Skip to main content
Log in

A family of Hamiltonian and Hamiltonian connected graphs with fault tolerance

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Processor (vertex) faults and link (edge) faults may happen when a network is used, and it is meaningful to consider networks (graphs) with faulty processors and/or links. A k-regular Hamiltonian and Hamiltonian connected graph G is optimal fault-tolerant Hamiltonian and Hamiltonian connected if G remains Hamiltonian after removing at most k−2 vertices and/or edges and remains Hamiltonian connected after removing at most k−3 vertices and/or edges. In this paper, we investigate in constructing optimal fault-tolerant Hamiltonian and optimal fault-tolerant Hamiltonian connected graphs. Therefore, some of the generalized hypercubes, twisted-cubes, crossed-cubes, and Möbius cubes are optimal fault-tolerant Hamiltonian and optimal fault-tolerant Hamiltonian connected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akers SB, Krishnamurthy B (1989) A group-theoretic model for symmetric interconnection networks. IEEE Trans Comput 38:555–566

    Article  MATH  MathSciNet  Google Scholar 

  2. Ashir YA, Stewart IA (2002) Fault-tolerant embeddings of Hamiltonian circuits in k-ary n-cubes. SIAM J Discrete Math 15:317–328

    Article  MATH  MathSciNet  Google Scholar 

  3. Bhuyan L, Agrawal DP (1984) Generalized hypercube and hyperbus structures for a computer network. IEEE Trans Comput 33:323–333

    Article  MATH  Google Scholar 

  4. Bondy JA, Murty USR (1980) Graph theory with applications. North Holland, New York

    Google Scholar 

  5. Chang CH, Lin CK, Tan JJM, Huang HM, Hsu LH (2009) The super spanning connectivity and super spanning laceability of the enhanced hypercubes. J Supercomput 48:66–87

    Article  Google Scholar 

  6. Chen YC, Tsai CH, Hsu LH, Tan JJM (2004) On some super fault-tolerant Hamiltonian graphs. Appl Math Comput 148:729–741

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen YC, Hsu LH, Tan JJM (2006) A recursive construction scheme for super fault-tolerant Hamiltonian graphs. Appl Math Comput 177:465–481

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen YC, Tan JJM (2007) Restricted connectivity for three families of interconnection networks. Appl Math Comput 188:1848–1855

    Article  MATH  MathSciNet  Google Scholar 

  9. Cull P, Larson SM (1995) The Möbius cubes. IEEE Trans Comput 44:647–659

    Article  MATH  MathSciNet  Google Scholar 

  10. Duh DR, Chen GH, Hsu DF (1996) Combinatorial properties of generalized hypercube graphs. Inf Process Lett 57:41–45

    Article  MATH  MathSciNet  Google Scholar 

  11. Dvor̆ák T, Gregor P (2007) Hamiltonian fault-tolerance of hypercubes. Electron Notes Discrete Math 29:471–477

    Article  Google Scholar 

  12. Fan J, Lin X, Jia X, Lau RWH (2005) Edge-pancyclicity of twisted cubes. In: Lecture notes in computer science, vol 3827. Springer, Berlin, pp 1090–1099

    Google Scholar 

  13. Fan J, Lin X, Pan Y, Jia X (2007) Optimal fault-tolerant embedding of paths in twisted cubes. J Parallel Distrib Comput 67:205–214

    Article  MATH  Google Scholar 

  14. Fu JS (2008) Conditional fault Hamiltonicity of the complete graph. Inf Process Lett 107:110–113

    Article  MATH  Google Scholar 

  15. Fu JS, Hung HS, Chen GH (2008) Embedding fault-free cycles in crossed cubes with conditional link faults. J Supercomput. doi:10.1007/s11227-008-0232-y

    Google Scholar 

  16. Hsu LH, Lin CK (2008) Graph theory and interconnection networks. CRC Press, Boca Raton, London, New York

    Google Scholar 

  17. Hu KS, Yeoh SS, Chen CY, Hsu LH (2007) Node-pancyclicity and edge-pancyclicity of hypercube variants. Inf Process Lett 102:1–7

    Article  MATH  MathSciNet  Google Scholar 

  18. Huang WT, Chuang YC, Tan JM, Hsu LH (2000) Fault-free Hamiltonian cycle in faulty Möbius cubes. J Comput Sist 4:106–114

    Google Scholar 

  19. Huang WT, Chuang YC, Hsu LH, Tan JM (2002) On the fault-tolerant Hamiltonicity of Crossed cubes. IEICE Trans Fundam E85-A:1359–1371

    Google Scholar 

  20. Huang WT, Tan JM, Hung CN, Hsu LH (2002) Fault-tolerant Hamiltonicity of Twisted cubes. J Parallel Distrib Comput 62:591–604

    Article  MATH  Google Scholar 

  21. Latifi S, Zheng SQ, Bagherzadeh N (1992) Optimal ring embedding in hypercubes with faulty links. In: Proceedings of the IEEE symposium on fault-tolerant computing, 1992, pp 178–184

  22. Ma M, Liu G, Xu JM (2008) Fault-tolerant embedding of paths in crossed cubes. Theor Comput Sci 407:110–116

    Article  MATH  MathSciNet  Google Scholar 

  23. Rowley RA, Bose B (1993) Fault-tolerant ring embedding in de-Bruijn networks. IEEE Trans Comput 12:1480–1486

    Article  Google Scholar 

  24. Saad Y, Schultz MH (1988) Topological properties of hypercubes. IEEE Trans Comput 37:867–872

    Article  Google Scholar 

  25. Sung TY, Lin CY, Chuang YC, Hsu LH (1998) Fault tolerant token ring embedding in double loop networks. Inf Process Lett 66:201–207

    Article  MATH  MathSciNet  Google Scholar 

  26. Tsai CH, Tan JM, Chuang YC, Hsu LH (2000) Fault-free cycles and links in faulty recursive circulant graphs. In: Proceedings of the 2000 international computer symposium, 2000, pp 74–77

  27. Tseng YC, Chang SH, Sheu JP (1997) Fault-tolerant ring embedding in a Star graph with both link and node failures. IEEE Trans Parallel Distrib Syst 8:1185–1195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y-Chuang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YC., Huang, YZ., Hsu, LH. et al. A family of Hamiltonian and Hamiltonian connected graphs with fault tolerance. J Supercomput 54, 229–238 (2010). https://doi.org/10.1007/s11227-009-0316-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-009-0316-3

Keywords

Navigation