Skip to main content
Log in

Research challenges and perspectives on Wisdom Web of Things (W2T)

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The rapid development of the Internet and the Internet of Things accelerates the emergence of the hyper world. It has become a pressing research issue to realize the organic amalgamation and harmonious symbiosis among humans, computers, and things in the hyper world, which consists of the social world, the physical world, and the information world (cyber world). In this paper, the notion of Wisdom Web of Things (W2T) is proposed in order to address this issue. As inspired by the material cycle in the physical world, the W2T focuses on the data cycle, namely “from things to data, information, knowledge, wisdom, services, humans, and then back to things.” A W2T data cycle system is designed to implement such a cycle, which is, technologically speaking, a practical way to realize the harmonious symbiosis of humans, computers, and things in the emerging hyper world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Australian EEG Database (2010). http://eeg.newcastle.edu.au/inquiry/

  2. Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Patterson DA, Rabkin A, Stoica I, Zaharia M (2009) Above the clouds: a Berkeley view of cloud computing. Technical report, EECS Department, University of California, Berkeley

  3. Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Sci Am 284(5):34–43

    Article  Google Scholar 

  4. Casas R, Marin RB, Robinet A, AR Delgado, Yarza AR, McGinn J, Picking R, Grout V (2008) User modelling in ambient intelligence for elderly and disabled people. In: Proc the 11th international conference on computers helping people with special needs (ICCHP 2008), 2008, pp 114–122

    Chapter  Google Scholar 

  5. Chaouchi H (2010) The Internet of things-connecting objects to the web. ISTE Ltd. Wiley, New York

    Google Scholar 

  6. Chen JH, Zhong N (2008) Data-Brain modeling based on Brain Informatics methodology. In: Proc the 2008 IEEE/WIC/ACM international conference on web intelligence (WI’08), 2008, pp 41–47

    Chapter  Google Scholar 

  7. Chen JH, Zhong N (2009) Data-Brain modeling for systematic Brain Informatics. In: Proc the 2009 international conference on brain informatics (BI 2009), 2009, pp 182–193

    Chapter  Google Scholar 

  8. Chen JH, Zhong N, Huang RH (2010) Towards systematic human Brain Data management using a Data-Brain based GLS-BI system. In: Proc the 2010 international conference on Brain Informatics (BI 2010), 2010, pp 365–376

    Google Scholar 

  9. Davidson RJ, Irwin W, Anderle MJ, Kalin NH (2003) The neural substrates of affective processing in depressed patients treated with venlafaxine. Am J Psychiatry 160(1):64–75

    Article  Google Scholar 

  10. Dillon T, Talevski A, Potdar V, Chang E (2009) Web of things as a framework for ubiquitous intelligence and computing. In: Proc the 6th international conference on ubiquitous intelligence and computing, pp 1–10

    Google Scholar 

  11. Fensel D, van Harmelen F (2007) Unifying reasoning and search to web scale. IEEE Internet Comput 11(2):96 94–95

    Article  Google Scholar 

  12. Fensel D, van Harmelen F, Andersson B, Brennan P, Cunningham H, ED Valle, Fischer F, Huang ZS, Kiryakov A, Lee TK, Schooler L, Tresp V, Wesner S, Witbrock M, Zhong N (2008) Towards LarKC: a platform for web-scale reasoning. In: Proc the 2008 IEEE international conference on semantic computing, pp 524–529

    Chapter  Google Scholar 

  13. Foster I, Kesselman C (1999) The Grid: blueprint for a new computing infrastructure. Morgan Kaufmann, San Mateo

    Google Scholar 

  14. Foster I, Kesselman C (2003) The Grid 2: blueprint for a new computing infrastructure. Morgan Kaufmann, San Mateo

    Google Scholar 

  15. fMRI Data Center (2010) http://www.fmridc.org/f/fmridc

  16. Gao MX, Liu CN (2007) A constraints-based semantic mapping method from natural language questions to OWL. Acta Electron Sin 35(8):1598–1602

    Google Scholar 

  17. Hayes B (2008) Cloud computing. Commun ACM 51(7):9–11

    Article  Google Scholar 

  18. Heckmann D (2001) Ubiquitous user modeling for situated interaction. In: Proc the 8th international conference on user modeling, Sonthofen, Germany. LNCS, vol 2109. Springer, Berlin, pp 280–282

    Google Scholar 

  19. Heckmann D, Krueger A (2003) A user modeling markup language (UserML) for ubiquitous computing. In: Proc the 9th international conference on user modeling, Johnstown, Pennsylvania, USA, pp 393–397

    Google Scholar 

  20. Hendler J (2008) Web 3.0: chicken farms on the semantic web. Computer 41(1):106–108

    Article  Google Scholar 

  21. Henricksen K, Indulska J, Rakotonirainy A (2002) Modeling context information in pervasive computing systems. In: Proc the 1st international conference on pervasive computing, Zurich, Switzerland. LNCS, vol 2414. Springer, Berlin, pp 167–180

    Google Scholar 

  22. Hu J, Zhong N (2006) Organizing multiple data sources for developing intelligent e-business portals. Data Min Knowl Discov 12(2–3):127–150

    Article  MathSciNet  Google Scholar 

  23. Huang RH, Ma JH (2009) Homelog based kid’s activity awareness. In: Proc the 2009 computation world: future computing, service computation, cognitive, adaptive, content, patterns, Athens, Greece, pp 591–596

    Chapter  Google Scholar 

  24. IBM (2010) Smarter planet. http://www.ibm.com/smarterplanet/us/en/overview/ideas/index.html

  25. Irwin W, Anderle MJ, Abererombie HC, Schaefer Stacey M, Kalin NH, Davidson RJ (2004) Amygdalar interhemispheric functional connectivity differs between the non-depressed and depressed human brain. NeuroImage 21(2):674–86

    Article  Google Scholar 

  26. Kim E, Choi J (2006) An ontology-based context model in a smart home. In: Proc the 2006 international conference on computational science and its applications (ICCSA 2006), pp 11–20

    Chapter  Google Scholar 

  27. Ko EJ, Lee HJ, Lee JW (2007) Ontology-based context modeling and reasoning for U-HealthCare. IEICE Trans Inf Syst E90-D(8):1262–1270

    Article  Google Scholar 

  28. Kunii TL, Ma JH, Huang RH (1996) Hyperworld modeling. In: Proc the international conference on visual information systems (VIS’96), pp 1–8

    Google Scholar 

  29. Landwehr CE (2005) Green computing. IEEE Secur Priv 3(6):3

    Article  Google Scholar 

  30. Lassila O, Hendler J (2007) Embracing “Web 3.0”. IEEE Internet Computing 11(3):90–93

    Article  Google Scholar 

  31. Li WB, Zhong N, Yao YY, Liu JM (2009) An operable email based intelligent personal assistant. World Wide Web 12(2):125–147

    Article  Google Scholar 

  32. Liang PP, Yang YH, Lu SF, Li KC, Zhong N (2009) The role of the DLPFC in inductive reasoning of MCI patient and normal aging: an fMRI study. Sci China Ser C Life Sci 39(7):711–716

    Google Scholar 

  33. Liang PP, Zhong N, Lu SF, Liu JM (2010) ERP characteristics of sentential inductive reasoning in time and frequency domains. Cogn Syst Res 11(1):67–73

    Article  Google Scholar 

  34. Liu JM, Zhong N, Yao YY, Ras ZW (2003) The wisdom web: new challenges for web intelligence (WI). J Intell Inf Syst 20(1):5–9

    Article  Google Scholar 

  35. Liu J (2003) Web intelligence (WI): what makes wisdom web. In: Proc eighteenth international joint conference on artificial intelligence (IJCAI’03), pp 1596–1601

    Google Scholar 

  36. Liu JM, Jin X, Tsui KC (2005) Autonomy oriented computing: from problem solving to complex systems modeling. Springer, Berlin

    MATH  Google Scholar 

  37. Ma JH, Huang RH (1996) Improving human interaction with a Hyperworld. In: Proc the Pacific workshop on distributed multimedia systems (DMS’96), pp 46–50

    Google Scholar 

  38. Ma JH (2005) Smart u-Things-challenging real world complexity. In: IPSJ symposium series, vol 19, pp 146–150

    Google Scholar 

  39. Ma JH, Yang LT, Apduhan BO, Huang RH, Barolli L, Takizawa M (2005) Towards a smart world and ubiquitous intelligence: a walkthrough from smart things to smart hyperspaces and UbicKids. Int J Pervasive Comput Commun 1(1):53–68

    Article  MATH  Google Scholar 

  40. Ma JH (2005) Smart u-Things and ubiquitous intelligence. In: Proc the 2nd international conference on embedded software and systems (ICESS 2005), p 776

    Google Scholar 

  41. Ma JH, Zhao QF, Chaudhary V, Cheng JD, Yang LT, Huang RH, Jin Q (2006) Ubisafe computing: vision and challenges (I). In: Proc the 3rd international conference on autonomic and trusted computing (ATC 2006), pp 386–397

    Google Scholar 

  42. Ma JH (2008) Spacelog concept and issues for novel u-Services in smart spaces. In: Proc the 2nd international conference on future generation communication and networking symposia, pp 89–92

    Chapter  Google Scholar 

  43. Murray CJL, Lopez AD (1996) The global burden of disease: a comprehensive assessment of Cambridge (USA). Harvard University Press, Cambridge, pp 412–417, 445–448, 553–556, 808–811

    Google Scholar 

  44. Neocortical Microcircuit Database (2010) http://microcircuit.epfl.ch

  45. Ogle R (2007) Smart world: breakthrough creativity and the new science of ideas. Harvard Business School Press, Boston

    Google Scholar 

  46. Olfactory Receptor Database (2010) http://senselab.med.yale.edu/ORDB/default.asp

  47. O’REILLY T (2005) What is Web 2.0, http://www.oreilly.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

  48. O’REILLY T (2007) What is Web 2.0: design patterns and business models for the next generation of software. Communications & Strategies 1:17–37

    Google Scholar 

  49. Posse S, Fitzgerald D, Gao K, Habel U, Rosenberg D, Moore GJ, Schneider F (2003) Real-time fMRI of temporolimbic regions detects amygdala activation during single-trial self-induced sadness. NeuroImage 18(3):760–768

    Article  Google Scholar 

  50. Seiho H (2004) A couple responding to children’s problems. Child Psychol 805

  51. Singh MP, Huhns MN (2005) Service-oriented computing. Wiley, New York

    Google Scholar 

  52. Stirbu V (2008) Towards a RESTful plug and play experience in the web of things. In: Proc the 2008 IEEE international conference on semantic computing, pp 512–517

    Chapter  Google Scholar 

  53. Su YL, Zheng L, Zhong N, Liu CN, Liu JM (2005) Distributed reasoning based on problem solver markup language (PSML)—a demonstration through extended OWL. In: Proc the 2005 IEEE international conference on e-technology, e-commerce and e-service (EEE’05), pp 208–213

    Google Scholar 

  54. Takata K, Ma JH, Apduhan BO (2006) A dangerous location aware system for assisting kids safety care. In: Proc the 20th international conference on advanced information networking and applications (AINA’06), pp 657–662

    Google Scholar 

  55. Tian PW, Zhang YX, Zhou YZ, Yang LT, Zhong M, Weng LK, Wei L (2009) A novel service evolution approach for active services in ubiquitous computing. Int J Commun Syst 22(9):1123–1151

    Article  Google Scholar 

  56. Vildjiounaite E, Kocsis O, Kyllonen V, Kladis B (2007) Context-dependent user modelling for smart homes. In: Proc the 11th international conference on user modeling (UM 2007), pp 345–349

    Chapter  Google Scholar 

  57. Wang X, Chen G (2003) Complex network: small-world, scale-free and beyond. IEEE Circuits Syst Mag 3(2):6–20

    Article  Google Scholar 

  58. Wang XH, Zhang DQ, Gu T, Pung HK (2004) Ontology based context modeling and reasoning using OWL. In: Proc the 2nd IEEE annual conference on pervasive computing and communications workshops, Orlando, Florida, USA. IEEE CS Press, Los Alamitos, pp 18–22

    Google Scholar 

  59. Warren PW (2004) From ubiquitous computing to ubiquitous intelligence. BT Technol J 22(2):28–38

    Article  Google Scholar 

  60. Weiser M (1991) The computer for the 21st century. Sci Am 265(3):66–75

    Article  Google Scholar 

  61. Weiser M (1993) Some computer science issues in ubiquitous computing. Commun ACM 36(7):75–84

    Article  Google Scholar 

  62. Welbourne E, Battle L, Cole G, Gould K, Rector K, Raymer S, Balazinska M, Borriello G (2009) Building the Internet of things using RFID. IEEE Internet Comput 33(3):48–55

    Article  Google Scholar 

  63. Wen J, Ming K, Wang FR, Huang BX, Ma JH (2009) Cyber-I: vision of the individual’s counterpart on cyberspace. In: Proc the 8th IEEE international conference on dependable, autonomic and secure computing, pp 295–302

    Google Scholar 

  64. Williams J, Curtis L (2008) Green: the new computing coat of arms. IT Prof 10(1):12–16

    Article  Google Scholar 

  65. Xu WJ (2007) New approaches in epidemiology and treatment of depression: with a case report. The Medicine of Zhejinag University (Psychiatry)

  66. Yao YY (1999) Granular computing: basic issues and possible solutions. In: Proc the 5th joint conference on information sciences (1999), pp 186–189

    Google Scholar 

  67. Yao YY, Zhong N, Liu J, Ohsuga S (2001) Web intelligence (WI): research challenges and trends in the new information age. In: Zhong N, Yao YY, Liu J, Ohsuga S (eds) Web intelligence: research and development. LNAI, vol 2198. Springer, Berlin, pp 1–17

    Chapter  Google Scholar 

  68. Yao YY, Zhong N (2009) Granular computing. In: The encyclopedia of computer science and engineering, vol 3. Wiley, New York, pp 1446–1453

    Google Scholar 

  69. Zeng Y, Wang Y, Huang ZS, Zhong N (2009) Unifying web-scale search and reasoning from the viewpoint of granularity. In: Proc the 2009 international conference on active media technology. LNCS, vol 5820. Springer, Berlin, pp 418–429

    Google Scholar 

  70. Zeng Y, Zhong N, Wang Y, Qin YL, Huang ZS, Zhou HY, Yao YY, Harmelen FV (2010) User-centric query refinement and processing using granularity based strategies. Knowl Inf Syst (in press). doi:10.1007/s10115-010-0298-8

  71. Zhang YX, Fang CH (2005) Actives services concepts, architecture and implementation. Thomson Learning Press, Washington

    Google Scholar 

  72. Zhang YX, Zhou YZ (2006) Transparent computing: a new paradigm for pervasive computing. In: Proc the 3rd international conference on ubiquitous intelligence and computing (UIC 2006), pp 1–11

    Google Scholar 

  73. Zhang YX, Yang LT, Zhou YZ, Kuang WY (2010) Information security underlying transparent computing: impacts, visions and challenges. Web Intell Agent Syst 8(2):203–217

    Google Scholar 

  74. Zhong N, Liu JM, Yao YY, Ohsuga S (2000) Web intelligence (WI). In: Proc the 24th IEEE computer society international computer software and applications conference (COMPSAC 2000), pp 469–470

    Google Scholar 

  75. Zhong N, Liu JM, Yao YY (2002) In search of the Wisdom Web. IEEE Comput 35(11):27–31

    Article  Google Scholar 

  76. Zhong N, Liu JM, Yao YY (2003) Web intelligence (WI): a new paradigm for developing the Wisdom Web and social network intelligence. In: Web intelligence. Springer, Berlin, pp 1–16

    Chapter  Google Scholar 

  77. Zhong N, Liu JM, Yao YY (eds) (2003) Web intelligence. Springer, Berlin

    Book  MATH  Google Scholar 

  78. Zhong N (2005) Building a Brain-informatics portal on the Wisdom Web with a multi-layer grid: a new challenge for web intelligence research. In: Torra V, Narukawa Y, Miyamoto S (eds) Modeling decisions for artificial intelligence. LNAI, vol 3558. Springer, Berlin, pp 24–35

    Chapter  Google Scholar 

  79. Zhong N (2006) Impending Brain Informatics research from Web intelligence perspective. Int J Inf Technol Decis Making 5(4):713–727

    Article  Google Scholar 

  80. Zhong N, Liu JM, Yao YY, Wu JL, Lu SF, Qin YL, Li KC, Wah B (2006) Web Intelligence meets Brain Informatics. In: Zhong N et al (ed) Web Intelligence meets Brain Informatics. LNCS, Sate-of-the-Art Survey, vol 4845. Springer, Berlin, pp 1–31

    Chapter  Google Scholar 

  81. Zhong N, Liu JM, Yao YY (2007) Envisioning intelligent information technologies through the prism of web intelligence. Commun ACM 50(3):89–94

    Article  Google Scholar 

  82. Zhong N (2007) Ways to develop human-level web intelligence: a Brain Informatics perspective. In: Franconi E, Kifer M, May W (eds) The semantic web: research and applications. LNCS, vol 4519. Springer, Berlin, pp 27–36

    Chapter  Google Scholar 

  83. Zhong N, Liu JM, Yao YY (2009) Web intelligence (WI). In: The encyclopedia of computer science and engineering, vol 5. Wiley, New York, pp 3062–3072

    Google Scholar 

  84. Zhong N, Liang PP, Qin YY, Lu SF, Yang YH, Li KC (2009) Neural substrates of data-driven scientific discovery: an fMRI study during performance of number series completion task. Sci China Ser C Life Sci 39(3):1–8

    Google Scholar 

  85. Zhou YZ, Zhang YX (2010) Transparent computing: concepts, architecture, and implementation. Cengage Learning, Stamford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, N., Ma, J.H., Huang, R.H. et al. Research challenges and perspectives on Wisdom Web of Things (W2T). J Supercomput 64, 862–882 (2013). https://doi.org/10.1007/s11227-010-0518-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-010-0518-8

Keywords

Navigation