
Publisher’s version  /   Version de l'éditeur: 

The Journal of Supercomputing, 2010-11-18

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 

first page of the publication for their contact information. 

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / 

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version 

acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien 

DOI ci-dessous.

https://doi.org/10.1007/s11227-010-0492-1

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

Rule-based validation of SLA choreographies
Ul Haq, Irfan; Paschke, Adrian; Schikuta, Erich; Boley, Harold

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=6899cc4f-0508-45fe-9e95-3da9c3a33f55

https://publications-cnrc.canada.ca/fra/voir/objet/?id=6899cc4f-0508-45fe-9e95-3da9c3a33f55



Journal of Super Computing manuscript No.
(will be inserted by the editor)

Rule-Based Validation of SLA Choreographies

Irfan Ul Haq · Adrian Paschke ·

Erich Schikuta · Harold Boley

Received: date / Accepted: date

Abstract For the Service Economy to prosper, IT-based Service Markets are
required to perform certain business actions autonomically and autonomously,
e.g. helping companies to establish networks of business relationships. Service
Markets, to be practically realized require an enabling infrastructure that sup-
ports business-to-business (B2B) relationships among business stakehoders,
resulting in value chains.

B2B workflow interoperation across Virtual Organisations (VOs) brings
about novel business scenarios. In these scenarios, parts of workflows cor-
responding to different partners can be aggregated in a producer-consumer
manner, leading to hierarchical structures of added value. Service Level Agree-
ments (SLAs), which are contracts between service providers and service con-
sumers, guarantee the expected quality of service (QoS) to different stakehold-
ers at various levels along this hierarchy. Automation of service composition
in these coalition workflows directly implies the aggregation of their corre-
sponding SLAs. This hierarchical choreography and aggregation poses new
challenges regarding SLA description, management, maintenance, validation,
trust and security. In this paper we focus on design and architecture of an
agent-oriented, rule-based validation framework for hierarchical SLA aggre-
gation, enabling cross-VO workflow cooperation. The framework is based on
the Rule Responder architecture, the RBSLA project, a formal model of SLA
Views, and a distributed trust model.

I. Ul Haq · E. Schikuta
Department of Knowledge and Business Engineering, University of Vienna, Austria
Tel.: +142-1-427739526
Fax: +142-1-427739518
E-mail: irfan.ul.haq[AT]univie.ac.at

A. Paschke
Institute of Computer Science, Freie University Berlin, Germany

H. Boley
Institute of Information Technology, National Research Council, Canada



2

Keywords Service Level Agreements · Rule-Based SLA Validation · Service
Value Chains · Value Networks · Workflow Management

1 Introduction

The creation of an IT-based Service Economy requires the realization of the
notion of Service Markets. A market does not represent a simple buyer-seller
relationship, rather it is the culmination point of a complex chain of stake-
holders with a hierarchical integration of value along each point in this chain.

With the advent of on-demand service infrastructure (e.g. Cloud Comput-
ing and Internet of Services), there is a high potential for third party solution
providers such as Composite Service Providers (CSP), aggregators or resellers
[1][2] to compose together services from different external service providers
in form of workflow activities to fulfill the pay-per-use demands of their cus-
tomers. A cumulative contribution of such Composite Service Providers will
emerge as service value chains. Services are traded under formal contracts
known as Service Level Agreements (SLA). SLA in Service Oriented Infras-
tructure (SOI), is an automatically processable contract between a service and
its client; the client being a person, organization or yet another service.

The work presented in this paper aims at the validation of dynamic and au-
tomated coalition workflows in a service-enriched environment such as the Grid
or Clouds. During a business-to-business workflow composition across Virtual
Enterprizes, Service Level Agreements are made among different partners at
various points across the choreography. Workflow composition also implies
the composition of their corresponding SLAs. SLA composition in workflows
has been mostly treated [3] as a single-layer process. This single-layer SLA
composition model was insufficient to describe coalition workflows [4] where
a multilayered aggregation of services is required that results in supply-chain
type of business networks. Therefore the research community has just started
taking notice [5] of the importance to describe this hierarchical aggregation of
SLAs.

This supply-chain business network of the coalition workflows spun across
various VOs may result in the so-called Business Value Network. Business
Value Networks [6] are ways in which organizations interact with each other
forming complex chains, including multiple providers/administrative domains,
in order to drive increased business value. In a supply chain, a service provider
may have sub-contractors and some of those sub-contractors may have further
sub-contractors, resulting in a hierarchical structure. This leads to a hier-
archical structure of SLA contracts between different supply chain partners.
Since this SLA hierarchy may span across several VOs with no centralized
authority, in the rest of the paper we will call it Hierarchical SLA Choreogra-

phy or simply SLA Choreography, in accordance with the underlying Service
Choreography. The SLA Choreography needs to be validated for the reasons
of consistency and fault tolerance. The validation of hierarchical SLA Chore-
ography is not a trivial task. The validation is a distributed process crossing



3

administrative boundaries and and leading to hierarchical dependencies. The
validation process is also required to be built upon several intermingled issues
such as privacy, trust, security and automatic reasoning. On the one hand it
is not sensible to expose information of all the SLAs across the whole hierar-
chy of services as it will endanger the business processes creating added value,
and on the other hand for the sake of automation required in the processes
of validation, certain information must be shared among all the stakeholders
making the value chain. To achieve this balance between privacy and trust we
have introduced the concept of SLA Views that plugs in within our valida-
tion framework. It provides a privacy similar to that of workflow views [4,8,
9], where every service provider is limited to only their own view. SLA Views
also complement the notion of distributed trust among the various partners in
a coalition workflow [10].

In this paper we present an agent-enabled rule-based runtime validation
framework for hierarchical SLAs, which allows the provisioning, delivery, and
monitoring of services in coalition workflows as well as their highly dynamic
and scalable consumption.

The framework is based upon:

– the Rule Responder Architecture [11],
– findings of the RBSLA project [12],
– a formal model of SLA Views, and
– a distributed trust model [10].

Section 2 introduces the relevant models contributing to our validation
framework by introducing the Rule Responder architecture, RBSLA, SLA
Views, and Distributed Trust. In section 3 we describe the runtime validation
framework for Hierarchical SLA Aggregation, and in section 4, our Delegation-
of-Validation approach. Section 5 gives a survey of related research and finally,
Section 6, the conclusion and future work.

2 Validation of SLA Aggregation in the Cross-section of Models

Validation of hierarchical SLA aggregation corresponding to cooperative work-
flows is a distributed problem. The service choreography may be distributed
across several Virtual Organizations and under various administrative do-
mains. Figure 1 (left) shows that the SLA Choreography is realized on the
basis of a formal model that utilizes the concept of SLA Views, which preserve
the privacy of stakeholders (see section 2.3).

This hierarchical choreography of heterogeneous services is only possible
through a well defined distributed trust schema. Another challenge in this re-
gard, discussed in detail in [7], is the step-wise aggregation of SLAs for the
series of service providers at different levels in the service chain. The complete
information of aggregated SLA at a certain level in the service chain is known
by the corresponding service provider and only a filtered part is exposed to the
immediate consumer. This is the reason why during the validation process, the



4

Third party Trust 
Manager

PKI/X.509

Trust & Security 

SLA Views

Hierarchical SLA 
Choreography

Formal Model

Rule-Based 
Validation of 

SLA 
Choreography

Rule 
Responder

Rule-

Based 
SLAs

comprises of
based on

employs

enabled 
by

based on

described by

Service 
Choreography

Validated by Enabled 

by

Correspond to

= SLA AggregationSLA∫

SLA

Secured by 

Rule Based 

Validation of 
SLA 

Choreography

Rule 
Responder 

Architecture

RBSLA

Components

SLA-Views

Distributed 
Trust Model

Privacy
Trust

Automation

Intelligence

Fig. 1 Validation of SLA Choreographies: (left) With Context to Aggregation, (right) As
a Cross-section of Models

composed SLAs are required to be decomposed in an incremental manner down
towards the supply chain of services and get validated in their corresponding
service providers’s domain. A validation framework for the composed SLAs,
therefore, faces many design constraints and challenges: a trade-off between
privacy and trust, distributed query processing, and automation to name the
most essential ones. The aforementioned challenges bring in a cross-section of
models depicted in Figure 1(right). The privacy concerns of the partners are
ensured by the SLA-View model (see section 2.3), whereas the requirement of
trust can be addressed through a distributed PKI (Public Key Infrastructure)
based trust model. There are two rule based systems contributing in terms
of automation and intelligence. Rule Responder [13] weaves the outer shell of
the validation system by providing the required infrastructure for the automa-
tion of role description of partners as well as steering and redirection of the
distributed validation queries. The knowledge representation techniques from
the RBSLA (Rule based Service Level Agreements) project [12] contribute at
the core of validation system. Different parts of the WS-Agreement compliant
SLAs can be transformed into corresponding sets of logical rules, which can
compose together during the process of SLA composition and can be decom-
posed into separate queries during the process of validation. We will discuss
these models one by one to find out how they contribute to our proposed
validation approach.

2.1 Rule Responder Architecture

Rule Responder (http://responder.ruleml.org) is a rule-based enterprise ser-
vice middleware for distributed rule inference services and intelligent rule-
based (Complex) Event Processing on the Web. It utilizes modern enterprise
service technologies and Semantic Web technologies with intelligent agent ser-
vices that access external data sources and business vocabularies (ontologies),



5

External Agent
SLA Management System

Web Service

Distributed Query Generator

Personal Agent
Service Provider

Prova Rule Engine

Rule Base

Semantic and 

Pragmatic 

Vocabularies
Personal Rule 

Base Scripts

Organizational Agent

Prova Rule Engine

Rule Base

Enterprise 
Service 

BusHTTP

SOAP

VO 

Information 

System 

Organizationa
l Rule Scripts

(RuleML)

External Agent
Workflow Tool

Web Service

Distributed Query Generator

Dynamic Imports / Queries at Runtime

JMS

JMS

Semantic and 

Pragmatic 

Vocabularies 

Personal Agent
Client

OO-jDREW Rule Engine

Rule Base

Fact Base 
with pre-

translated 

facts

Personal Rule 
Base Scripts

Semantic and 

Pragmatic 
Vocabularies

Preferences, 

History 
Requirements  

etc.

Pre-Translation and 
Replication into Facts

at Compile Time

JMS HTTP

Fig. 2 Rule Responder Services for SLA Validation

receive and detect events (complex event processing), and make rule-based
inferences and autonomous pro-active decisions and reactions based on these
representations (enterprise decision management). For a description of the syn-
tax, semantics and implementation of the underlying logical formalisms and
its usage in IT Service Management (ITMS) see [14]. Rule Responder adopts
the approach of multi agent systems. There are three kinds of agents:

– Organisational Agents
– Personal Agents
– External Agents

A virtual organization is typically represented by an organizational agent
and a set of associated individual or more specific organizational member
agents. The organizational agent might act as a single agent towards other
internal and external individual or organizational agents. In other words, a
virtual organization’s agent can be the single (or main) point of entry for
communication with the “outer” world (external agents). Similar to an organi-
zational agent, each individual agent (personal and external) is described by its
syntactic resources of personal information about the agent, the semantic de-
scriptions that annotate the information resources with metadata and describe
the meaning with precise business vocabularies (ontologies) and a pragmatic
behavioural decision layer which defines the rules for using the information re-
sources and vocabularies/ontologies to support human agents in their decisions
or react autonomously as automated agents/services. The flow of information



6

is from external to organisational to personal agent. Figure 2 shows the Rule
Responder agents contributing to SLA validation. Two external agents outside
of VO invoke the organizational agent by sending HTML and SOAP messages.
Typical examples of external agents are web browser, client service or a work-
flow tool. In our scenario Rule Responder provides the rule-based enterprise
service middleware for highly flexible and adaptive Web-based service supply
chains. Rule Responder utilizes RuleML [15] as Platform-Independent Rule
Interchange Format. The Rule Markup Language (RuleML) is a modular, in-
terchangeable rule specification standard to express both forward (bottom-up)
and backward (top-down) rules for deduction, reaction, rewriting, and further
inferential-transformational tasks. It is defined by the Rule Markup Initiative,
an open network of individuals and groups from both industry and academia.
Figure 2 shows Enterprise Service Bus (ESB), the Mule open-source ESB
[16], as Communication Middleware and Agent/Service Broker to seamlessly
handle message-based interactions between the responder agents/services and
with other applications and services using disparate complex event processing
(CEP) technologies, transports and protocols. ESB provides a highly scalable
and flexible application messaging framework to communicate synchronously
but also asynchronously with external services and internal agents which are
deployed on the bus. A large variety of more than 30 transport protocols pro-
vided by Mule can be used to transport the messages. Currently the Prova
[14], OO jDREW [17], and Euler [18] rule engines are implemented as three
rule execution environments.

2.2 RBSLA

The Rule Based Service Level Agreements (RBSLA) [12,19,14] project focuses
on sophisticated knowledge representation concepts for service level manage-
ment (SLM) of IT services. At the core of its contract and service level man-
agement tool are rule-based languages to describe contracts such as service
level agreements or policies in a generic way. The research draws on basic
knowledge representation concepts from the area of artificial intelligence (AI)
and knowledge representation (KR) and as well as on new standards in the
area of web services computing and the semantic web. A particular interest is
the investigation of expressive logic programming techniques and logical for-
malisms such as defeasible logic, deontic logic, temporal event/action logics,
transaction and update logics, description logics as a means of deriving for-
mal declarative contract specifications with which to reason about ideal and
actual behaviours relating to agreed contract norms (permissions, obligations
and prohibitions and their violations (contrary-to-duty obligations) or excep-
tions (defeasible prima facie obligations). The important advantages of our
approach are the automated verification, validation and consistency checks of
large possibly distributed and interchanged rule sets, the automated chaining,
(scoped) reasoning and execution of rules and distributed contract modules



7

→

Level 0

→

→

→ →

→

→

→

→

→

→

→

→

→

a1

a3ai

aj

a2
b1b3

b4
bj

b2 c1

c4

c3

ci

c2

i1

ii ij

i2 j1
j3

ji

jj

j2

VO-A VO-C

VO-I

VO-J

VO-B

ap-c3

Cl-b3

Client’s
SLA

Cl-b4 Cl-a3 Cl-a2

c3-j1

b3-b1b3-c3 a3-i2 a2-aj

i2-a1i2-i1i2-j2c3-b4

ap-b3 ap-a3
ap-a2

ap-i2

Client

Client’s View of SLA Choreography

Service provider i2's View of SLA Choreography

ap-Client

Fig. 3 SLA Choreography comprising of SLA Views

as well as the flexibility in the dynamic extension with new contract rules
(dynamic transactional updates).

2.3 SLA Views

The concept of Views comes from the databases and has been very success-
fully adapted in business workflows. Workflow views are employed to separate
different administrative domains in workflow coalitions [4].

An SLA Choreography is not a workflow so the rules of workflows are not
applicable on it. For instance, in a workflow, rules such as: there should be
a single start and single exit or every split should have a join, do not apply
on SLA Choreography structure. Therefore the views of SLA Choreography
are quite different from the workflow views. A view in an SLA Choreography
represents the visibility of a business partner. Every service provider is limited
only to its own view. On the left side of Figure 3, services from different VOs
have been shown to form a choreography. On the right side of the Figure, the
network of SLAs corresponding to this service choreography has been depicted.
The SLAs are encapsulated within their respective views. Two SLA views have
been highlighted for the client and the service i2 respectively.

This scheme can be generalized for all the other partners of this SLA
Choreography. A partner (for example a service) makes two kinds of SLAs:
the consumer-oriented SLAs and the producer-oriented SLAs. In Figure 3,
SLAs are shown to be connected to small circles, representing the Aggregation
Points via certain edges called Dependencies. There are two types of depen-
dencies. Consumer-oriented SLAs can be connected to the aggregation points
from below by the consumer role dependencies, indicating that the ap has a



8

consumer role with respect to that SLA, whereas the producer-oriented SLAs
are connected to the aggregation point from above by the producer role depen-

dencies. It must be noticed that the producer and consumer roles of SLAs are
reflected through their respective dependencies with reference to a particular
aggregation point (ap). Thus one SLA may have two roles with respect to two
aggregation points, it is connected to. The notion of SLA View does not need
to take into account any loops or cyclic graphs. An SLA View corresponds to
a unique producer-oriented SLA. This important property plays a crucial role
to track down the precise value chain corresponding to a specific composite
service within an SLA Choreography.

To understand the overall picture of the SLA-Choreography, we need to
formalize these concepts. (For a more rigorous and complete formal model
elaborating SLAs and SLA Views, please see [7])
Definition 1 (Aggregation Point). An Aggregation Point ap is an object
such that

ap =< aggsla,KB >

where aggsla is the aggregated SLA produced by aggregating the consumer-
oriented SLAs connected to it. KB denotes the Knowledge Base consisting
of business rules, aggregation rules, policies and facts. The business rules and
the aggregation rules inside KB play an important role during the negotiation,
aggregation and validation processes.In Figure 3 ap-i2 is an aggregation point.
An aggregation point is the point where the consumer-oriented SLAs (of the
consumer service) are aggregated and on the basis of their aggregated content,
the service is able to decide what it can offer as a provider.

Now let us define dependencies which have been shown in Figure 3(a) as
edges joining the aggregation point with the producer and consumer oriented
SLAs. The Aggregation Point ap-i2 is connected with three consumer-oriented
SLAs and one producer-oriented SLA through dependencies.
Definition 2 (Producer Role Dependency). A producer role dependency

deppr is a tuple

deppr =< ap, sla >

where ap is the aggregation point and sla is the producer-oriented SLA. In
Figure 3(a) it is represented by the directed edge from the aggregation point
ap-i2 to the producer-oriented SLA, slaa3−i2 .
Each deppr ∈ Deppr, where Deppr is the set of all producer role dependencies
within the SLA-Choreography. Let

prodrole : (AP ) → Deppr

prodrole(api) is the unique s ∈ Deppr, for which a unique producer-
oriented SLA exists with s = (api, slai). This means that the function prodrole

maps each aggregation point api to a unique SLA through a unique producer
role dependency s.
Definition 3 (Consumer Role Dependency). Similarly a consumer role

dependency depcr is a tuple



9

depcr =< sla, ap >

where ap is the aggregation point and sla is the consumer-oriented SLA. In Fig-
ure 3, it is represented by the directed edge from the consumer-oriented SLA
i2-i1 to the aggregation point ap-i2. The aggregation point ap-i2 is connected
with three consumer role dependencies. Each depcr ∈ Depcr, where Depcr is
the set of all consumer role dependencies within the SLA Choreography.
Definition 4 (Dependency). A dependency Dep is a set that is the union
of two sets namely Deppr and Depcr, which are pairwise disjoint, i.e.

Dep = Deppr ∪Depcr

Deppr ∩Depcr = φ

Based on these definitions we see in Figure 3 that the producer-oriented
SLA (a3-i2) is dependent on the terms of the corresponding consumer-oriented
SLAs, aggregated at ap-i2 . For example the bandwidth and space aggregated
at ap-i2 would be the upper limit of what service i2 can offer to service a3. At
the same time service i2 will have to decide about its profit on the basis of the
information about total cost in the aggregated SLA using business rules from
within its KB. The aggregation point in this sense is also a decision point for
a service.

With having all the related concepts formalized, now we are in a position
to provide a formal definition of the SLA-View.
Definition 5 (SLA-View). An SLA-View denoted by slaview is a tuple such
that

slaviewi =< slapi
, deppri , api, SLAci , Depcri >

where slapi
is a producer-oriented SLA, SLAci is a set of consumer-oriented

SLAs, deppri is a producer role dependency between api and slapi
and Depcri

is the set of consumer role dependencies between the members of SLAci and
the api. Each aggregation point api in the SLA-Choreography corresponds to
a unique sla-viewi.
In Figure 3 the SLA-Views of the client and a service are highlighted.
Definition 6 (SLA Choreography). An SLAchor is a tuple such that

SLAchor =< SLA,APoints,Deps >

where SLA is set of all sla within an SLA Choreography, APoints is set
of aggregation points ap, and Deps is set of dependencies dep. During the
aggregation process, terms of the consumer-oriented SLAs are aggregated. WS-
agreement has no direct support for such an aggregation but it gives the liberty
to incorporate any external schema. We introduce an attribute for aggregation
type namely, ”typea”. The attribute typea can be made an essential part of
the service terms and will describe how the corresponding service will behave
during the aggregation process. We can define typea in a formal way, as follows:

Definition 7 (Aggregation function typea) A typea ∈ Types is a
function that maps a set of terms to a single term, which is the aggregation
of that set:



10

typea : P (Terms) → Terms

typea(term1, ...termn) = termagg

We define typea as an aggregation function that aggregates n terms into
one term. Each aggregated term is computed by applying the type function
for that term to the values of the terms for all the dependent (consumer-
oriented) SLAs which define that term. We can define different types of terms
namely sumtype, maxtype, mintype, andtype, ortype, and neutral but new
types can be added according to the situation. The aggregation terms based
on the logical operators are specially helpful in aggregating guarantee terms.
For instance in case of reward and penalty expressions, logical operators are
very useful to represent the aggregated sum of the terms. The aggregation
process is an incremental process, with aggregation functions applied at each
step i.e. every SLA view in the chain [7].

2.3.1 Special Case: Aggregation of Guarantee Terms

Guarantee Terms (GTs) can also be aggregated together similar to the Ser-
vice Description Terms (SDTs) as described in the previous section. However
there are certain peculiarities to be considered when it comes to the Guaran-
tee Terms. First of all, Guarantee Terms are optional terms in context with
the WS-Agreement standard. Secondly, even if two aggregating SDTs have
GTs associated with themselves, the GTs may refer to different service level
parameters, i.e. they provide guarantees in form of Service Level Objectives
(SLOs) about different properties of the service.

An example is a service consumer who wants to aggregate two similar stor-
age services. The aggregation of SDTs will give him the total sum of available
disk space, but what if two vendors are providing GTs describing entirely dif-
ferent aspects, e.g. access time and availability of service? These two aspects
are not related hence can not be aggregated. To solve this problem there can
be many approaches:

– a solution to this problem can be found if the SLA negotiation process
somehow facilitates the consumer to ask for guarantees upon the desired
properties of services thus helping him setting up the identical guarantees
with its different service providers. Not only this type of mechanism is very
difficult to achieve, but by restricting the variability of SLA contents, it
also turns out to be contrary to the automation requirements of the process
for which it was originally designed for.

– a similar approach can be based on the renegotiation for a revision of
SLA with new guarantees. This approach may not be successful every time
because the service provider may not be in a position to offer the required
type of guarantee.

– some popular (or straightforward) guarantees may be standardized to be
always offered for the relevant services by all the service providers. This
approach will definitely improve the situation but there will be always new
services with innovative properties expressed by unseen guarantees.



11

– if the guarantees translate to the quality of service then in some situations
it may be desirable to use ORType aggregation in order to segregate the
services on the basis of their guarantees. For this purpose the service terms
should be declared as ORType.

– the most straightforward and safe method is to leave the guarantees dis-
aggregated and the situation should be reported to the service provider to
take some decision. In this way, we may allow each service provider in the
supply chain to figure out and set up its own Guarantee Terms during the
aggregation process based on its personal business rules.

The last approach also conforms to our formal model. We assume the aggre-
gation point to be the decision center of the service provider as well. Within
this decision center, the aggregation of SLAs is performed to facilitate the
formation of business objectives of the service provider. Therefore, when a
stakeholder in the supply chain acts as a service provider, it needs to layout
its business strategy at least once before starting the provision of services.
Our aggregation model thus only promises a semi-automatic aggregation of
Guarantee Terms. In that context, the aggregation of Guarantee Terms is
purely a business issue and is interlinked with the business goals of the service
provider. This approach also resolves another very crucial issue of aggregating
reward and penalty expressions. Within the aggregation point, the reward and
penalty expressions must be expressed in accordance with the business rules
of the service provider. A subset of those business rules may be dedicated
especially to facilitate the aggregation process. We represent the aggregated
Guarantee Terms in form of logical rules. In section 3, we will explain how to
apply backward chaining mechanism on these rules as part of our validation
framework.

2.4 Distributed Trust Model

Trust not only plays a crucial role in reducing SLA violations in workflow
compositions but it has also been shown [20] that maximizing participants
trust even helps runtime scheduling to survive in dynamic and open environ-
ment. We need to choose a suitable trust model that integrates seamlessly
with our aggregation and validation model. During service choreography, ser-
vices may form temporary composition with other services, scattered across
different VOs. Whose parent VO will act as the root CA in this case? Pub-
lic Key Infrastructure (PKI) is a popular distributed trust model that offers
certificate containing the name of the certificate holder and the holder’s pub-
lic key, as well as the digital signature of a Certification Authority (CA) for
authentication. The public keys are distributed among all the trusted parties,
packaged in digital certificates, building trust chains. A solution for dynamic
ad hoc networks is the inclusion of a Third Party Trust Manager acting as
a root CA. We propose a PKI based trust model with a third party trust
manager that will act as a root CA and authenticate member VOs. Some of
those authenticated members may further authenticate other members and



12

services and so on. The authentication layer in each VO middle-ware may be
based on Grid Security Infrastructure (GSI) where all resources need to install
the trusted certificates of their CAs. GSI uses X.509 [21] proxy certificates to
enable Single sign-on and Delegation. With Single Sign-On, the user does not
have to bother to sign in again and again in order to traverse along the chain
of trusted partners (VOs and services). This can be achieved by the Cross-CA
Hierarchical [21] [22]Trust Model where the top most CA, called the root CA
provides certificates to its subordinate CAs and these subordinates can fur-
ther issue certificates to other CAs (subordinates), services or users. In [23], we
have proposed a more rigorous hybrid trust model integrated with our valida-
tion framework. It combines the PKI and reputation based trust approaches
to foster trust among stakeholders. However the details of this trust model
are beyond the scope of this paper. SLA views integrate very closely with the
trust model to maintain a balance between trust and security. While the trust
model promises trust and security, the SLA views protect privacy.

3 Rule based Validation Framework for Hierarchical Aggregation
of SLAs

Service Level agreements are frequently validated throughout their life cy-
cle. Runtime Validation ensures that the service guarantees are in complete
conformance with the expected levels. WS-Agreement [24] defines a detailed
structure of Guarantee Terms with the most important constituents being:
Service Level Objectives that define the desired quality of service, Qualifying
Conditions that express assertions over service attributes, and Penalty and
Reward expressions. These terms are represented as logical rules following the
RBSLA specifications. These rules are composed together during the process
of SLA aggregation [7], introduced in the section 2.3. The process of vali-
dation is performed by using these rules as distributed queries. During the
validation process, queries are decomposed making their premises as subgoals.
This backward chaining propagates throughout the SLA Choreography. If all
the subgoals are satisfied then the validation is successful.

We have discussed how SLA Views contribute to the process of hierarchical
SLA aggregation across SLA choreographies. A distributed validation process
is required for this aggregation of SLA choreographies to frequently validate it
for the sake of maintenance and fault tolerance. Due to the consumer-oriented
aggregation structure of SLA choreography and because the aggregation de-
tails are obscured at different levels of hierarchy, a distributed top-down valida-
tion mechanism is a good strategy for the complete validation of a hierarchical
SLA aggregation. A top-down validation approach has several advantages in
connection with its implementation:

– interfaces can be validated before going into details of modules,
– in case of a problem on higher levels, one does not need to go into lower

levels,



13

SLA-View a

SLA 
Choreography

SLA-View y

SLA View x

SLA-View d

SLA-View c

SLA-View b

PA y

Rule Engine

Knowledgebase

PA d

Rule Engine

Knowledgebase

PA c

Rule Engine

Knowledgebase

PA b

Rule Engine

Knowledgebase

PA a

Rule Engine

Knowledgebase

PA x

Rule Engine

Knowledgebase

OA A

Rule Engine

Knowledgebase

OA B

Rule Engine

Knowledgebase

Fig. 4 Every SLA-View corresponds to a Personal Agent

– since in the view based SLA aggregation, the top level represents the client’s
perspective therefore this approach can better translate the on-demand
validation queries initiated from the client.

Figure 4 depicts how the Rule Responder and SLA-Views work together to
enable this scheme. Each SLA-View that in fact represents a service provider
in the SLA Choreography, is connected to a Personal Agent (PA). SLA chore-
ography is composed of various SLA views. A PA receives the queries from
the Organizational Agent (OA) and having the complete information of its
consumer oriented SLAs in its knowledge-base, performs the local validation
and delivers back the responses on behalf of the service providers.

It must be highlighted that the overall collaboration between VOs is based
on choreography, while the internal collaboration model within a VO (one
closed enterprise service network) can be either choreography with no central
authority or an orchestration with orchestration workflows defined in the orga-
nizational agent as under control of a central authority within this particular
VO. Rule Responder can span across several VOs and can support both of the
collaboration models. Rule Responder supports Platform-dependent Rule En-
gines as Execution Environments. Each agent service might run one or more
arbitrary rule engines to execute the interchanged queries, rules and events
and derive answers on requests and reactions on detected events.

The complete request pattern starting from the External Agent has been
depicted in Figure 5. OA intercepts the query at the boundary of a VO and
redirects it towards the corresponding PA. Rule Responder architecture sup-
ports various multi-agent communication protocols including Agent Communi-
cation Language (ACL) [25]. The trust model facilitates the distributed query



14

Virtual Organization 

Rule Responder

Personal Agent

UnderstandPerform-
ative and Payload

n

Validate

n

1

Delegate to 

Personal Agent

1

End

External Agent

End

Validation Request

e.g. ACL:query-ref

YesNo

1

1Subconversation

e.g. ACL:not-

understoodSelect relevant 
ontology

Inform/Send 

e.g. ACL:inform-
ref

Subconversation

e.g. ACL:query-ref

End

Inform

e.g. ACL:inform-
refProcess 

Answer

Inform

e.g. ACL:inform-

ref

Repeatable 
Processes

Fig. 5 Role Activity Diagram for a simple Query-Answer Conversation

to travel across various domains through a single sign-on and delegation mech-
anism. Referring to this multi-agent architecture coupled with the notion of
SLA Views and the distributed trust, the validation process is termed as the
Delegation of Validation.

4 Delegation of Validation

The aggregation of SLAs is a distributed mechanism and the aggregation in-
formation is scattered throughout the SLA choreography across various SLA
views. To be able to validate the complete SLA aggregation, the validation
query is required to traverse through all the SLA views lying across heteroge-
neous administrative domains and get validated locally at each SLA view. The
multi-agent architecture of Rule Responder provides communication middle-
ware to the distributed stakeholders namely the client, the VOs and various
service providers. The Delegation of Validation process empowered by the sin-
gle sign-on and delegation properties of the distributed trust model, helps the
distribute query mechanism to operate seamlessly across different administra-
tive domains.

Now we explain how the Guarantee Terms from a WS-Agreement, ex-
pressed as rules, are transformed into distributed queries. We discussed in the
section 2.3 how the aggregation functions are applied on the basis of aggre-
gation type of a service term, identified by typea attribute. SLOs can also be
aggregated as conjunctive premises of derivation rules. It is also important to



15

GSLA

Media Engine
(SaaS)

Client’s 

SLA-View 

ap-client

Computing
Infrastructure

(IaaS)

Rendering
Workflow
(PaaS)

Hosting
Service
(IaaS)

ap-S1

ap-S2

Rendering Service’s

SLA-View

Min(resolution)

Σ(cost)

SLO={B/W, Cost, Response-time, Resolution}

SLO={Cost, Response-time, Resolution}

Max(response time)

Σ(cost)

Fig. 6 Example Scenario for SLA Views

realize that the SLOs refer to an established SLA and their ranges are meant
to be guarded in order to maintain desired levels of service.

In this section we will present a motivational scenario (see Figure 6) about
a dynamic workflow composition based on the aggregation of Cloud based
service. Arfa is a graphics designer and she has just finished designing an
animation involving thousands of high resolution images. Now she needs to
carry out hi-tech multi-media operations such as rendering and editing. She
plans to utilize online services to accomplish these tasks. A media workflow
service allows Arfa to define a series of activities involving video rendering,
compression etc. Afterwards she would like to host the final compressed video
on a dedicated server to visualize the output of her work. From Arfa’s view-
point, she is only composing two workflow services, i.e. ”rendering workflow”
service and the ”hosting service” identified as the ”Platform as a Service”
(PaaS) and the ”Infrastructure as a Service” (IaaS) respectively by her Cloud
based service providers. What Arfa’s View does not cover is the fact that both
of these services are themselves result of an aggregation of even more basic
services thus extending a supply chain type of structure beneath them. The
rendering workflow subdivides into services such as the ”media engine” and
the ”computing infrastructure” provided by different service providers in a
public Cloud. On further investigation it may be revealed that the ”media
engine” is composed of even more basic services such as the ”graphics engine”
the ”sound engine”, and the computing Infrastructure too resells different
qualities of computing services with varying response times and calculation
speeds thus the list goes on. The SLA-Choreography resulting from this simple
scenario is shown in Figure 6. There are two services, namely the rendering



16

SLO() :- ~gt(Cost,45,euro), ~gt(Rtime,5,sec), ~lt(Resol,1080X720,pxls), ~lt(BW,50,mbps).

~gt(Rtime,5,sec) :- ~gt(Cmplxty,20,pts),~gt(CRtime,2,sec),
~gt(Datasize,30,mb),~gt(Latency,0.5,sec).

~gt(Rcost, 25, eur) :- ~gt(cost(Computation), 7,eur),

~gt (cost(Rendalgo), 11, eur).

Query (a)
Query (b

)

( Distributed Query )

VO-B containng Rendering service 
provider

VO-A containng Hosting service 
provider

PLA

PA-x

EA

OA-A

~gt(Hcost, 20, eur) :- ~gt(cost(Hosting), 12,eur),
~gt(cost(LocalBW),3,eur)).

OA-B

PA-y

~lt(Resol, 1080X720, pxls):- ~lt(Rresol, 1920X1080, pxls),   
~lt(Hresol, 1080X720, pxls).

Fig. 7 Validation through distributed query decomposition

workflow service and the hosting service. The host video service downloads
the video from a specified location, archives it and makes it available online.
An authenticated user can play the video in a YouTube like style.

In the scenario, the user is interested to render her videos and then host
them on the web. Her requirements include a maximum cost of 45 Euros,
maximum response time of 5 seconds, minimum resolution of 1080X720 pixels
and the minimum bandwidth (from hosting service) of 50 Mbps.

In the Figure 7, we have depicted this scenario from validation point of
view. The user requirements are shown on the top of the figure, expressed as
a derivation rule composed of SLOs of the final aggregated SLA. It must be
noted that in Figure 7, we have intentionally chosen to represent these rules
in a highly abstract format. This is only for the convenience of reading and
comprehension. However later in this section we also explain how to formally
represent and implement these rules.

The agents OA and PA in the Figure 7 representing the Rule Responder
architecture, are shown to automate the distributed query processing. For
the sake of simplicity, we have outlined the Rule Responder architecture just
from agent-oriented perspective, and have abstracted various essential details
such as the Rule-bases, the knowledge resources and the role of Enterprize
Service Bus (ESB). The predicates lt and gt denote lesser-than and greater-
than respectively. The user requirements are expressed as a set of premises in
the following derivation rule:

SLO() :- ~gt(Cost,45,euro), ~gt(Rtime,5,sec),

~lt(BW,50,mbps), ~lt(Resol,1080X720,pxls).

It should be noted that in accordance with the WS-Agreement standard,
there are three arguments in each SLO, denoting: the SLO name, its value and
its unit respectively. During the validation process, this rule will be decom-
posed such that each premise will become a subgoal. This subgoal will be sent
as a message to the PA corresponding to the next SLA view in the hierarchy



17

where it will emerge as a conclusion of one of the rules in the local rule set, thus
forming a distributed rule chain. The initial steps of decomposition procedure
are depicted at the bottom of the figure. In the figure, Organizational Agents
(OA) have been shown to receive and track the distributed query whenever it
enters a new VO. For each service provider, there is a Personal Agent (PA).
A PA, after finishing its job, should report to the corresponding OA that will
redirect the distributed query to the service provider’s PA that comes next in
the hierarchical chain. The process continues until the query has found all the
goals expressed in terms of logical rules. Active rules tracking these goals or
SLOs, are then invoked locally within the administrative domains of the cor-
responding SLA views. The true or false results are conveyed back following
the same routes.

To validate all the guarantee terms of the final (client’s) aggregated SLA,
the aggregation chunks within all the SLA Views, scattered through the whole
SLA Choreography, are required to be validated. In our scenario, OA-B re-
ceives a subgoal ∼ gt(Rtime, 5, sec) representing the requirement that the
total response time of the system should not be more than 5 seconds. This
SLO depends on several factors such as the complexity of the rendering al-
gorithm, size of the data, latency and response time of the computational
hardware which is expressed as the new subgoal:

~gt(Rtime,5,sec) :- ~gt(Cmplxty,20,pts), ~gt(CRtime,2,sec),

~gt(Datasize,30,mb), ~gt(Latency,0.5,sec).

The SLO expressing the cost will be divided between the two service
providers as shown in the Figure 7. The service cost at the level of OA-A
should be less than 20 and is dependent on the sum of the cost for hosting and
the cost for local bandwidth. The varying upper limit of cost at different levels
reflect the profit margins of different providers e.g. the provider in OA-A has
a profit margin of 5 Euros.

As we have discussed earlier, the rules shown in the Figure 7 have been
highly abstracted for reading convenience. In practice, we need to take into
consideration many additional details. To highlight these issues, we begin with
the formal representation of the SLO state that CRtime should be less then 2
seconds:

slo(Serv2, CRtime, <2, sec)

Serv2 is the name of the service with which this SLO is associated. Every SLO
must have a reference point similar to Serv2. This particular SLO represents
a state that is initiated if there is an event CRtime, which is a variable bound
to a measurement value, which is greater then 2 seconds:

initiates(CRtime, slo(Serv2,CRtime,<2,sec), T) :- CRtime < 2.

terminates(CRtime, slo(Serv2,CRtime,<2,sec), T) :- CRtime >= 2.

These two lines describe the initiation and termination of the SLO state. The
SLO itself is associated with a specific service Serv2 and describes the user’s
requirement that the response time of the service should not exceed 2 seconds.



18

In other words, if the response time is lower than 2 seconds, the SLO is ful-
filled, if it is greater than 2 seconds, the SLO is violated. The event is the
measurement of CRTime at a particular time point such as:

happens(CRtime,T):- sysTime(T), ping(Serv2,CRtime).

Since CRtime is an event, we need to make it happen. In this case, in the
happens rule we simply measure the response time in terms of systems time
lapsed by pinging the service. It is now possible to ask queries if the SLO state
holds at a particular point in time or not (i.e., violation of the SLO):

holdsAt(slo(Serv2,CRtime,<2,sec), 2001-10-26T21:32:52.12679)?

The result is true or false depending on the measurement result in the happens
event rule. It is now possible to define SLO state processing rules such as SLO
Rtime, which is the response time of CRtime.

holdsAt(slo(Serv1,Rtime,<5,sec),T) :-

holdsAt(slo(Serv2,Cmplxty,<20,pts),T),

holdsAt(slo(Serv2,Datasize,<30,mb),T),

holdsAt(slo(Serv2,Latency,<0.5,sec),T),

holdsAt(slo(Serv2,CRtime,<2,sec), T).

and ask if this derived SLO it violated at a certain point in time,

not(holdsAt(slo(Serv1,Rtime,<5,sec), 2001-10-26T21:32:52.12679))?

The delegation of validation, continuing across various levels, reaches the
SLA views originating the corresponding SLOs, and the SLOs get validated
there. At each level, the corresponding reward and penalty conditions are
also checked and if required, appropriate action is taken. The distributed Rule
Responder agent architecture acts as an enabling technology for the SLA Views
concept. One of its important features is that we can implement principles
of autonomy, information hiding and privacy with the agent approach. For
instance, the details how a particular service level objective is measured and
computed in a personal agent might be hidden (e.g. a third-party monitoring
service) and only the result if the service level is met or not might be revealed to
the public. Another important aspect is that the monitoring/validation might
run in parallel, i.e. several service provider (PAs) might be queried by an OA
in parallel via messaging. For instance, a complex SLOs might be decomposed
by the OA into several subgoals which are then sent in parallel to the different
services (PAs) which validate them.

Qualifying Conditions and penalty and reward expressions can be expressed
through Event Condition Action (ECA) rules. For example, if we want to
express the statement “If the response time of the service named “Serv7” is
larger than 60 seconds then there is a penalty of 5 Euros”, we can write its
equivalent in WS-Agreement as follows:

<wsag:Penalty>

<wsag:AssesmentInterval>

<wsag:TimeInterval> 60



19

</wsag:TimeInteval>

<wsag:Count> 1 </wsag:Count>

</wsag:AssesmentInterval>

<wsag:ValueUnit> Eur </wsag:ValueUnit>

<wsag:ValueExpr> 5 </wsag:ValueExpr>

</wsag:Penalty>

This can also be represented by ECA rules:

timer(sec,T) :- Timer(T), interval(1,min).

event(Serv7,Violate) :- ping(Serv7,RT), RT>60.

action(Serv7,Penalty) :- penalty(Serv7,Obligation,5).

Now combining together and generalizing for any service x:

ECA(?x, Monitor) :- timer(sec,T),

event(?x,violate),

action(?x,penalty).

The above rule is activated according to the timer(sec, T) which is defined by
the following rule, invoked after every minute:

timer(sec,T) :- Timer(T), interval(1,min).

Similar approach can be used for the renegotiation, fault tolerance and
breach management processes. During renegotiation, the distributed query
traverses in the same way towards the service providers, offering those terms
which are desired to be renegotiated. During fault tolerance and breach man-
agement, violations are localized through a similar invocation of the distributed
query. The combination of ECA rules and using derivation rules to implement
the different parts of an ECA rule provides high expressiveness and can be
very easily transformed in a rule based markup language such as RuleML
[15]. RuleML allows to declaratively implement the functionality of each part
of a Reaction Rule (event, condition, action etc.) in terms of derivation rule
sets (with rule chaining), thus making them processable in autonomic and
autonomous way.

5 Related Work

The concept of Workflow Views is utilized to maintain the balance between
trust and security among business partners [26]. Schulz et al [4] have intro-
duced the concept of view based coalition workflows. Chiu et al [27] present
a meta model of workflow views and their semantics based on supply chain
e-service but their model lacks an integrated cross-organizational perspective.
Other authors [26,28], however, do propose a global view or a decomposition
process based on the views. But none of them have focused on the dynamic
workflows in their approach. Chiu et al [29] describe a contract model based on
workflow views. They construct an e-contract model that defines e-contracts
in plain text format. Static and dynamic verification of temporal constraints



20

[30,31] is very crucial in workflows to avoid any temporal violations during the
workflow life cycle. Eder et al [32] employ the concept of views to calculate
the temporal consistency of interorganizational workflows by using abstraction
and aggregation operators of views but their approach is also limited to static
or predefined workflows.

A little research has been carried out towards dynamic SLA composition
of workflows [3,33,34]. The research area corresponding to the management of
such aggregated SLAs is still wide open. Ganna Frankova [33] has highlighted
the importance of this issue but she has just described her vision instead of
any concrete model.

RBSLA [12] transforms SLAs into logical rules to automate their manage-
ment and monitoring. The authors discuss knowledge representation of SLAs
with complex business rules and policies. RBSLA [19,12] uses a combination of
Horn Logic, Deontic Logic and ECA (Event-Condition-Action) rules. RBSLA
also covers many related areas such as the breach management, authorization
control, conflict detection and resolution, service billing, reporting, and other
contract enforcements. RBSLA employs query driven, backward reasoning for
SLA management. Oldham et al [35] have extended WS-Agreement by build-
ing a rule based ontology on the WS-Agreement. Their SWAPS schema [35]
transforms constructs from the Guarantee terms into predicate based markup
language. They admit that their schema is limited to a specific domain.

The Grid Security Infrastructure (GSI) and the security modules of middle-
ware, provide a set of security protocols for achieving mutual entity authenti-
cation between a user (actually a user’s proxy) and resource providers [22]. GSI
uses X.509 proxy certificates (PCs) to enable Single sign-on and Delegation
[21].

6 Conclusion and Future Work

In this paper, we presented the design of a validation framework for hierarchi-
cal SLA aggregations corresponding to cross-VO workflow compositions. This
rule based validation framework employs a top-down validation mechanism
based on distributed query processing. The validation framework assumes the
hierarchical aggregation of SLAs [7]. The validation framework also assumes
unique consumers for the providers of a value chain in the hierarchy. In the
future, we plan to implement the distributed rule based validation system
based on RuleML, through iterative development phases, and adhering to the
WS-Agreements standard.

References

1. Ludwig, A.: COSMA -An Approach for Managing SLAs in Composite Services. In:
Lecture Notes in Computer Science, Springer Berlin-Heidelberg (2008)

2. Buyyaa, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th
utility . Future Generation Computer Systems, Volume 25 (2010) 599–616



21

3. Blake, M.B., Cunnings, D.J.: Workflow composition of service level agreements, Inter-
national Conference on Services Computing (SCC2007) (2007)

4. Schulz, K.A., Orlowska, M.E.: Facilitating cross-organisational workflows with a work-
flow view approache. Data and Knowledge Engineering 51 (2004) 109–147

5. SLA@SOI: http://www.sla-at-soi.org/index.html (12 March 2009)
6. NESSI-Grid: http://www.soi-nwg.org/doku.php?id=sra:description (last access:

March12, 2009)
7. Haq, I.U., Huqqani, A.A., Schikuta, E.: Aggregating Hierarchical Service Level Agree-

ments in Business Value Networks. In: Lecture Notes in Computer Science. Volume
Volume 5701/2009., Springer Berlin-Heidelberg (2009) 176–192

8. Chebbi, I., Dustdar, S., Tata, S.: The view based approach to dynamic inter-
organizational workflow cooperation. Data and Knowledge Engineering 56 (2006) 139–
173

9. Liu, D.R., Shen, M.: Workflow modeling for virtual processes: an order-preserving
process-view approach. Information Systems 28 (2002) 505–532

10. Haq, I.U., Huqqani, A.A., Schikuta, E.: A conceptual model for aggregation and valida-
tion of SLAs in Business Value Networks, accepted in the 3rd International Conference
on Adaptive Business Information Systems , Leipzig, Germany (2009)

11. Paschke, A., Boley, H., Kozlenkov, A., Craig, B.: Rule responder: RuleML-based agents
for distributed collaboration on the pragmatic web, Proceedings of the 2nd international
conference on Pragmatic web Tilburg, The Netherlands (2007)

12. Paschke, A., Bichler, M.: Knowledge representation concepts for automated SLA man-
agement. Int. Journal of Decision Support Systems (DSS) (March 2006)

13. Paschke, A., Harold, B., Kozlenkov, A., Craig, B.: Rule Responder: A RuleML-
Based Pragmatic Agent Web for Collaborative Teams and Virtual Organizations,
http://ibis.in.tum.de/projects/paw/ (2007)

14. Paschke, A.: Rule-Based Service Level Agreements - Knowledge Representation for
Automated e-Contract, SLA and Policy Management. Idea Verlag GmbH, Munich
(2007)

15. Boley, H.: The Rule-ML Family of Web Rule Languages. In: 4th Int. Workshop on
Principles and Practice of Semantic Web Reasoning, Budva, Montenegro (2006)

16. Mule: Mule Enterprise Service Bus, http://mule.codehaus.org/display/MULE/Home
(2006)

17. Ball, M., Boley, H., Hirtle, D., Mei, J., Spencer, B.: The OO jDrew Reference Imple-
mentation of RuleML. In: RuleML 2005, Galway (2005)

18. Roo, J.D.: Euler proof mechanism.
19. Paschke, A., Bichler, M.: SLA representation management and enforcement, The 2005

IEEE International Conference on e-Technology, e-Commerce and e-Service (2005)
20. Wang, M., Kotagiri, R., Chen, J.: Trust-based robust scheduling and runtime adaptation

of scientific workflow. Concurrency and Computation: Practice and Experience 21(16)
(2009) 1982–1998

21. Lioy, A., M.Marian, N.Moltchanova, Pala, M.: PKI past, present and future. Interna-
tional Journal of Information Security, Springer Berlin (pages 1829) 2006

22. Zhao, S., Aggarwal, A., Kent, R.D.: PKI-based authentication mechanisms in grid
systems, International Conference on Networking, Architecture, and Storage (2007)

23. Haq, I.U., Alnemr, R., Paschke, A., Schikuta, E., Boley, H., Meinel, C.: Distributed trust
management for validating sla choreographies. In: SLAs in Grids workshop, CoreGRID
Springer series. (2009)

24. Ludwig et al: Web Service Agreement (WS-Agreement). GFD.107 proposed recommen-
dation (last access: July 12, 2008)

25. FIPA: FIPA Agent Communication Language, http://www.fipa.org/, accessed Dec.
2001 (2000)

26. Shen, M., Liu, D.R.: Discovering role-relevant process-views for disseminating process
knowledge. Expert Systems with Applications 26 (2004) 301–310

27. Chiu, D., Cheung, S., Till, S., Karalapalem, K., Li, Q., Kafeza, E.: Workflow view
driven cross-organisational interoperability in a web service environment. Information
Technology and Management 5 (2004) 221–250



22

28. Li, Q., Chiu, D., Shan, Z., Hung, P., Cheung, S.: Flows and views for scalable scientific
process integration. In: First International Conference on Scalable Information Systems,
Hong Kong. (2006)

29. Chiu, D., Li, K.K.Q., Kafeza, E.: Workflow view based e-contracts in a cross-
organisational e-services environment. Distributed and Parallel Databases 12 (2002)
193–216

30. Chen, J., Yang, Y.: Activity completion duration based checkpoint selection for dynamic
verification of temporal constraints in grid workflow. International Journal of High
Performance Computing Applications, 319-329 (2008) 22(3)

31. Chen, J., Yang, Y.: Temporal dependency based checkpoint selection for dynamic ver-
ification of temporal constraints in scientific workflow systems. In: accepted in ACM
Transactions on Software Engineering and Methodology. (2009)

32. Eder, J., Tahamatan, A.: Temporal consistency of view based interorganizational work-
flows, 2nd International United Information Systems Conference, Austria (2008)

33. Frankova, G.: Service level agreements: Web services and security. Springer Verlag,
Berlin Heidelberg (2007) 556–562

34. Unger, T., Leyman, F., Mauchart, S., Scheibler, T.: Aggregation of Service Level Agree-
ment in the context of business processes, Enterprise Distributed Object Computing
Conference ( EDOC ’08) Munich, Germany (2008)

35. Oldham, N., Verma, K., Sheth, A., Hakimpour, F.: Semantic WS-Agreement partner
selection, Proceedings of the 15th international conference on World Wide Web, Edin-
burgh, Scotland (2006)


