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Abstract Cluster computers represent a cost-effective alternative solution to supercomput-

ers. In these systems, it is common to constrain the memory address space of a given pro-

cessor to the local motherboard. Constraining the system in this way is much cheaper than

using a full-fledged shared memory implementation among motherboards. However, mem-

ory usage among motherboards can be unfairly balanced.

On the other hand, remote memory access (RMA) hardware provides fast interconnects

among the motherboards of a cluster. RMA devices can be used to access remote RAM

memory from a local motherboard. This work focuses on this capability in order to achieve

a better global use of the total RAM memory in the system. More precisely, the address

space of local applications is extended to remote motherboards and is used to access remote

RAM memory.

This paper presents an ideal memory scheduling algorithm and proposes a cost-effective

heuristic to allocate local and remote memory among local applications. Compared to the

devised ideal algorithm, the heuristic obtains the same (or closely resembling) results while

largely reducing the computational cost. In addition, we analyze the impact on the perfor-

mance of stand alone applications varying the memory distribution among regions (local,

local to board, and remote). Then, this study is extended to any number of concurrent appli-

cations. Experimental results show that a QoS parameter is needed in order to avoid unac-

ceptable performance degradation.
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1 Introduction

Cluster computers consist of a set of interconnected motherboards, each one hosting a given

number of processor cores, which is expected to dramatically grow with future technologies.

They are an alternative solution to high-end supercomputer systems, since they offer a good

trade-off between cost and performance. For this reason, cluster computers currently repre-

sent an important segment of the market and they are used for a wide range of applications

such as high-performance parallel computing, e-business or grid computing applications.

Nowadays, large computing intensive parallel applications run in cluster computers

competing with heterogeneous workloads and services, which are often virtualized and ex-

ecuted on-demand. This can lead to situations where the usage of one or some computer re-

sources becomes widely unbalanced among motherboards. For instance, processor or mem-

ory may become underused in some motherboards of the cluster, while there is a need of

computational power or storage capacity in others. Regarding memory usage, this drawback

is not found in shared memory systems, which allow applications to potentially use all the

available memory in the whole system. However, supporting shared memory presents scala-

bility constraints due to the overhead and costs incurred by the memory coherence protocol,

which must act both intra and inter-motherboards.

In contrast, highly scalable systems like the BlueGene/P (which can be scaled up to

884,736-processors [1]) avoid memory coherence protocols by providing support to mes-

sage passing mechanisms. In addition, to reduce the message communication latency, high-

end systems like BlueGene/L [2], BlueGene/P [3], or Cray XT [4] implement Remote Mem-

ory Access (RMA) [5]. RMA allows a given board to directly access the memory of another

board. Unlike data transfers performed by typical memory coherence protocols, these are

explicitly managed by the applications. RMA is currently a feature of modern high-end sys-

tems, although it is expected to find commodity implementations for cluster computers in the

near future. Message passing provides better scalability when the memory requirements of

a given application exceed the available memory in the motherboard, although performance

can be still hurt.

An alternative approach is the use of RMA to increase the available memory beyond the

local motherboard, while still providing cache coherence support within the motherboard. To

this end, the use of a fast interconnection network among motherboards is a critical design

issue. This work focuses on a cluster prototype that uses the HyperTransport technology to

interconnect motherboards. The HyperTransport consortium [6] has more than 60 members

from leading industry (AMD, HP, Dell, IBM, etc.) and universities, and it is expected that

systems like the studied in this paper will become widely used in the near future. In our sys-

tem, the RMA device and the OS running in the motherboards support an inter-motherboard

memory allocation system that assigns portions of remote memory to local applications. In

such a system, memory assigned to applications can be located in three main regions, i) in

the same node as the processor running the application (L), ii) in another node of the local

motherboard (Lb), and iii) in a remote motherboard (R). As these regions have different la-

tencies, performance of a given application strongly depends on how the assigned memory

is distributed among regions. Therefore, like in any NUMA system, memory management

is a critical performance concern.

In a previous work [7] we analyzed how the memory distribution (i.e., L, Lb and R) im-

pacts on the performance of applications with different memory requirements, and presented

an ideal memory allocation algorithm, referred to as SPP, that distributes the memory space

among applications in order to improve the system performance. In addition, the quality of

service (QoS) of each application was considered to guarantee reasonable performance. This
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paper extends that work in two main ways. First, we provide a much deeper study of the SPP

algorithm by generalizing the analysis to any number of applications and by including more

working examples. Then, a new efficient heuristic algorithm is proposed. Compared to the

SPP algorithm, the heuristic obtains the same (or closely resembling) results while reducing

the computational cost of allocating memory to n applications in a factor of (n−1)!

The remaining of this paper is organized as follows. Section 2 describes the system

prototype and the model assumed in this work. Section 3 evaluates how the distribution

of memory assignment impacts on the performance of single applications while Section

4 studies the impact on concurrent applications. Section 5 details the proposed memory

allocation algorithms. Section 6 discusses previous research related to this work, and finally,

Section 7 presents some concluding remarks.

2 System prototype and model

A cluster machine with the required hardware/software capabilities is being prototyped in

conjunction with researchers from the University of Heidelberg [5], which have designed

the RMA connection cards. The machine consists of 64 motherboards each one including 4

quad-core 2.0GHz Opteron processors in a 4-node NUMA system (1 processor per node),

and a 16GB RAM memory per motherboard. The connection to remote motherboards is

implemented by a regular HyperTransport [8] interface to the local motherboard and a High

Node Count HyperTransport [9] interface to the remote boards. This interface is attached to

the motherboard by means of HTX compatible cards [10].

When a processor issues a load or store instruction, the memory operation is forwarded

to the memory controller of the node handling that memory address. The RMA connection

cards include their own controller, which handles the accesses to remote memory. Unlike

typical memory controllers, the RMA controller has no memory banks directly connected

to it. Instead, it relies on the banks installed in remote nodes. This controller can be recon-

figured so that memory accesses to a given memory address are forwarded to the selected

remote motherboard.

Since the prototype is still under construction, in order to carry out the experiments and

explore the performance of the proposed memory scheduler algorithms, the cluster machine

has been modeled using the Simics 3.0.31 simulation framework [11] with GEMS 2.1 [12].

The devised algorithms have been implemented by modifying the GEMS Ruby submodule,

which simulates the details of the memory system. In addition, the whole system has been

scaled down to have reasonable simulation times.

Fig. 1 Block diagram of the 2-node NUMA system model and RMA
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Table 1 Memory subsystem characteristics

Characteristic Description

# of processors 2 per motherboard

L1 cache: size, #ways, line size 64KB, 2, 64B

L1 cache latency 3

L2 cache: size, #ways, line size 1MB, 16, 64B

L2 cache latency 6

Memory address space 512MB, 256MB per motherboard

L Latency 100

Lb Latency 157

R Latency 1500

The system model consists of two motherboards, each one composed of a 2-node NUMA

system as shown in Figure 1. Each node includes a processor with private caches, its memory

controller and the associated RAM memory.

Table 1 shows the memory subsystem characteristics, where memory latencies and

cache organizations resemble those of the real prototype. The RMA connection cards have

been assumed with no internal storage capacity. Likewise, the AMD Hammer coherence

protocol has been extended to model the RMA functionality.

In this paper, we assume that the distribution of local and remote memory assigned to

an application is set statically by interleaving the memory addresses at cache block size

level (64B). Consequently, the memory controllers are configured when the system boots to

support a given distribution.

3 Analysis and impact on performance of memory distribution

This section analyzes the impact on performance when varying the memory distribution

across the three memory regions (L, Lb, R). Four benchmarks have been used to carry out the

experiments: Stream [13] and three kernels (Radix, FFT and Cholesky) from the SPLASH-

2 benchmark suite [14]. Stream is a benchmark designed to stress the memory hierarchy,

(a) Impact on IPC when assigning L and Lb (b) Impact on IPC when assigning R

Fig. 2 Impact on performance (IPC) when assigning local and remote memory
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Table 2 Impact on IPC for different memory distributions

Memory Distribution IPC

L(%) Lb(%) (L+Lb)(%) R(%) Stream FFT Radix Cholesky

50 25 75 25 0,06 0,42 0,73 0,85

25 50 0,06 0,40 0,72 0,85

33,3 33,3 66,7 33,3 0,06 0,39 0,71 0,84

66,7 0 0,06 0,39 0,70 0,84

50 0 50 50 0,05 0,29 0,60 0,78

33,3 16,7 0,05 0,29 0,59 0,77

25 0 25 75 0,04 0,22 0,50 0,71

0 25 0,04 0,22 0,50 0,71

while the selected SPLASH-2 kernels have been chosen because they perform the highest

number of memory accesses of the benchmark suite.

First, we study the case that only the RAM installed in the local board (i.e., L and Lb)

is allocated for an application. The performance (i.e., IPC) has been analyzed varying the

percentage of Lb with respect to the total assignment (i.e., L+Lb). Figure 2 (a) shows the

results. As only L and Lb modules are assigned, it is enough to represent the Lb percentage

in the X axis. For instance, a value of 75 in the X axis corresponds to an assignment of

Lb= 75% and L= 25%. Notice that the distribution of local memory assignment may have a

strong impact on performance in some benchmarks while others are slightly affected. Stream

is the most sensitive benchmark since its IPC degrades about 42% when all its memory is

assigned to the Lb memory region, FFT performance degrades about 27%, and Radix and

Cholesky performance hardly degrades.

In the second scenario, the impact of allocating remote memory is explored. Table 2

shows the performance results for eight different memory distributions. Notice that the per-

formance slightly differs when varying the memory distribution of L and Lb while main-

taining their accumulated value (dark column) constant. This means that the execution time

is dominated by the much slower remote memory. For instance, for L+Lb = 75%, Stream

gets the same IPC (0.06) in both cases. This is because remote memory has a latency about

one order of magnitude higher than local memory. From these results, we can conclude that,

when assigning remote modules, the memory distribution within the board (L and Lb) has

a negligible impact on performance. Consequently, to study the effect of remote memory, a

single value is enough to represent both local memory regions (i.e., L+Lb).

Figure 2 (b) shows the adverse impact on performance as the percentage of assigned

remote memory grows with respect to the total memory assignment (i.e., L+Lb+R). The

initial points in the Y axis correspond to the lowest performance of each application in

Fig. 2(a). Values in the X axis represent the percentage of remote memory assignment. For

instance, X = 25 means that R = 25% and L+Lb = 75%. Three different performance be-

haviors can be appreciated. Stream performance dramatically degrades with the assigned re-

mote memory until approximately 25%, where it stabilizes. On the other hand, performance

of both Radix and Cholesky constantly decreases in almost a linear way. Finally, FFT be-

havior falls in between these two trends. Its performance strongly drops until R = 60% and

then it smoothly decreases.
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Fig. 3 IPC degradation as a function of remote memory

4 Concurrent execution of several applications

When running several applications, it may happen that the memory scheduler allocates too

much remote memory to a given application, yielding to unacceptable performance for that

application. This section first presents a Quality of Service (QoS) parameter to deal with

such situations. This parameter specifies the maximum acceptable performance degradation

for an application.

4.1 Quality of service definition

Figure 3 shows the IPC degradation calculated as IPC(R = 0%)− IPC(R= X%). The origin

point means that no remote memory is assigned so there is no performance degradation.

Notice that since performance always degrades as R increases, this figure can be used to

define the maximum percentage of remote memory allocated for an application to guarantee

a performance value. For instance, if the maximum IPC degradation permitted for FFT is

0.35, the scheduler will not assign more than 40% of remote memory to this benchmark (see

label Q35). On the other hand, if the percentage of remote memory allocated for Cholesky

is less than 50%, then its IPC degradation will be below 0.18 (see label R50). Therefore,

there is a bijective relationship between performance degradation and percentage of assigned

remote memory. Due to this equivalence, from now on, the maximum percentage of remote

memory that is permitted to a given application will be referred to as its QoS, and this value

will be used by the devised memory schedulers for controlling the system performance.

Table 3 Studied memory distributions

Application
Case A Case B Case C Case D Case E

(L+Lb) R (L+Lb) R (L+Lb) R (L+Lb) R (L+Lb) R

A1 100% 0% 75% 25% 50% 50% 25% 75% 0% 100%

A2 0% 100% 25% 75% 50% 50% 75% 25% 100% 0%
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4.2 Two concurrent applications

Once the QoS has been defined, we analyze the impact of the memory distribution on the

performance of several concurrent applications. In this section, the study focus on two ap-

plications. Two cases are analyzed: in the first one, the whole remote memory is allocated,

and in the second one, only a fraction.

4.2.1 Complete usage of remote memory

This study assumes that all the memory installed in two motherboards (local and remote) is

used by two applications and that there is enough memory to support their whole working

set. Five memory distributions have been evaluated varying the percentage of remote mem-

ory assigned to each application from 0% to 100% in fractions of 25%, as shown in Table 3.

For instance, case B means that the memory assignment for application A1 is R=25% and

L+Lb=75% while the application A2 allocates R=75% and L+Lb=25%.

Using these distributions, the performance of each application as well as the combined

performance are shown in Figure 4. Since remote memory is shared between both applica-

tions, if one of them uses R = X%, the other one shall use R = 100%−X%. For instance, in

(a) Stream vs FFT (b) Stream vs Cholesky

(c) Radix vs FFT (d) Radix vs Cholesky

Fig. 4 Overall IPC for different couples of applications
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Figure 4 (a) if Stream consumes R = 25% then FFT will use the remaining R = 75%. The

dashed line stands for the total system performance. The highest point represents the max-

imum performance achieved by both workloads; however, reaching this point might imply

poor and unacceptable performance for some applications. This situation can be controlled

by defining a QoS for each application, as stated above. For instance, if Stream QoS is set

to 16% and FFT is set to 95% (see 4 (a)), the scheduler will select the distribution corre-

sponding to the aggregated IPC = 0.45, since it is the best performance falling in the interval

[0.35, 0.45]. Consequently, the IPC of Stream will be twice as large as its worst case (0.10

versus 0.05).

Notice that as the distribution of R changes, the performance of one application increases

while the performance of the other drops. Since this fact happens at different rates, the

maximum performance is reached when the application that decreases performance at the

highest rate (i.e., the most sensitive) only accesses local memory. This application can be

easily identified by looking its IPC degradation value for R = 100 in Figure 3. For example,

if the co-running applications are Stream and FFT, their IPC values will be 0.21 and 0.50,

respectively. Thus, the maximum aggregated IPC is obtained when all the remote memory

is assigned to Stream.

4.2.2 Partial usage of remote memory

In this case, the applications use all the local memory but only a fraction of the avail-

able memory in the remote motherboard. For illustrative purposes, we consider the scenario

where 60% of remote memory is used for local applications. That is, if an application uses

X% of remote memory, the other one will use 60%−X%. Notice that since the amount of

remote memory consumed is less than 100%, the overall performance will be better than in

the previous study.

Figure 5 shows the results for two couples of benchmarks: Stream and FFT (Figure 5

(a)), and Radix and FFT (Figure 5 (b)). To plot the IPC, both applications have been profiled

for different percentages of remote memory, the extreme points and two intermediate values

(i.e., 0%, 20%, 40% and 60%). As in the previous case, the maximum system performance

comes at the expense of unacceptable performance for a given application. For instance,

in Figure 5 (a), the best system performance (about 0.73) is achieved when assigning the

(a) Stream vs FFT (b) Radix vs FFT

Fig. 5 Overall IPC for different memory assignments assuming a 60% of remote memory usage
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remote memory (i.e., R = 60%) only to Stream, thus clearly damaging its performance.

Again, the QoS must be considered to avoid the performance degradation.

In summary, allocating a fraction of remote memory is analogous to allocating all the

remote memory, since the only difference lies on the range of memory that is assigned,

which is narrower, thus this is a particular case of the previous one. The same reasoning can

be applied to the QoS parameters, where the maximum range of assigned remote memory is

also limited in extent.

4.3 Extending the analysis to more applications

The analysis is now extended for a number of applications higher than two. Four different

mixes have been evaluated and represented in Figure 6: mix1= {Stream, FFT, Cholesky},

mix2= {Stream, FFT, Radix}, mix3= {Stream, Radix, Cholesky}, and mix4= {FFT, Radix,

Cholesky}. In these plots, values of X and Z axes refer to the percentage of remote memory

assigned to two of the three applications, and 100%−(X%+Z%) corresponds to the remote

memory assigned to the third application. The Y-axis stands for the total system performance

and its highest point shows the maximum performance achieved in the system. As in the

previous analysis, the maximum is reached when all the remote memory is assigned to only

one application. This application can be chosen as discussed in Section 4.2.1.

For example, when running mix1 (see Figure 6(a)), the maximum IPC (1.75) is achieved

when the whole remote memory is assigned to Stream. For this mix, the maximum perfor-

mance leads to very poor performance for this application. Again, this fact can be controlled

by means of the QoS parameter. For example, by setting the QoS of Stream about 15%, its

IPC does not drop below 0.1. In the graph, this is equivalent to remove the columns that do

not fulfill the required QoS for Stream (i.e., from Z = 25% to Z = 100%).

5 Proposed Memory Scheduler

This section presents the memory allocation algorithm devised from the previous analysis.

The aim of the algorithm is to distribute the available memory in the three memory regions

among n applications running on the nodes of a given local board. This work assumes a static

approach where the performance of each application has been profiled off-line varying R for

a few points. This profile is provided as an input to the algorithm.

For the sake of clarity, the algorithm is split in two main parts: remote memory as-

signment and local memory assignment. Remote memory can be assigned by two different

algorithms: ideal and heuristic. The former one, referred to as SPP (set of possible permuta-

tions) provides the best distribution but it requires a high computational cost, as it is based

on an exhaustive search. SPP is useful as a reference to identify the maximum achievable

IPC. The heuristic implements a cost-effective algorithm that reduces the computational cost

of the SPP in a (n−1)! factor while providing memory distributions close to or the same as

SPP.

5.1 SPP remote memory scheduler

Figure 7 describes the SPP remote memory scheduler. The algorithm first checks if there

is a need to use remote memory, that is, if the application requires more memory than the
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(b) Stream vs FFT vs Cholesky (c) Stream vs FFT vs Radix

(d) Stream vs Radix vs Cholesky (e) FFT vs Radix vs Cholesky

Fig. 6 Overall IPC for different memory assignments for three concurrent applications

available RAM in its motherboard (see LABEL 1). On such a case, it makes a search of

the optimal remote memory distribution that maximizes the aggregated IPC of all the ap-

plications (see LABEL 2). After that, it allocates the remote memory for each application

following this distribution (see LABEL 3).

A tuple RM composed of n values (RM0,RM1, ...,RMn−1) is used to represent a given

remote memory distribution among applications, where each value RMi is the percentage

of remote memory assigned to application i. Thus, the sum of the values of a given tuple

is 100%. The algorithm has been designed with a QoS parameter to avoid unacceptable

performance; that is, it must be fulfilled that the remote memory assigned to application i

must be lower or equal than its QoS (i.e., RMi ≤ QoSi ∀ application i).

The experimental results discussed in Section 4 showed that the best performance is

achieved when assigning the maximum allowed QoSi to the application i with the least IPC

contribution. The simplest case arises when the remote memory is only distributed between

two concurrent applications, A0 and A1. In this case, there are only two choices: assigning

as much remote memory as possible to A0 and the remaining to A1, and vice-versa.
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1: Algorithm: SPP remote memory scheduler with QoS constraint

2:

3: Data:

4: n: number of running applications in the system

5: L: Available local memory

6: R: Available remote memory

7: Mi: Remaining memory required by application i

8: QoSi: maximum allowed remote memory for application i

9: P: Set of all the possible permutations of n integers from 0 to n−1

10: IPCesti(x): IPC estimation based on the profiled points of a given memory assignment x to app. i

11: RMi: Percentage of remote memory assigned to application i. Initially, all its components are null

12:

13: LABEL 1: CHECK IF THERE IS ENOUGH MEMORY IN THE MOTHERBOARD

14: if ΣMi,∀i=0..n−1 > L then

15:

16: LABEL 2: FIND THE OPTIMAL REMOTE MEMORY DISTRIBUTION

17: maxIPC← 0

18: for all p ∈ P do

19: permIPC← 0

20: AM← 0%

21: for j = 0 to n−1 do

22: RMp j
←MIN(QoSp j

,100%−AM)

23: permIPC← permIPC+ IPCestp j
(RMp j

)
24: AM← AM+RMp j

25: if AM = 100% then

26: exit

27: end if

28: end for

29:

30: if permIPC > maxIPC then

31: max← RM

32: maxIPC← permIPC

33: end if

34: end for

35:

36: LABEL 3: ALLOCATE REMOTE MEMORY

37: for i = 0 to n−1 do

38: Allocate RMi×R in remote motherboard to application i

39: Mi←Mi−RMi×R

40: end for

41: end if

Fig. 7 SPP algorithm to distribute remote memory among n applications

For a higher number of applications, the algorithm uses a priority vector, where the

position of a given application in the vector indicates the order in which remote memory

is assigned. For instance, let us consider a system executing three concurrent applications

with a priority vector p = (A0,A1,A2) and a quality of service vector QoS = (30,40,50).
The priority vector states that the remote memory is first assigned to application A0, then to

A1, and finally to application A2. Thus, the assigned remote memory is defined as RM =
(30,40,30). In contrast, for a priority vector p = (A1,A2,A0), the algorithm provides RM =
(10,40,50). That is, in the latter case, the remote memory is first assigned to A1, then to

A2, and finally to A0.

The set P of possible combinations of the priority vector for n applications matches

the set of all the possible permutations of n integers from 0 to n− 1. For example, for

n= 3 the set is composed of P= {(0,1,2),(0,2,1),(1,0,2),(1,2,0),(2,0,1),(2,1,0)}. This
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1: Algorithm: Remote memory scheduling heuristic with QoS constraint

2:

3: n: number of running applications in the system

4: L: Available local memory

5: R: Available remote memory

6: Mi: Remaining memory required by application i

7: QoSi: maximum allowed remote memory for application i

8: IPCesti(x): IPC estimation based on the profiled points of a given memory assignment x to app. i

9: RMi: Percentage of remote memory assigned to application i. Initially, all its components are null

10:

11: LABEL 1: CHECK IF THERE IS ENOUGH MEMORY IN THE MOTHERBOARD

12: if ΣMi,∀i=0..n−1 > L then

13:

14: AM← 0%

15: while AM < 100% do

16: LABEL 2: FIND THE APPLICATION LEAST AFFECTED BY REMOTE MEMORY

17: minimpact← ∞

18: for i = 0 to n−1 do

19: if RMi = 0% then

20: assig←MIN(QoSi,100%−AM)
21: impact← IPCesti(0)− IPCesti(assig)
22: if impact < minimpact then

23: minimpact← impact

24: penalized← i

25: end if

26: end if

27: end for

28: LABEL 3: REMOTE MEMORY ASSIGNMENT TO THE LEAST AFFECTED APP.

29: RMpenalized ←MIN(QoSpenalized ,100%−AM)
30: AM← AM+RMpenalized

31: end while

32:

33: LABEL 4: ALLOCATE REMOTE MEMORY

34: for i = 0 to n−1 do

35: Allocate RMi×R in remote motherboard to process i

36: Mi←Mi−RMi×R

37: end for

38: end if

Fig. 8 Heuristic to distribute remote memory among n applications

set is used by the SPP algorithm and can be obtained with the Steinhaus-Johnson-Trotter

algorithm [15] whose computational cost is n!

Regarding the profile size, note that when plotting IPC as a function of the assigned

remote memory, the curve looks sufficiently defined using five points. Thus, although the

curve could be better defined with more points, its potential benefits would not be com-

pensated with the cost of profiling the additional points. Therefore, the IPC profile of the

proposed algorithms consists of the values obtained with five (0%, 25%, 50%, 75% and

100%) remote memory assignments for each application.

The algorithm also estimates the IPC of a given memory assignment when it falls in

between two profiled values (e.g., 20%). This estimation can be done in two main ways: i)

by using the value of the closest profiled point and ii) by using an approximation method.

A linear approximation shows a good tradeoff between speed and accuracy since it can be

quickly done (i.e., just a multiplication and a sum operation are required). Of course, more

accurate results could be obtained with complex methods like quadratic approximation.
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Once the optimal remote memory distribution has been found, the remote memory is al-

located to applications, and the assigned memory Mi is updated. Finally, the pending mem-

ory is assigned to the local board as discussed in Section 5.3.

5.2 Remote memory scheduling heuristic

The heuristic presented in Figure 8 provides a remote memory distribution close to the

optimal. As above, the heuristic relies on the profiled values and takes into account that

the best memory performance is achieved when assigning the maximum allowed remote

memory to the application with the least IPC contribution.

As the SPP algorithm, the heuristic is only applied if there is not enough local memory

(see LABEL 1). In this case, it selects the application whose IPC is the least affected by

the remote memory assignment, that is, the minimum value between its QoS and the remote

memory still pending to be assigned (i.e., 100%−AM) in the system (see LABEL 2). Then,

the heuristic calculates and assigns the percentage of remote memory (RMpenalized) that cor-

responds to the application selected above (see LABEL 3). The process of assigning remote

memory to applications continues until the total remote memory required among the run-

ning applications has been assigned. Finally, once obtained the corresponding percentages,

the remote memory is allocated to applications (LABEL 4).

5.2.1 Working examples

Let us discuss how the heuristic performs through two working examples: i) no application

has QoS constraint, and ii) the applications have QoS requirements. Each working example

analyzes four cases or mixes (see Section 4.3), each one composed of three benchmarks.

The simplest example arises when the algorithm works with no QoS constraint, that is,

all the applications have their QoS parameter equal to 100%. Table 4 shows the mixes and

how the heuristic solves each particular case (see column Assigned R). In this example, the

overall IPC corresponds to the value of the highest bar of each graph illustrated in Figure 6.

When the applications have QoS requirements and the sum of these values is equal to

100%, the only thing the heuristic has to do is assigning a percentage of remote memory

Table 4 Working example without QoS constraints: QoS = (100,100,100)

Mix Applications Quality of Service(%) Assigned R(%) Overall IPC

Stream 100 100

1 FFT 100 0 1.773

Cholesky 100 0

Stream 100 100

2 FFT 100 0 1.756

Radix 100 0

Stream 100 100

3 Radix 100 0 1.952

Cholesky 100 0

FFT 100 0

4 Radix 100 0 2.371

Cholesky 100 100
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equal to its QoS to each application. On the other hand, when the sum of the QoS values is

greater than 100%, at least one application will receive an amount of remote memory less

than its QoS.

The second working example focuses in the latter behavior. Table 5 shows the QoS of the

mixes and how the heuristic solves each case. Notice that the QoS vector in the four cases is

QoS=(20,55,70), so the sum of its components is not only greater than 100% but also these

values do not correspond to any profiled point, so the algorithm must estimate them. To this

end, it has been assumed that the algorithm approximates to the closest profiled point. For

the first three mixes, the best remote memory distribution vector is RM = (20,10,70). The

estimated overall IPC for these situations is approximated to the profiled remote memory

percentages 25%, 0% and 75%, respectively. For mix 4, the heuristic provides a memory

distribution of RM = (0,30,70), whose overall IPC is estimated by means of the values of

the profiled points 0%, 25% and 75%, respectively.

5.2.2 Cost analysis

The SPP algorithm carries out a thorough search among the set of the possible remote mem-

ory assignments (i.e., n!) to find out the combination that optimizes the overall IPC. This

set grows factorially with the number of applications running on the system so it leads to

prohibitive computational costs for large sets. On the contrary, the devised heuristic algo-

rithm finds an optimal or near-optimal remote memory distribution but largely reduces the

computational cost by performing a reduced search.

Table 6 shows the computational costs of both schedulers. The SPP algorithm iterates

through n! different cases of n-cost each. As a result of the limitation in the number of

possible remote memory assignments explored, the proposed heuristic reduces the number

of analyzed cases from n! to n, thus noticeably improving the total computational cost of the

SPP algorithm.

To sum up, the proposed heuristic reduces the computational cost in a factor of (n−1)!
while providing reasonable performance since all the QoS of the applications are satisfied.

On the contrary, the SPP algorithm might provide better performance for some mixes but at

the expense of a much higher computational cost.

Table 5 Working example with QoS restrictions: QoS = (20,55,70)

Mix Applications Quality of Service(%) Assigned R(%) Overall IPC

Stream 20 20

1 FFT 55 10 1.542

Cholesky 70 70

Stream 20 20

2 FFT 55 10 1.332

Radix 70 70

Stream 20 20

3 Radix 55 10 1.721

Cholesky 70 70

FFT 20 0

4 Radix 55 30 2.207

Cholesky 70 70
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Table 6 Computational cost comparison

Algorithm # Cases Cost/case Total cost

SPP n! n n×n!

Heuristic n n n×n

5.3 Local memory assignment

Once the remote memory has been scheduled to applications by any of the studied sched-

ulers, the local memory must be assigned to complete the memory allocation. Figure 9 shows

the local memory scheduler. For each application and following a circular order, the sched-

uler looks for free memory in each node of the local motherboard, beginning by the node

where the application is running on. This process goes on until the required memory has

been completely assigned to applications.

6 Related work

Different research papers dealing with remote memory allocation which mainly focus on

memory swapping can be found in the literature.

Oleszkiewicz et al. propose a peer-to-peer solution called parallel network RAM [16].

This approach avoids the use of disk and better utilizes the available RAM resources in a

cluster. It reduces the computational, communication and synchronization overhead typi-

cally involved in parallel applications.

Shuang et al. design a remote paging system for remote memory utilization in InfiniBand

clusters [17]. These systems present the design and implementation of a high performance

networking block device (HPBD) over InfiniBand fabric, which serves as a swap device of

a virtual memory (VM) system for efficient page transfer to/from remote memory servers.

They demonstrate that quicksort performs 1.45 times slower than local memory system, and

up to 21 times faster than local disk.

1: Algorithm: Local memory scheduler

2:

3: Data:

4: n: number of running applications in the system

5: Mi: Remaining memory required by application i

6: Li: Memory available in node i

7: for i = 0 to n−1 do

8: if Mi > 0% then

9: j← i

10: repeat

11: toAlloc←MIN(Mi,L j)
12: Mi←Mi− toAlloc

13: L j ← L j− toAlloc

14: j← ( j+1)MOD(n)
15: until Mi = 0%

16: end if

17: end for

Fig. 9 Algorithm to distribute local memory among n applications
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Oguchi et al. investigate the feasibility of using available memory in remote nodes as

a swap area when execution nodes need to swap out their real memory contents during the

execution of parallel data mining on PC clusters [18]. In this work, nodes executing appli-

cations dynamically acquire extra memory from remote nodes through an ATM network.

Experimental results on a PC cluster show that the proposed method is considerably better

than using hard disks as a swapping device.

In [19], the use of remote memory for virtual memory swapping in a cluster computer is

described. The design uses a lightweight kernel-to-kernel communications channel for fast

and efficient data transfer. Performance tests are made to compare the proposed system to

normal hard disk swapping. The tests show significantly improved performance when data

access is random.

Midorikawa et al. propose the distributed large memory system (DLM), which is an

user-level software-only solution that provides very large virtual memory by using remote

memory distributed over the nodes in a cluster [20]. The performance of DLM programs

that access remote memory is compared to ordinary programs that use local memory. The

results of STREAM, NPB and Himeno benchmarks show that the DLM achieves better

performance than other remote paging schemes using a block swap device to access remote

memory. To obtain high performance, the DLM can tune its parameters independently from

kernel swap parameters.

These papers use the remote memory for swapping over cluster nodes and present their

system as an improvement of disk swapping. On the contrary, in this work the idle remote

memory is allocated by a memory scheduler to the running applications in other mother-

board as an extension of their local memory while guaranteeing their QoS requirements and

without any kind of memory swapping.

7 Conclusions

Cluster computers represent an important segment of the current supercomputer market.

They can use RMA hardware as an inexpensive and relatively fast way to extend the memory

space of a single motherboard of the cluster. However, the accessible memory through RMA

has latencies one order of magnitude higher than the local memory, which in turn can have

different latencies depending on whether the accessed memory is on the processor running

the application or not. Thus, memory allocation algorithms for such a cluster computer must

be carefully designed to avoid potential performance penalties.

This work has presented an ideal algorithm and an heuristic to assign main memory,

which can be located in three main regions (local to node, local to board, or remote), among

applications running on a RMA-interconnected cluster. With this aim, three main steps have

been followed to design these schedulers. For each one, different conclusions can be drawn.

First, since benchmarks have different memory requirements, the impact on performance

of each application varying the memory distribution among regions (L, Lb, and R) has been

studied. This study has shown that, i) the memory distribution between L and Lb can impact

on performance when no R memory is allocated, ii) the previous distribution has a slight

effect on the performance when R is allocated, and iii) performance degradation widely

varies among applications when allocating R memory.

Second, the system performance, when several benchmarks running concurrently com-

pete for memory, has been analyzed. This study has shown that the total performance is

benefited when R memory is assigned (as much as possible) first to the application that

least degrades its performance, then to the second one, and so on. However, this assignment
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strategy can lead to unacceptable performance degradation for some applications. Hence, a

quality of service parameter has been defined for each application.

From these studies, a memory scheduling heuristic that approximates the best local and

remote memory distribution among applications has been presented. The heuristic has been

designed to guarantee a minimum QoS performance for each benchmark while optimizing

the global system performance. Results have shown that the memory distribution provided

by the heuristic is close or the same as the optimal distribution found by the ideal algorithm

(SPP), whose computational cost is prohibitive for a high number of applications.
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