Skip to main content
Log in

Exploiting hierarchical parallelisms for molecular dynamics simulation on multicore clusters

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

We have developed a scalable hierarchical parallelization scheme for molecular dynamics (MD) simulation on multicore clusters. The scheme explores multilevel parallelism combining: (1) Internode parallelism using spatial decomposition via message passing; (2) intercore parallelism using cellular decomposition via multithreading employing a master/worker model; (3) data-level optimization via single-instruction multiple-data (SIMD) parallelism with various code transformation techniques. By using a hierarchy of parallelisms, the scheme exposes very high concurrency and data locality, thereby achieving: (1) internode weak-scaling parallel efficiency 0.985 on 106,496 BlueGene/L nodes (0.975 on 32,768 BlueGene/P nodes), internode strong-scaling parallel efficiency 0.90 on 8,192 BlueGene/L nodes; (2) intercore multithread parallel efficiency 0.65 for eight threads on a dual quadcore Xeon platform; and (3) SIMD speedup around 2 for problem sizes ranging from 3,072 to 98,304 atoms. Furthermore, the effect of memory-access penalty on SIMD performance is analyzed, and an application-based SIMD analysis scheme is proposed to help programmers determine whether their applications are amenable to SIMDization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Vashishta P, Bachlechner ME, Nakano A, Campbell TJ, Kalia RK, Kodiyalam S, Ogata S, Shimojo F, Walsh P (2001) Multimillion atom simulation of materials on parallel computers-nanopixel, interfacial fracture, nanoindentation, and oxidation. Appl Surface Sci 182:258–264

    Article  Google Scholar 

  2. Nomura K et al (2009) A metascalable computing scheme for large spatiotemporal-scale atomistic simulations. In: Proceedings of the 2009 international parallel and distributed processing symposium. IEEE Press, New York

    Google Scholar 

  3. Dongarra J et al (2007) The impact of multicore on computational science software. In: CTWatch

    Google Scholar 

  4. Nakano A et al (2001) Scalable atomistic simulation algorithms for materials research. In: SuperComputing

    Google Scholar 

  5. Ohno Y (2007) A 128 Tflops calculation for x-ray protein structure analysis with special-purpose computers MD-GRAPE3. In: SuperComputing

    Google Scholar 

  6. Shaw DE (2007) Anton, a special-purpose machine for molecular dynamics simulation. In: ISCA

    Google Scholar 

  7. Scrofano R, Prasanna VK (2005) Preliminary investigation of advanced electrostatics in molecular dynamics on reconfigurable computers. In: SuperComputing, New York, NY

    Google Scholar 

  8. Erez M et al (2004) Analysis and performance results of a molecular modeling application on Merrimac. In: SuperComputing, Washington, DC

    Google Scholar 

  9. Erez M et al (2007) Executing irregular scientific applications on stream architectures. In: ICS, New York, NY

    Google Scholar 

  10. Dally WJ et al (2003) Merrimac: supercomputing with streams. In: SuperComputing, Washington, DC

    Google Scholar 

  11. Almasi GS et al (2001) Demonstrating the scalability of a molecular dynamics application on a petaflop computer. In: ICS, New York, NY, 2001

    Google Scholar 

  12. Phillips JC et al (2002) NAMD: Biomolecular simulations on thousands of processors. In: Proceedings of supercomputing (SC2002). IEEE/ACM, New York

    Google Scholar 

  13. Peng L et al (2009) High-order stencil computations on multicore clusters. In: Proceedings of the 2009 international parallel and distributed processing symposium

    Google Scholar 

  14. Chang H, Sung W (2008) Efficient vectorization of SIMD programs with non-aligned and irregular data access hardware. In: Proceedings of the 2008 international conference on compilers, architectures and synthesis for embedded systems, Atlanta, GA, USA

    Google Scholar 

  15. McKinley KS et al (1996) Improving data locality with loop transformations. ACM Trans Program Lang Syst 18:424–453

    Article  Google Scholar 

  16. Darte A, Robert Y (1994) On the alignment problem. Parallel Process Lett 4:259–270

    Article  MathSciNet  Google Scholar 

  17. Eichenberger AE et al (2004) Vectorization for SIMD Architectures with alignment constraints. ACM SIGPLAN Not 39:82–93

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, L., Kunaseth, M., Dursun, H. et al. Exploiting hierarchical parallelisms for molecular dynamics simulation on multicore clusters. J Supercomput 57, 20–33 (2011). https://doi.org/10.1007/s11227-011-0560-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-011-0560-1

Keywords

Navigation