take

advantage of PVFS nor immediately transfer files that have not yet been partitioned. Although

AgentTeamwork must read sequentially and thereafter partition a file through SubmitGUI, it is

unique in transferring file strips through an agent hierarchy and re-aggregating them when relaying

them to the same destination.

3. File duplication through a hierarchy

File duplication through a hierarchy can distribute an identical file to multiple remote sites more

effectively than one-to-one file transfer. FPFR (Fast Parallel File Replication) generates a spanning

tree from a file server to multiple clients where intermediate tree nodes duplicate and relay a given

file to their child nodes [19]. FPFR packetizes a file into smaller fragments, each of which may

even take a different route for better performance. Using Globus RFT (Reliable File Transfer) [20],

FPFR can detect faults in a tree and change its topology at run time. This work is quite close to ours

in terms of the implementation concept, however AgentTeamwork can extend its agent hierarchy

to multiple clusters and private network domains over gateways [8].

32

4. Data sieving and collective I/O

Data sieving and collective I/O are intra- and inter-process I/O optimizations that mitigate disk

accesses within a single and among multiple processes respectively by aggregating separate disk

requests into one that can access a larger contiguous disk space. ROMIO is a well-known library

that facilitates user-controllable data sieving and collective IO [12]. In particular, collective I/O

can optimize disk accesses at different levels such as disks, servers, and clients, each termed disk-

directed I/O [21], server-directed I/O [22], and two-phase I/O [23]. Since AgentTeamwork itself

behaves as a client process from the file-system viewpoint, it can be categorized in two-phase

I/O, where the first phase takes place in SubmitGUI’s file-partitioning step and the second phase

corresponds to file-stripe distribution in an agent hierarchy. A common problem is how to reduce

communication overheads incurred by file distribution in the phase two. The inspector-executor

collective I/O performs this task by exchanging file blocks among pairs of computing nodes as

rearranging these pairs in a logarithmic order [24]. Although AgentTeamwork performs its file

distribution in the same order, it differs in using a log
x
N -based agent tree where x is the maximum

number of children each agent can spawn and N is the total number of sentinel agents, (i.e., the

number of user processes).

5. Replica management and file recovery

File replication is a typical method to increase file-access availability, reduce file-access latency,

and recover crashed files. For high file availability, Coda facilitates disconnected operations in

a file system by allowing mobile clients to hoard files, emulate servers, and reintegrate files into

their original servers [25]. For lower file-access latency, the Globus replica-management archi-

tecture has implemented an LDAP-based replica catalog API that allows users to select a given

replica [26]. The EU DataGrid project has even automated this replica selection that locates the

best replica with regard to network and storage access latencies [27]. For file recovery, Con-

dor takes on-going execution snapshots and maintains them in a check-point server [15]. Globus

RFT keeps track of the status of a peer-to-peer file transfer [20]. Both are targeting a single user

process or the master process of master-worker-based applications that resumes its execution, in-

33

transit file data, and possibly worker processes. The Google file system takes a master-worker

model to distribute a group of files to so-called chunk servers residing over multiple racks [28],

so that stale computation can be repeated in parallel at different chunk servers for maintaining

high-performance computation. Contrary to those systems, AgentTeamwork does not replicate an

entire file. It places more emphasis on state-capturing of each remote process, assuming that the

original file is always available at its user site. Each sentinel agent takes snapshots of its own user

process including in-transit and on-memory file messages so as to keep pumping file messages to

the process even after a crash.

6. Process check-pointing and recovery

This feature is essential to keep executing long-run applications over a collection of computing

nodes, some of which may encounter errors sooner or later. Of importance in parallel computing

is how to restore broken communication among processes which may even lose in-transit mes-

sages. Condor-MW has focused on the master-worker model where the MW library in a master

process keeps track of and retrieves connections to all its worker processes [29]. Legion allows

its MPI applications to save their own data with MPI FT Save, restart all their execution from

the top of the main function upon a crash, and restore the data from MPI FT Restore as directed

from MPI FT Init [30]. SUMA/G has extended JVM and mpiJava functionality to repeat taking

a process snapshot into its local disk automatically and to restore the latest global state of com-

municating processes as resuming in-transit messages [31]. Compared to these systems, Agent-

Teamwork does not restrict applications to the master-worker model for process check-pointing,

resumes only a crashed process from MPI.Init(), and distributes process snapshots to remote

disks for more robustness. Its drawback is that AgentTeamwork’s check-pointing mechanism is

barrier-based among processes and user-initiated, (thus not automatic).

7. Benefits to other grid-computing environments

Our tree-based parallel file distribution could benefit some grid-computing environments that

are based on peer-to-peer file transfer or client-server-based network file systems. Condor [15],

34

Globus/GridFTP [17], and Nimrod/FT Server [32] have implemented their own mechanism to ac-

celerate, parallelize, or secure peer-to-peer file transfer as focusing on their target applications. For

instance, GridFTP maximizes file-transfer bandwidth between two end-to-end supercomputers.

Yet in case if they were to distribute a file to a collection of computing nodes, our file-distribution

algorithm could be used as an alternative in these environments. On the other hand, DUROC-

based multi-cluster system [33] and Nimrod [34] use network file systems such as SunNFS or

AFS to share files among computing nodes. As we have compared AgentTeamwork and SunNFS

for their file distribution, (which thus facilitates file sharing) in Section 4.2, we feel that our algo-

rithm could contribute better to those grid environments that use client-server-based network file

systems.

6 Conclusions

Since AgentTeamwork allows mobile agents to migrate to and resume at a new remote site, its agent

hierarchy can be considered not only as a self-remapping tree of user processes but also as dynamic file-

distribution routes to the most available processor pool. Based on this viewpoint, we have implemented

a sequence of file partitioning, distribution, collection, resumption, and consistency maintenance in an

agent hierarchy:

1. AgentTeamwork’s file-partitioning algorithm is based on the MPI-I/O concept and partitions a

random-access file into each rank’s file stripe by reading it every 16MB and tiling as many etypes

as consecutively.

2. The file-distribution algorithm takes advantage of parallelism inherent to a hierarchy and speeds

up its distribution performance with two strategies: (1) hierarchical and pipelined transfer, and

(2) file fragmentation and aggregation at each tree level. The former enables each user process to

start and advance its computation as much as possible. The latter sends files in blocks with the

optimal size.

3. The file-collection algorithm has addressed output-file congestion on higher levels of an agent

35

hierarchy by relaying files over every other tree layer toward the commander agent.

4. The file-resumption algorithm allows each sentinel agent to take a repetitive snapshot of its user

computation and to resume its parent and/or child with missing file messages when detecting a

crash in its hierarchy. This resumption keeps providing a resumed process with necessary file

messages.

5. The consistency-maintenance algorithm allows a user application to exchange their file stripes

across multiple processes. We have implemented it using AgentTeamwork’s GridTcp and GridFile

as focusing on both file recovery and data-exchange performance.

Our measurements demonstrated the efficiency of these five file-transfer strategies. Needless to say,

we must admit that network bandwidth and memory size would give a large impact onto performance

results. For file distribution, faster network could allow an agent to spawn more children as well as relay

larger file messages to each child, which would therefore reduce file-distribution time. For file collection,

larger memory space enables an agent to hold more file messages in transit to the commander, mitigate

the frequent flow control with its descendants, and thus relay output files faster to a user.

Finally, our next plan in AgentTeamwork is (1) to recover a large volume of file stripes that would

overflow remote memory and thus must be saved in remote /tmp disk; (2) to enhance SubmitGUI so

as to monitor job migration, display file redirection, and provide users with help menus for MPI-I/O-

based file partition; and (3) to allow each sentinel agent to invoke a C++ application that can call back

AgentTeamwork’s GridFile and RandomAccessFile for file manipulation. These new features would

help AgentTeamwork facilitate a high-performance and fault-tolerant file-distribution environment to a

wider range of users.

Acknowledgments

This research has been conducted under a three-year grant from National Science Foundation’s Mid-

dleware Initiative (No.0438193). We are very grateful to our CSS graduates Joshua Phillips and Fu-

mitaka Kawasaki for their programming contribution to an implementation of file-stripe consistency

36

maintenance and inter-cluster job resumption mechanisms on the AgentTeamwork system. We also

would like to express our deep appreciation to Tim Rhoades, David Grimmer, and Meryll Larkin, the

UWB Information Systems, for all their technical assistance in network and cluster management. Fi-

nally, we thank Chuck Jackels, Director of CSS Program at University of Washington, Bothell and

Shinya Kobayashi, Chair of CS Department at Ehime University, for their support in the UWB-Ehime

student-exchange program.

References

[1] Z. Balaton, G. Gombas, P. Kacsuk, A. Kornafeld, J. Kovacs, A. C. Morsi, G. Vida, N. Podhorszki,

and T. Kiss, “SZTAKI Desktop Grid: a Modular and Scalable Way of Building Large Computing

Grids,” in Proc. of Workshop on Large-Scale and Volatile Desktop Grids – PCGrid 2007 in conjuc-

tion with IEEE International Parallel and Distributed Processing Symposium, (Long Beach, CA),

pp. 26–30, IEEE, March 2007.

[2] M. Tachikawa, “PC Grid Computing – Using Increasingly Common and Powerful PCs to Sup-

ply Society with Ample Computing Resources,” Science & Technology Trends Quarterly Review,

vol. No.18, pp. 45–52, January 2006.

[3] M. Fukuda, K. Kashiwagi, and S. Kobayashi, “AgentTeamwork: Coordinating grid-computing

jobs with mobile agents,” International Journal of Applied Intelligence, vol. Vol.25, pp. 181–198,

October 2006.

[4] Message Passing Interface Forum, MPI-2: Extention to the Message-Passing Interface, ch. 9, I/O.

University of Tenessee, 1997.

[5] A. Ching, K. Coloma, and A. Coudhary, Challenges for Parallel I/O in GRID Computing, ch. 6,

Grid I/O. Publisher’s address: American Scientific Publisher, 2006.

37

[6] M. Fukuda and D. Smith, “UWAgents: A mobile agent system optimized for grid computing,” in

Proc. of the 2006 International Conference on Grid Computing and Applicaitons – CGA’06, (Las

Vegas, NV), pp. 107–113, CSREA, June 2006.

[7] M. Fukuda, C. Ngo, E. Mak, and J. Morisaki, “Resource management and monitoring in Agent-

Teamwork grid computing middleware,” in Proc. of the IEEE Pacific Rim Conference on Commu-

nications, Computers, and Signal Processing – PacRim’07, (Victoria, BC), pp. 145–148, IEEE,

August 2007.

[8] M. Fukuda, E. Horvath, and S. Lane, “Fault-tolerant job execution over multi-clusters using mobile

agents,” in Proc. of the 2007 International Conference on Grid Computing and Applicaitons –

CGA’07, (Las Vegas, NV), pp. 123–129, CSREA, June 2007.

[9] mpiJava Home Page, “http://www.hpjava.org/mpijava.html,” accessible as of February 2008.

[10] M. Fukuda and Z. Huang, “The check-pointed and error-recoverable MPI Java library of Agent-

Teamwork gird computing middleware,” in Proc. IEEE Pacific Rim Conf. on Communications,

Computers, and Signal Processing - PacRim’05, (Victoria, BC), pp. 259–262, IEEE, August 2005.

[11] J. Phillips, M. Fukuda, and J. Miyauchi, “A Java Implemenation of MPI-I/O-Oriented Random

Acess File Class in AgentTeamwork Grid Computing Middleware,” in Proc. of the IEEE Pacific

Rim Conference on Communications, Computers, and Signal Processing – PacRim’07, (Victoria,

BC), pp. 149–152, IEEE, August 2007.

[12] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective I/O in ROMIO,” in Proceedings

of the Seventh Symposium on the Frontiers of Massively Parallel Computation, pp. 182–189, IEEE

Computer Society Press, 1999.

[13] B. S. White, A. S. Grimshaw, and A. Nguyen-Tuong, “Grid-Based File Access: The Legion I/O

Model,” in Proc. of the 9th IEEE International Symposium on High Performance Distributed Com-

puting - HPDC’00, (Pittsburgh, PA), pp. 165–174, IEEE CS, August 2000.

38

[14] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke, “GASS: a data movement and ac-

cess service for wide area computing systems,” in Proc. of the Sixth Workshop on Input/Output in

Parallel and Distributed Systems, (Atlanta, GA), pp. 78–88, ACM Press, May 1999.

[15] Condor Team, “Conder version 6.6.11 manual, http://www.cs.wisc.edu/condor/manual/v6.6.11/,

(accessible as of February 2008),” user manual, University of Wisconsin, Madison, WI, June 2006.

[16] Parallel Virtual File System, “http://www.pvfs.org/,” accessible as of February 2008.

[17] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu, and I. Foster, “The

Globus striped GridFTP framework and server,” in Proc. of Super Computing 2005 - SC05, (Seattle,

WA), pp. 54–64, ACM Press, November 2005.

[18] D. Bhardwaj and R. Kumar, “A parallel file transfer protocol for clusters and gird systems,” in Proc.

of the 1st International Conference on e-Science and Grid Computing, (Melbourne, Australlia),

pp. 248–254, IEEE CS, December 2005.

[19] R. Izmailov, S. Ganguly, and N. Tu, “Fast parallel file replication in data grid.” in Homepage of

GGF-10 Workshop: The Future of Grid Data Environments at http://ness.ac.uk/events/GGF10-

DA/index.html (accessible as of February 2008), March 2004. Berlin, Germany.

[20] R. K. Madduri, C. S. Hood, and W. E. Allcock, “Reliable file transfer in grid environments,” in

Proc. of the 27th Annual IEEE Conference on Local Computer Networks - LCN2002, (Tampa, FL),

pp. 737–738, IEEE-CS, November 2002.

[21] D. Kotz, “Disk-directed I/O for MIMD multiprocessors,” ACM Transactions on Computer Systems

(TOCS), vol. Vol.15, pp. 41–74, February 1997.

[22] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett, “Server-directed collective I/O in

Panda,” in Proceedings of Supercomputing ’95, (San Diego, CA), pp. 57–60, IEEE CS, Decembe

1995.

39

[23] J. M. del Rosario, R. Bordawekar, and A. Choudhary, “Improved parallel I/O via a two-phase

run-time access strategy,” in Proceedings of the IPPS ’93 Workshop on Input/Output in Parallel

Computer Systems, (Newport Beach, CA), pp. 56–70, 1993.

[24] D. E. Singh, F. Isaila, J. C. Pichel, and J. Carretero, “A collective I/O implementation based

on inspector-executor paradignm,” in Proc. of the International Conference on Parallel and Dis-

tributed Processing Techniques and Applications – PDPTA 2007, (Las Vegas, NV), pp. 683–689,

CSREA, June 2007.

[25] J. J. Kistler and M. Satyanarayanan, “Disconnected operation in the Coda file system,” in Proceed-

ings of the 13th ACM Symposium on Operating Systems Principles, (Pacific Grove, CA), pp. 213–

225, ACM Press, October 1991.

[26] P. Kunszt, E. Laure, H. Stockinger, and K. Stockinger, “File-based replicat management,” Future

Generation Computer Systems, vol. Vol.21, pp. 115–123, January 2005.

[27] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, C. Kesselman, S. Meder, V. Nefedova,

D. Quesnel, S. Tuecke, and I. Foster, “Secure, efficient data transport and replica management

for high-performance data-intensive computing,” in Proceedings of the 18th IEEE Symposium on

Mass Storage Systems and Technologies – MSS 2001, (San Diego, CA), pp. 13–28, IEEE CS, April

2001.

[28] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” in Proceedings of the 19th

ACM Symposium on Operating Oystems Principles, (Bolton Landing, NY), pp. 29–43, ACM Press,

October 2003.

[29] Condor MW Homepage, “http://www.cs.wisc.edu/condor/mw/,” accessible as of February 2007.

[30] A. Nguyen-Tuong, Integrating Fault-Tolerance Techniques in Grid Applications. PhD thesis, Uni-

versity of Virginia, Charlottesville, VA 22904, August 2000.

40

[31] Y. Cardinale, W. Pereira, and E. Hernnandez, “Extended mpiJava for distributed checkpointing

and recovery,” in Proceedings of the 13th European PVMMPI Conference - LNCS 4192, (Bonn,

Germany), pp. 158–165, Springer, September 2006.

[32] D. Abramson, R. Sosic, J. Giddy, and B. Hall, “Nimrod: A tool for performing parametized simu-

lations using distributed workstations,” in Proc. of the 4th IEEE International Symposium on High

Performance Distributed Computing – HPDC-4, (Pentagon City, VA), pp. 112–121, IEEE-CS,

August 1995.

[33] K. Czajkowski, I. Foster, and C. Kesselman, “Resource co-allocation in computational grids,” in

Proc. of the 8th IEEE Symposium on High Performance Distributed Computing – HPDC8, (Re-

dondo Beach, CA), pp. 219–228, August 1999.

[34] D. Abramson, J. Giddy, and L. Kotler, “High performance parametric modeling with nimrod/G:

Killer application for the global grid?,” in Proc. of the 14th International Symposium on Parallel

and Distributed Processing – ISPDP, (Cancun, Mexico), pp. 520–528, IEEE-CS, May 2000.

41

