Skip to main content
Log in

Efficient parallel processing with spin-wave nanoarchitectures

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In this paper, we study the algorithm design aspects of three newly developed spin-wave architectures. The architectures are capable of simultaneously transmitting multiple signals using different frequencies, and allow for concurrent read/write operations. Using such features, we show a number of parallel and fault-tolerant routing schemes and introduce a set of generic parallel processing techniques that can be used for design of fast algorithms on these spin-wave architectures. We also present a set of application examples to illustrate the operation of the proposed generic parallel techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Roman Rietsche, Christian Dremel, … Jan-Marco Leimeister

References

  1. Miller R, Stout QF (1988) Portable parallel algorithms for geometric problems. In: Proceedings of 2nd symposium on the frontiers of massively parallel computation, pp 195–198, Oct 1988

  2. Goodman JW, Leonberger FJ, Kung S-Y, Athale RA (1984) Optical interconnections for VLSI systems. Proc IEEE 72(7):850–866

    Article  Google Scholar 

  3. Harder E, Lee SK, Choi HA (1997) On wavelength assignment in WDM optical networks. In: Proceedings MPPOI ’97, Canada, June 1997

  4. Hinton HS (1988) Architectural considerations for photonic switching networks. IEEE J Sel Areas Commun 6(7):1209–1226

    Article  Google Scholar 

  5. Eshaghian MM, Hai L (2006) A glance at VLSI optical interconnects: from the abstract modelings of the 1980s to today’s MEMS implementations. In: Handbook on Innovative Computing

  6. Eshaghian-Wilner MM, Flood AH, Khitun A, Stoddart JF, Wang KL (2006) Molecular and nanoscale computing and technology. In: Zomaya A (ed) Handbook of nature-inspired and innovative computing. Springer, New York

    Google Scholar 

  7. Balasingam P, Roychowdhury VP (1994) Nanoelectronic functional devices. Purdue University Technical Report: TR-EE 94-24

  8. Goldhaber-Gordon D, Montemerlo MS, Love JC, Opiteck GJ, Ellenbogen JC (1997) Overview of nanoelectronic devices. Proc IEEE

  9. Eshaghian-Wilner MM (2008) Bio-inspired and Nano-scale Integrated Computing. Wiley, New York

    Google Scholar 

  10. Ono Y, Takahashi Y (2000) Single-electron pass-transistor logic: operation of its elemental circuit. IEDM Technical Digest 297

  11. Yano K, Ishii T, Sano T, Mine T, Muri F, Hashimoto T, Kobayashi T, Kure T, Seki K (1999) Single-electron memory for giga-to-tera bit storage. Proc IEEE 87:633

    Article  Google Scholar 

  12. Kim DH, Sung S-K, Sim JS, Kim KR, Lee JD, Park B-G, Choi BH, Hwang SW, Ahn D (2001) Single-electron transistor based on a silicon-on-insulator quantum wire fabricated by a side-wall patterning method. Appl Phys Lett 79:3812

    Article  Google Scholar 

  13. Likharev K (1999) Single-electron devices and their applications. Proc IEEE 87(4):606–632

    Article  Google Scholar 

  14. Avouris P, Appenzeller J, Martel R, Wind SJ (2003) Carbon nanotube electronics. Proc IEEE 91(11)

  15. Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292(5517):706–709

    Article  Google Scholar 

  16. Leonard F, Tersoff J (2000) Negative differential resistance in nanotube devices. Phys Rev Lett 85:4767

    Article  Google Scholar 

  17. Vedeneev AS, Li J, Papadopoulos C, Rakitin A, Bennett AJ, Chik HW, Xu JM (1999) Molecular-scale rectifying diodes based on Y-junction carbon nanotubes. In: International electron devices meeting (IEDM) technical digest, 1999, pp 231–233

  18. Nojeh A, Ural A, Pease F, Dai H (2004) Electric-field-directed growth of carbon nanotubes in two dimensions. J Vac Sci Technol B 22:3421–3425

    Article  Google Scholar 

  19. Tans SJ, Verschueren RM, Dekker C (1998) Room temperature transistor based on a single carbon nanotube. Nature 393:49

    Article  Google Scholar 

  20. Martel R, Schmidt T, Sea HR, Hertel T, Avouris P (1998) Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447

    Article  Google Scholar 

  21. Nygard J, Cobden DH, Bockrath M, McEuen PL, Lindelof PE (1999) Electrical transport measurements on single-walled carbon nanotubes. Appl Phys A 69:297

    Article  Google Scholar 

  22. Jortner J, Ratner M (1997) Molecular Electronics. Oxford

  23. Luo Y, Collier CP, Jeppesen JO, Nielsen KA, DeIonno E, Ho G, Perkins J, Tseng H-R, Yamamoto T, Stoddart JF, Heath JR (2002) Two-dimensional molecular electronics circuits. Chem Phys Chem 3:519

    Google Scholar 

  24. Heath JR, Ratner MA (2003) Molecular electronics. Phys Today 56:43

    Article  Google Scholar 

  25. Heinrich AJ, Lutz CP, Gupta JA, Eigler DM (2002) Molecule cascades. Science 298(5597):1381–1387

    Article  Google Scholar 

  26. Strukov DB, Likharev KK (2005) CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16:888–900

    Article  Google Scholar 

  27. Drexler KE (1992) Nanosystems: molecular machinery, manufacturing, and computation. Wiley, New York

    Google Scholar 

  28. Merkle RC (1992) Self replicating systems and molecular manufacturing. J Br Interplanet Soc 45:407–413

    Google Scholar 

  29. Phillips J, Kamath K, Brock KT, Bhattacharya P (1998) Room temperature self-organized quantum dot transistors. In: 56th Annual device research conference digest, pp 46–47, June 1998

  30. Snider GLL, Orlov A, Amlani I, Bernstein GH, Lent CS, Merz JL, Porod W (1999) Quantum-dot cellular automata: line and majority logic gate. J Appl Phys 7227–7229

  31. Lent CS, Frost SE, Kogge PM (2005) Reversible computation with quantum-dot cellular automata (QCA). In: Computing Frontiers Conference, 2005

  32. Awschalom DD, Flatté ME, Samarth N (2002) Spintronics. Sci Am (May)

  33. Goldhaber-Gordon D, Montemerlo MS, Love JC, Opiteck GJ, Ellenbogen JC (1997) Overview of nanoelectronic devices. Proc IEEE 85(4):521–540

    Article  Google Scholar 

  34. Khitun A, Wang KL (2005) Nano scale computational architectures with spin-wave bus. Superlattices Microstruct 38(3):184–200

    Google Scholar 

  35. Eshaghian-Wilner MM, Khitun A, Navab S, Wang KL (2006) A nanoscale crossbar with spin waves. In: Proceedings of the 6th IEEE conference on nanotechnology, Ohio, USA, July 2006

  36. Eshaghian-Wilner MM, Khitun A, Navab S, Wang KL (2006) A nanoscale reconfigurable mesh with spin waves. In: The ACM international conference on computing frontiers, Italy, May 2006

  37. Eshaghian-Wilner MM, Khitun A, Navab S, Wang KL (2006) Nanoscale modules with spin-wave inter-communications for integrated circuits. In: The NSTI nanotech 2006, Boston, MA, May 2006

  38. Eshaghian-Wilner MM, Khitun A, Navab S, Wang KL (2007) A nanoscale architecture for constant time image processing. Phys Status Solidi (a) 204(6):1931–1936

    Article  Google Scholar 

  39. Eshaghian-Wilner MM, Khitun A, Navab S, Wang KL (2007) The spin-wave nanoscale reconfigurable mesh and the labeling problem. ACM J Emerging Technol Comput Syst (JETC) 3(2):5

    Article  Google Scholar 

  40. Eshaghian-Wilner MM, Lau L, Navab S, Shen D (2008) Parallel graph formations of partial-order multiple-sequence alignments using nano-, micro-, and multi-scale reconfigurable meshes (submitted to the IEEE Trans NanoBioScience)

  41. Gauehan PT, Dao BV, Yalamanchili S, Schimmet DE (1996) Distributed, deadlock-free routing in faulty, pipelined direct interconnection networks. IEEE Trans Comput 6:651–665

    Article  Google Scholar 

  42. Almohammand B, Bose B (1999) Fault-tolerant communication algorithms in toroidal networks. IEEE Trans Parallel Distrib Syst 10:976–983

    Article  Google Scholar 

  43. Roychowdhury VP, Janes DB, Bandyopadhyay S, Wang X (2006) Collective computational activity in self-assembled arrays of quantum dots: a novel neuromorphic architecture for nanoelectronics. IEEE Trans Electron Devices 43(10):1688–1699

    Article  Google Scholar 

  44. Rad RMP, Tehranipoor M (2006) A reconfiguration-based defect tolerance method for nanoscale devices. In: 21st IEEE international symposium on defect and fault-tolerance in VLSI systems (DFT’06), pp 107–118, 2006

  45. Nikolic K, Sadek A, Forshaw M (2002) Fault-tolerant techniques for nanocomputers. Nanotechnology 13(3):357–362

    Article  Google Scholar 

  46. Byunghyun J, Kim Y, Lombardi F (2006) Error tolerance of DNA self-assembly by monomer concentration control. In: 21st IEEE international symposium on defect and fault-tolerance in VLSI systems (DFT’06), pp 89–97, 2006

  47. Han J, Gao J, Qi Y, Jonker P, Fortes JAB (2005) Toward hardware-redundant, fault-tolerant logic for nanoelectronics. IEEE Des Test 22(4):328–339

    Article  Google Scholar 

  48. Vasudevan DP, Lala PK, Parkerson JP (2005) Fault tolerant quantum computation with new reversible gate. In: Proceedings of the NSTI nanotechnology conference, pp 744–747, 2005

  49. Yellambalase Y, Choi M, Kim Y (2006) Inherited redundancy and configurability utilization for repairing nanowire crossbars with clustered defects. In: Proceedings of the 21st IEEE international symposium on defect and fault-tolerance in VLSI systems (DFT’06), pp 98–106, 2006

  50. Hansen RC (ed) (1973) Significant phased array papers. Artech House, Norwood

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary M. Eshaghian-Wilner.

Additional information

Authors are listed in alphabetical order. The preliminary version of this paper was presented at the WORLDCOM’07, Las Vegas, June 2007.

Mary M. Eshaghian-Wilner is a Patent Agent at Arent Fox, LLP. She is also an Adjunct Professor of Electrical Engineering at the University of California, Los Angeles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eshaghian-Wilner, M.M., Navab, S. Efficient parallel processing with spin-wave nanoarchitectures. J Supercomput 49, 248–267 (2009). https://doi.org/10.1007/s11227-008-0237-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-008-0237-6

Keywords

Navigation