
Protein Simulation Data in the Relational Model

Andrew M. Simms1 and Valerie Daggett1,2,*

1Biomedical and Health Informatics Program, University of Washington, Box 355013, Seattle, WA
98195-5013
2Bioengineering University of Washington, Box 355013, Seattle, WA 98195-5013

Abstract
High performance computing is leading to unprecedented volumes of data. Relational databases
offer a robust and scalable model for storing and analyzing scientific data. However, these features
do not come without a cost—significant design effort is required to build a functional and efficient
repository. Modeling protein simulation data in a relational database presents several challenges:
the data captured from individual simulations are large, multi-dimensional, and must integrate
with both simulation software and external data sites. Here we present the dimensional design and
relational implementation of a comprehensive data warehouse for storing and analyzing molecular
dynamics simulations using SQL Server.

Keywords
data warehouse; relational database

Introduction
Increasing processor power and access to supercomputer facilities have created an
unprecedented amount of data in a variety of scientific disciplines. As the volume of data
increases, the problem is no longer one of performing calculations utilizing high
performance computing resources. Instead the challenge has become how to manage,
organize, mine, and exploit the data. As such, this has become an informatics problem, one
created by high performance computing. Such large datasets become intractable to
efficiently manage and exploit on traditional file systems. However, they are well served, on
many levels, by well-designed databases.

There are two schools of design for building systems with relational databases: relational
modeling, which is used with transactional systems; and dimensional modeling, which is
used in data warehousing applications. Both can be traced to Codd, who created the
relational model [1] and proposed the on-line analytical processing (OLAP) model [2].
Relational design is the organization of data into collections of sets known as relations. The
process begins with a requirements analysis, which identifies all the attributes to be modeled
and their functional dependencies. The Cartesian product of all attributes in the system,
called the universal relation, can be conceptualized as a table where columns correspond to
attributes and the rows contain specific data items. Functional dependencies identify sets of
attributes whose values are wholly determined by other attributes. The universal relation is
broken up into smaller relations following a design pattern known as a loss-less join
decomposition. The goal of decomposition is to significantly reduce or eliminate duplicate

*Corresponding Author, Phone: (206) 685 7420, daggett@uw.edu, URL: http://www.dynameomics.org.

NIH Public Access
Author Manuscript
J Supercomput. Author manuscript; available in PMC 2013 October 01.

Published in final edited form as:
J Supercomput. 2012 October 1; 62(1): 150–173. doi:10.1007/s11227-011-0692-3.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

http://www.dynameomics.org

information. Although it is possible to automatically calculate decompositions that minimize
duplicated data using functional dependencies, the process is typically driven by a designer.
The designer will consider other constraints, such transactional and query performance of
the application as well as the target database platform.

In contrast, dimensional modeling is driven almost entirely by both the innate structure of
the data being modeled and reporting requirements. Dimensional modeling involves
classifying data into two categories: facts and dimensions. Facts are continuous numerical
quantities, dimensions are discrete classification values. Although space efficiency is
important, it is not a central design goal. Instead, the primary goal of dimensional design is
to yield a structure that is both easy and efficient to query. Dimensional models assume that
data are primarily read-only, which allows liberal use of indexes to achieve query
performance.

Dimensional models can be implemented in a relational database. Fact data are organized
into fact tables; dimensional data are placed in dimension tables that are linked via foreign
key relationships. When visualized using UML or an ER diagram, fact tables appear as the
center of a cluster of dimensions, forming a star shape. If dimensions relate to facts
indirectly through other dimensions, a snow-flake shape is observed. These are referred to as
a star and snowflake schemas, respectively (Figure 1). The higher level organization of our
database is illustrated in schematic terms in Figure 2.

Molecular dynamics (MD) simulation data can be described using a dimensional model.
Fact data, at a high level, are sets of three-dimensional Cartesian coordinates for all
simulated atoms. Secondary analyses are either related directly to atom coordinates, or
aggregated at the residue, molecule, or simulation level. Dimensional data organize these
facts by chemical structure, simulation time, and into groups of simulations and structures.
The following sections detail the dimensional model, its translation to a relational model,
and its implementation in SQL Server.

A Dimensional Model for MD Simulation Data
We have developed a four-dimensional model for representing MD simulation data. The
primary dimensions: (A) simulations, (B) structures, (C) simulation groups, and (D)
structure groups; are illustrated in Figure 3. The structure and simulation dimensions are
organized hierarchically and are used to identify specific facts. The remaining dimensions
are used to organize one or more simulations or structures into specific curated sets for
analysis.

Structure and Structure Group Dimensions
The structure dimension provides the semantic context for interpreting and mining
coordinate and analysis data from simulations. Attributes of this dimension are organized
into a five level hierarchy as shown in Figure 3B, with structure type (Type) as the highest
and atoms (Atom) as the lowest level. The structure dimension contains the attributes that
describe structures being simulated and as well as links to the Protein Databank (PDB) for
initial structures [3], the Chemical Component Dictionary for standard atom and residue
names [4], the Parameter Library, and Simulations as shown in Figure 4.

The Type level classifies structures (molecules) by creation method; current types are X-
Ray, NMR, Homology Model, or Engineered Rotomer. The structure level includes
identifying information such as the structure identifier (struct_id), structure, PDB code,
name, and additional attributes that apply to an entire structure.

Simms and Daggett Page 2

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Organization within a structure begins at the chain level of the hierarchy. A single PDB
entry may contain multiple polymers, each are assigned a unique chain identifier. A polymer
is composed of a sequence of residues. A residue is a logical grouping of atoms, usually
corresponding to an amino acid, but it can also be used for non-polymers such small
molecules, ions, and ligands. Non-polymers will be assigned the same chain identifier as the
polymer with which they are associated.

Residue attributes include a residue name and abbreviation, description and general
properties. Also included are residue number, and insertion code (ICode). When combined
with the PDB code and chain identifier, the residue number and insertion code provide a
direct link back to the original PDB entry. Residue numbers are sequential integers and are
applied within a chain, but the sequence may include gaps (missing residues) or insertions
(residues added with the same residue number). Gaps are not stored in the dimensional
model. An insertion code will be set for each residue added at the same residue number; the
sequence is typically “A, B, C …” etc.

The lowest level of the structure hierarchy is Atom. Atom attributes include a name, type,
and a sequence number. Following the PDB convention, atoms are numbered sequentially
within structures using positive integers. The atom number and structure identifier uniquely
identify members and thus serve as the key of the dimension.

The Simulation Dimension
Molecular dynamics (MD) is a technique from theoretical physics to simulate the interaction
and motion of a system of particles. The simulation dimension models starting parameters,
the set of molecules being simulated, and time. The simulation attribute hierarchy reflects
this organization and includes levels for simulation, system, and step.

The simulation level holds simulation starting parameters, including the set of parameters
that uniquely identify a simulation (Table 1). A simulation identifier and some annotation
attributes are also part of the simulation level of the dimension. A simulation will contain
one or more structures, and are referenced by structure instance in the system level of the
hierarchy.

The lowest level of the simulation dimension hierarchy is step. At the core of simulation
engine is a potential function, which is an equation used to calculate the energy of a system
based on the relative locations of participating particles. In all-atom protein simulations, the
number of particles being tracked is large, and the classical equations of motion must be
solved numerically. This is accomplished by employing the assumption that for sufficiently
small periods of time, positions for participating particles can be calculated based solely on
their location relative to other particles. The implication is that the primary simulation
output, coordinates, will be output at regular intervals referred to as steps or frames. A step,
structure instance, and simulation identifier form the key of the simulation dimension.

The Structure and Simulation Group Dimensions
The structure group dimension allows structures of any type to be placed into curated sets,
which can be referenced easily in queries, used in aggregates, and annotated using detailed
description attributes. A structure may participate in zero or more structure groups. The
simulation group dimension performs a similar function—it allows simulations to be placed
into curated sets, and similar to structure groups allows sets of simulations to be referenced
easily in queries.

Simms and Daggett Page 3

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Relational Design and Implementation
A dimensional model must be mapped to tables in order to be implemented in a relational
database. In addition to tables required for dimensional attributes, tables must be created to
hold fact data and to manage identifiers. An initial design was described by Simms et al. [5],
but it has changed significantly since the first implementation. Major changes include
extensions to support multiple MD simulation packages, better integration with the PDB,
structure groups, an updated Consensus Domain Dictionary (CDD) [6], Molecular
Mechanics Parameter markup Language (MMPL) [7], a new version of in lucem molecular
mechanics [8], spatial indexing [9], and standardizing on step to represent simulation time.
The following sections discuss the relational design and database platform-independent
implementation.

Directory and Simulation Databases
MD simulations are fundamentally very large sets of three-dimensional spatial coordinates,
ordered by time. Analyses are derived from coordinates by calculating various statistics,
which can be associated with any level of the structural hierarchy. Simulations and analyses
are facts in the dimensional model. The raw coordinates and analyses cannot be interpreted
without being tightly integrated with structural information, and coordinates from two
simulations of the same structure are independent. Thus, a natural organization is to store
each simulation and associated analyses in separate relational tables. To avoid having
thousands of tables in a single database, simulations and analyses are grouped by project and
structure into multiple simulation databases. A single database, called the Directory
database, is used to house structure dimensions, manage identifiers, and record the physical
location of simulation databases. This model facilitates the distribution of simulation data
across multiple servers.

The schema of the Directory database is illustrated in Figure 5. It includes tables related to
the structure, simulation, structure group, and simulation group dimensions; mechanism for
managing structure identifiers, simulation identifiers; dimensions for analyses; and tables to
support MMPL. Tables that are part of the dimensional model, provide identifier support, or
used by front-end applications for navigating the model are named with “Master” as a
prefix.

Molecular Structure
The structure and structure group dimensions are implemented using the set of tables shown
in Figure 5 (C, D). The primary structure dimension tables are Master_Structure and
Master_ID, which are the store of record for structure attributes. Two additional tables,
Master_ProteinMap and Master_StructureMap, and stored procedures implement the
allocation of new structures. The Master_MinStructure, Master_MinID,
Master_MinStructureMap, and Master_MinIDMap tables mirror their counterparts for the
management of minimized structure attributes; however, these are currently used only for
structure allocation are not part of the dimensional model. Following the dimensional model,
the Master_ID table is keyed on struct_id and atom_number. Since the Master_Structure
table does not contain atom attributes, it is keyed only on struct_id, and a foreign key
constraint insures that all rows of Master_ID are associated with a structure.

Master_Structure also manages a second key, called structure. This identifier was
introduced because although it is common practice to refer to simulated proteins by their
PDB code (a four character identifier assigned by the Protein Databank), there are several
issues with attempting to use these codes directly as identifiers. First, PDB structures are
routinely modified in order to prepare them for simulation. This process can involve

Simms and Daggett Page 4

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

selecting a specific chain, adding hydrogens, excising residues, mutating residues, building
in missing residues, and many other transformations. The result of any of these
transformations is a new structure, which although derived from a PDB structure, is a unique
entity. A second issue involves the simulation of small molecule cofactors that are included
in the PDB structure. It is common to simulate the protein by itself (apo) and with the
cofactor present (holo). These are different structures from the standpoint of simulation.
Lastly, there are many structures that do not have a PDB code. Some examples include
synthetic proteins and homology models. The structure field addresses these shortcomings
by combining a character prefix called a structure base (e.g., a PDB code) and numeric
suffix.

A stored procedure manages the creation of both the structure and struct_id identifiers. It
performs a residue sequence structural comparison when determining whether or not to
allocate a new structure identifier. This comparison considers only at the supplied structure
base and the residue sequence. If the structure base and residue sequence exactly match an
existing structure, the existing structure will be used. If there is any deviation, a new
structure will be allocated. Minimized structures (Master_MinStructure, Master_MinID) are
handled similarly, but are currently only used for simulation allocation, which is discussed
in the next section.

Structure groups allow for a simple two-level hierarchical organization of related structures.
One structure serves as the parent, and one or more related structures as children. This
concept was introduced to accommodate accurate counting and tracking of structures that
are derived by modifying a base structure. There are currently three types of structure groups
in Master_StructureGroupType, as shown in Table 2, and more can be defined as needed.

The Master_StructureGroup table stores identifiers, names, and a description. The
Master_Structure_StructureGroup table links a child structure to a parent structure. The
optional relationship_tag field is used to annotate a specific parent-child relationship, for
example this field is used with single nucleotide polymorphisms (SNPs) to record the
residue number and mutation.

Simulation Parameters
Simulation and simulation group dimensions attributes are stored in the set of tables
illustrated in Figure 6. Simulations are assigned unique integers based on the attributes listed
in Table 1, which are mapped to columns as shown in Table 3. It is a requirement that the
structures being simulated be previously allocated. Since a simulation may contain multiple
structures (or even multiple copies of the same structure), the
Master_StructureAllocationGroup table is used to assign a single integer id to sets of
structures, struct_alloc_grp_id. Sets of minimized structures are also assigned a single
integer id, min_struct_alloc_grp_id, and stored in the Master_MinStructureAllocationGroup
table. An important consequence of this approach is that the order structures are added to a
simulation is not considered when determining if a simulation has been previously allocated.

Once structure allocation group identifiers have been assigned, a stored procedure uses a
mapping table, Master_SimulationMap, to generate a new simulation identifier (sim_id) or
to find an existing id. Similar to the structure dimension tables, restricted data types and
check constraints are employed to prevent invalid values from being entered manually or by
software failures. Check constraints for secondary dimension attributes, such as pH, are
defined on the associated table, and enforced via foreign key constraints.

The simulation dimension hierarchy contains two more levels: system and step. The system
level accounts for the structures included in the simulation, and step is a proxy for time.

Simms and Daggett Page 5

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Multiple structures can be associated with a simulation, and more than one copy of a
structure may be present. Each structure is assigned a structure instance identifier
(struct_inst), which is scoped to that simulation. Because each struct_id, struct_inst, and step
are stored in the fact table, there is no need to create an additional relational table with these
values.

The simulation group dimension enables simulations to be organized into groups. The
dimension consists of the Master_SimulationGroup table and linking table,
Master_Simulation_SimulationGroup, which implements a many-to-many relationship
between the group definitions and simulations. Simulation groups are assigned an identifier
(sim_grp_id) as well as a name (sim_group_name), description, and a curation status
(curated). The curated flag, when set, indicates that the simulations associated with the
group are final. Simulation group membership cannot be altered while the curated flag is set.

Facts
Fact tables store continuous measurements and are linked to dimensions through key
attributes. In a relational implementation, the key of the fact table is the set of dimension
attributes for a row. The warehouse currently supports 18 distinct fact types, which are listed
in Table 4. Each fact type is linked to a level in the attribute hierarchy in one or more
dimensions. When the linking attribute corresponds to primary key in a dimension table, a
formal foreign-key relationship is created and enforced via a constraint. In other cases, the
relationship is implied. As mentioned previously, simulations are distributed to multiple
databases to avoid large numbers of tables in a single database. Because referential
constraints only apply within a database, dimensional data from the Directory database must
be replicated to individual databases in order to create and enforce explicit foreign key
constraints. However, since each database contains only a subset of the entire set of
structures and simulations, only dimension data related to the subset are required.

General Simulation Engine and PDB Integration
Key goals for the Dynameomics data warehouse after 2007 were to achieve deep integration
with the lab’s in-house simulation package, ilmm v2009; the Protein Databank (PDB); and
to support simulations created by other simulation packages. Achieving tight ilmm
integration required that there be a fundamental alignment of data types and recognition of
responsibilities for managing data between ilmm and the warehouse. This alignment consists
of two parts, first there are shared identifiers which are to be supported natively by ilmm and
the warehouse; second is an accepted definition of a set of attributes, other than file system
location, that uniquely identifies a simulation. The shared identifiers are listed in Table 5.

PDB integration was determined to be a critical requirement for all simulations using PDB
based structures. Earlier versions of ilmm systematically pruned PDB residue number
information out of structure data, replacing it with more computationally convenient zero
based identifier, which the warehouse would store as well. Because PDB structures can
contain missing residues (gaps), negative residue numbers, and can even contain duplicate
residue numbers (which are differentiated by insertion codes), both the warehouse and ilmm
were modified to preserve and support the original PDB residue numbering.

Supporting other simulation packages involved identifying the key set of starting parameters
and then storing these values for each loaded simulation. The canonical list of simulation
attributes was shown earlier in Table 1 and accommodate both ilmm and ENCAD [10][11]
[11] style simulation engines. Supporting other engines involves defining a simulation
engine and mapping additional attributes unique to that engine into the conditions text field.

Simms and Daggett Page 6

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

SQL Server Implementation
SQL Server is a relational database platform from Microsoft [12]. The latest versions
include many features defined in the SQL99 [13] specification in addition to proprietary
features. This database platform was chosen based on prior experience and support from
Microsoft Research. In order to understand the implementation approach of the data
warehouse, it is important to know about the physical data model of SQL Server and to
consider the configuration of servers. In this section the decisions made to produce an
optimal SQL Server implementation are detailed; however, many of the choices can be
adapted to any vendor’s implementation.

SQL Server Architecture
SQL Server is available in several editions that vary widely in cost and features. This project
uses SQL Server 2008 Enterprise Edition R2 ×64 [12] installed on Windows 2008 Server R2
Enterprise Edition x64; the database engine, critical database services, and the Windows
Server operating system are all native 64 bit binaries running in a 64 bit environment. The
enterprise edition of Windows 2008 ×64 was chosen as the base operating system primarily
because it can support a maximum of 2TB of RAM (the standard edition is limited to 32GB
of RAM). SQL 2008 Enterprise edition R2 was chosen for its support of partitioning, data
compression, and large memory support (2TB maximum). The project currently does not
utilize failover clustering. SQL Server supports a concept of instances, which are
independent environments that contain databases. Currently, a single instance (referred to as
the default instance) is configured on each server in the warehouse.

Databases—The fundamental unit of organization within an instance is the database.
Databases consist of sets of data and transaction log files, and each type is managed
differently. Multiple data files are used to manage space and to distribute I/O activity to
multiple disks and/or disk controllers. In contrast, only a single log file is active at a time
and thus multiple files are used only to manage growth. By default, when a database is
created it will consist of a single data file (MDF) and a single log data file (LDF). Storage
for tables is allocated inside both the MDF and LDF during loading, and moves entirely to
the MDF file once transactions are committed and the log file is truncated. Data files contain
data structures called pages, which are 8KB in size and are read and written to disk in
groups of 8 called extents (64KB). LDF files contain transactional log information,
effectively recording changes to pages in the MDF.

Tables and Indexes—Within a database, the primary objects are tables and indexes and
the data for each are stored in pages. Tables are classified into two types based on storage—
heap mode (no clustered index) and index mode (clustered index present). Heap mode tables
are unordered collections of pages; Index tables contain pages sequenced in the order of the
clustered index. Indexes on a table, including clustered indexes, are implemented as
Balanced Trees (BTrees) for efficient searching. In the non-clustered case, leaf nodes
contain pointers to the data pages for the table. For clustered indexes the leaf nodes of the
index are the data pages for that table, thus tables can have only one clustered index.

The lowest level of data organization in SQL Server is the row, which contains the
individual data items for each column of a table. Rows are stored in pages, sequentially. The
number of rows that can be stored in a page depends on the data types chosen for the
columns. However, a fundamental rule is that rows cannot span page boundaries, which
constrains the total size of a row to 8060 bytes. There are some exceptions for specific data
types, variable length text fields will be moved automatically to special overflow data pages
if they would cause a row to exceed the limit. Large object types store only a pointer in the

Simms and Daggett Page 7

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

data row, and the actual column content is stored in a page type reserved for binary large
object (BLOB) type data. Additional details on how tables are mapped to pages can be
found in SQL Server Books Online [14] and Fritchey and Dam [15].

Performance Optimization—Fundamentally, all performance tuning of a SQL database
comes down to minimizing I/O operations. When a query is executed on a heap mode table,
the data engine reads all the extents associated with that table, literally traversing every row
looking for data to satisfy the query in a costly operation known as a table scan. When a
table with indexes is queried, the query optimizer will attempt to use the indexes to limit
reads to fewest extents as possible to satisfy the query. In contrast, the fastest write (insert)
operations occur on heap-mode tables because the server can add pages without regard for
order. This makes indexes highly desirable for read operations but a severe burden on write
operations. In a data warehouse, data are primarily read-only and thus indexes are used
extensively to limit I/O operations for queries. In this project, fact tables are created as heap-
mode tables, loaded using fast bulk load primitives, and then indexed afterwards. A SQL
Server feature, used for coordinate tables only, builds an empty table with a clustered
primary key and the loads the data in clustered key order. Remaining indexes and constraints
are added after loading.

Design Considerations for Fact Tables
Fact tables will contain columns for measures and for a set of dimensional keys that link the
measures to the dimensional hierarchy. The set of dimensional keys columns are a candidate
key of the table, meaning they uniquely identify a row and are not null-able. Beyond
meeting the requirements of the dimensional model, there are three primary considerations
in designing fact tables: total row size, indexes, and check constraints (Figure 2). Although
these considerations apply to any relational design, they are especially important for fact
tables as they house the majority of data in a warehouse.

Row Size—SQL Server supports a variety of data types for columns, which are classified
into three major categories: native types, native large object types, and Common Language
Runtime (CLR) user defined types. A subset of native data types used for fact and
dimensional quantities as are listed in Table 6. The implementation of these data types is
highly optimized for search and storage. Native types are subdivided into five subgroups:
fixed length numeric, fixed length character, fixed length binary, variable length character,
and variable length binary. Numeric data types include approximate floating point types
based on the IEEE 754 standard [16], integers, and a set of exact numeric types. Native large
object types are used specifically to work with binary or text data that are too large to be
stored in an individual data page. These were originally vendor extensions, and have been
largely subsumed by variable length native types. SQL Server also supports common
language runtime (CLR) user-defined data types, used for object-relational applications. The
use of various data types in fact tables are discussed in the following sections.

It is always preferable to implement fact tables using the smallest native fixed size data
types that will accommodate the data. Variable length fields cause row sizes to vary within a
page, and if the actual field length plus the size of other columns exceeds 8060 bytes, data
are moved into one or more overflow pages. Variable length columns require additional
bookkeeping overhead to track field length. Overflow pages and bookkeeping overhead
reduce the number of rows that can be stored per page, increasing overall table size and
decreasing efficiency. In contrast, the size of a row containing only fixed length data types is
determined by equation (1.1). Although there is some overhead for tracking column null-
ability, the primary row size contribution is the fundamental size of the data type (see Table
6). The net results of using only fixed data types are a consistent and minimal row size.

Simms and Daggett Page 8

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

(1.1)

Index Design—Indexes are used to limit I/O operations during queries, and to enforce
primary key and unique constraints. Indexes in SQL Server are implemented as balanced
trees (BTrees) and are stored in page structures similar to data. Index rows contain the nodes
of the BTree. Each node, starting at the root, contains lowest value of and a pointer to each
subtree. The leaf nodes of a clustered index are the data pages of the table, the leaf nodes of
a non-clustered index contain the primary key columns if the table has a clustered primary
key or a row identifier pointer otherwise. This means that indexes benefit from using narrow
fixed length data types, to enable the greatest number of sub-trees per node. The rows of an
index are ordered by the contents of the index’s columns. Indexes can be built on any
column data types with the exception of the large object types; however, there are special
issues for some of the remaining column types. For character and native variable length
columns, the index can only include data the data that fits in the standard index page—
characters outside this range will not be included. This is a second reason not use variable
length columns in a fact table. Approximate floating point data types should be avoided in
index columns—these types use an efficient but non-unique bit representation of values
(meaning that more than one real number is mapped to the same bit pattern). This makes
indexes built on approximate types unpredictable. CLR data types can be included in
indexes, but are treated as binary values. Four final special cases are the native fixed size
integer types, TINYINT, SMALLINT, INT and BIGINT. These values can be directly
loaded, tested and manipulated in integer registers found on x64 architecture
microprocessors, and are the most frequently used key types in star schemas.

In order for an index to be used in the processing of a query, the query must contain a
sargable predicate. The term sargable predicate, which is a contraction of “search argument
able,” refers to an expression in the where clause of a query containing tests of equality (=),
less than (<), greater than (>), less than or equal (<=), greater than or equal (>=),
BETWEEN, or LIKE using a prefix search [15]. This is the direct result of the underlying
data type’s or types’ support for comparison operations based on mathematical inequality
(less than, greater than), or equality (equal to). All integer and exact numeric types support
less than, greater than, or equal to operations and thus when indexed can be searched with
sargable predicates. This makes these types useful for fact tables. Character types (fixed and
variable) can be as well, but row and index size considerations discussed earlier make these
poor choices for fact columns. An interesting corner case is the fixed size
UNIQUEIDENTIFIER (uid, also called a globally unique identifier or GUID). This data
type supports equality and inequality comparisons, but does not support any mathematical
operations. In this sense, a sargable predicate can be used with a uid. However, since uids
have no intuitive data ordering, they are really only useful for decentralizing identity
assignment. Uids cannot be used as a partitioning scheme, and their 16 byte size adds
significant row size overhead both in a data page and any index pages.

Check Constraints—Check constraints are used to block incorrect data from either being
inserted into a table or existing data being incorrectly modified. Check constraints are
declared at the table level in the form of a predicate expression that can reference columns
and constants. The expression is evaluated as data are modified or added, and if the new or
modified data does not satisfy the check constraint expression, an error is thrown and the
row is rejected. In SQL server, check constraints are also used by the query optimizer in
selecting rows from views, unions, and individual tables. For an individual table with a

Simms and Daggett Page 9

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

column sim_id, and a constraint limiting the value of this column to 123, a query against
that table asking for sim_id 234 will immediately return with no results. When a view or a
set of tables combined using UNION are queried, and the query predicate references a
column with a constraint, and the data requested is outside the range of the constraint for
some tables, the query optimizer will drop those tables from consideration.

Coordinate Fact Table Design
For MD simulations, coordinates make up most of the data being stored. Even when
simulations are stored as individual tables, they may contain as many as a billion rows of
information. This makes the choice of data types and design of indexes extremely important
as it will determine how efficiently data and index rows can be mapped to pages, which in
turn dictates table size, and ultimately query performance. For a coordinate fact table, there
are nine columns, four columns for the three-dimensional atomic coordinate and bin index,
and 5 dimensional columns that relate the coordinate back to a structure. The range of each
coord_x, coord_y, and coord_z value is limited by the box size of a simulation, and are well
within a range of −500.0 Å and 500.0 Å. Because coordinates do not participate in an index,
the 4 byte REAL approximate type is used for these columns. The bin column is used to
store a non-negative integer quantity, which is also limited by box size and will not exceed
100,000, allowing a 4 byte signed integer (INT) column to be used. At the current resolution
of 0.002 ps per step, an INT can accommodate a simulation of up to 4 µs in length. The
remaining dimensional columns of struct_id, struct_inst, and atom_number are all
implemented as 4 byte INTs. Recall that after overhead, 8060 bytes are available for row
storage. All nine coordinate table columns are 4 byte fields, 3 are type REAL and the
remaining are INT. The data storage per row consumed by this structure is 36 bytes, three
bytes of null tracking overhead, and a 4 byte row header, which means a single data page
can accommodate 187 coordinate rows.

It is critical to allow coordinate rows to be efficiently located. A candidate key in a relational
table includes a set of columns that uniquely identify a row and which cannot take on null
values. In a dimensional model, the set of dimension foreign keys constitute a candidate key.
One candidate key is typically chosen as the primary key, which usually only includes only
the minimum set of columns that uniquely identify a row. Although column order is not a
consideration for key purposes, the primary key is most often implemented in tandem with a
clustered index in which column order is essential. Looking again at the coordinate fact
table, a minimal data column footprint has been determined by choosing 4 byte data types
for columns. The columns specified and the order they appear in the key should follow the
most common pattern of usage. For coordinates this pattern is to locate frames and then
atoms within frames. However, there are two opportunities for optimization. First, since
simulations are placed in separate tables, the sim_id should not be included in the clustered
index. Structure identifiers (struct_id) should also not be included, as this column is always
determined by struct_inst. The second opportunity is to not even include struct_inst, when
there is only one structure in a simulation. These two changes reduce the index row size by
12 bytes for single structure simulations, a significant savings over simply building an index
on all dimension columns. The minimal clustered primary key also benefits to two
additional non-clustered indexes for spatial index queries and an index for fast coordinate
retrieval by atom_number. Non-clustered index leaf nodes store the primary key columns of
the target data table, so reducing the size of a primary key will also reduce the size of non-
clustered indexes.

Coordinate fact tables use CHECK constraints to both protect against bad data and to
optimize queries where fact tables are grouped in views joined using UNION. The sim_id
column is always constrained to single value and is not included in the clustered primary
key. If the simulation contains only one structure, the struct_inst column is limited to a value

Simms and Daggett Page 10

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

of 1 and the struct_id column is limited to one value. If the simulation contains more than
one structure, struct_id is constrained to a set of values, and struct_inst is constrained to a
range of values.

Analysis Fact Table Design
Analysis fact tables contain data that are derived from coordinates, but can have different
dimensionality. Coordinates are linked to the lowest level of the simulation and structure
hierarchies, and thus establish the primary dimension keys for simulation (sim_id, step) and
structure (struct_id, atom_number). Analyses that contain per atom and per step quantities,
such as instantaneous forces, use the same dimension keys as coordinates. Other physical
properties are associated with different levels of the simulation and structure hierarchies
through many-to-one relationships. For example, Cα root-mean-squared-deviation root from
starting structure (RMSD) is linked to structure at the residue level, and to simulation at the
step level. Relationships between all analysis fact tables and dimensions are summarized in
Table 7. Like coordinates, analysis tables never include the sim_id column in the primary
key and only include struct_inst for multi-structure simulations. Check constraints are also
used to ensure that the sim_id column is a constant, struct_id is either a constant or a limited
range of values, and other columns limited as appropriate.

Some analyses include multiple distinct quantities that are associated with the same structure
and step, or that contain categorical names. These are modeled through the use of an
additional dimension, which is unique to the analysis. One example is the dihedral analysis,
which contains a variable number of rows that are associated with a structure at the residue
level and a simulation at the step level. Each row contains a dihedral angle, which is a
measurement rotation about specific named bond inside the residue or along the main chain
at the Cα where the residue is attached. The number of rows depends on the number of
carbon-carbon bonds present in the residue, as each angle is associated with a specific
named bond. Dihedral angle names and abbreviations are broken out to a small dimension
table called Dihedral_Angle (Table 8), allowing the Dihedral fact table to use a single byte
identifier (dh_id) as a link to the angle name. The Dictionary of Secondary Structure
Prediction (DSSP) analysis follows a similar pattern, using the dimension table
Secondary_Structure (Table 9) to define secondary structure types under a single byte
identifier (ss_id). The PhiPsi analysis includes only one set of values per residue, but
includes an assignment to secondary structure state categories shown in Table 10. Here a
small dimension table is used to avoid placing character data in the PhiPsi fact tables, saving
space.

New fact tables can be added to the warehouse as new analyses are developed. The process
requires the selection of a short name, which will become the prefix of the tables created; the
determination of dimensions, and the selection column data types. The short name must
follow the naming conventions listed in Table 11 to avoid conflicts and to maintain
consistency across the warehouse. This name is combined with a single underscore character
(“_”) and simulation identifier to form the final table name. All tables associated with a
simulation are tracked through property views available in individual simulation databases
and in aggregate in the Directory database Master_Property_v view.

Conclusions and Future Directions
We have presented a detailed model for storing and analyzing data from MD simulations
and its implementation in a relational database. The dimensional approach of organizing
data into continuous facts and discreet dimensions is well suited to MD simulation data and
could be used in many scientific applications. The implementation of this model in a
relational database required careful design to overcome challenges inherent in a 100 TB data

Simms and Daggett Page 11

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

set. A directory database centralizes management of identifiers and data location, facilitating
the distribution of data to multiple databases and servers. Within databases tables are highly
optimized by carefully choosing column data types, building efficient clustered indexes, and
using check constraints for query efficiency and data quality.

Initial work on the data model described here began in 2005 and was first released in 2007.
Since the beginning, both the model and relational implementation have been in continuous
development, adding new analyses, extending the relational schema, improving
performance, adding more (and larger) servers, upgrading through two operating system
releases and three SQL Server releases. Overall capacity has increased by nearly an order of
magnitude to over 150 TB since the first two servers were purchased, and trajectories and
analyses for over 11,000 simulations are available in the warehouse. In addition, while we
have focused on our relational database, in fact it is part of a novel hybrid relational/
multidimensional database incorporating OLAP [17], and a fuller account of the OLAP
portion is forthcoming [18].

Acknowledgments
We are grateful for support from Microsoft for development of our database. Most simulations for Dynameomics
were performed using computer time through the DOE Office of Biological Research as provided by the National
Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department
of Energy under contract no. DE-AC02-05CH11231. We are also grateful for financial support provided by the
National Institutes of Health (GM50789 to V.D. and TG 3 T15 LM007442-04S1 to A.S.).

References
1. Codd EF. A relational model of data for large shared data banks. Commun ACM. 1970; 13:37–387.

2. Codd, EF.; Codd, SB., et al. Providing OLAP to User-Analysts: An IT Mandate. 1993.

3. Berman HM, Westbrook J, et al. The protein data bank. Nucleic Acids Res. 2000; 28:235–242.
[PubMed: 10592235]

4. Henrick K, Feng Z, et al. Remediation of the protein data bank archive. Nucleic Acids Res. 2008;
36:D426–D433. [PubMed: 18073189]

5. Simms AM, Toofanny RD, Kehl C, Benson NC, Daggett V. Dynameomics: Design of a
computational lab workflow and scientific data repository for protein simulations. Protein
Engineering, Design & Selection. 2008; 21:369–377.

6. Schaeffer RD, Jonsson AL, Simms AM, Daggett V. Generation of a consensus protein domain
dictionary. Bioinformatics. 2011; 27:46–54. [PubMed: 21068000]

7. Simms AM, Beck DAC, Jonsson AL, Schaeffer RD, Daggett V. The molecular mechanics
parameter markup language (submitted for publication). 2011

8. Beck DAC, Alonso DOV, Daggett V. in lucem Molecular Mechanics (ilmm). 2000–2011

9. Toofanny RD, Simms AM, Beck DAC, Daggett V. Implementation of 3D spatial indexing and
compression in a large-scale molecular dynamics simulation database for rapid atomic contact
detection (in preparation). 2011

10. Levitt M. Molecular dynamics of native protein. I. computer simulation of trajectories. J Mol Biol.
1983; 168:595–617. [PubMed: 6193280]

11. Levitt M, Hirshberg M, Sharon R, Daggett V. Potential energy function and parameters for
simulations of the molecular dynamics of proteins and nucleic acids in solution. Comput Phys
Commun. 1995; 91:215–231.

12. Microsoft Corporation. SQL Server 2008. 2007.

13. International Organization for Standardization, International Electrotechnical Commission. Part 1,
Framework (SQL/framework). Geneva: 2001. Information technology: database languages: SQL.

14. Microsoft Corporation. SQL Server Books Online. 2010.

15. Fritchey, G.; Dam, S. SQL Server 2008 Query Performance Tuning Distilled. New York: 2009.

Simms and Daggett Page 12

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

16. IEEE Computer Society Standards Committee, IEEE Standards Board, et al. IEEE standard for
binary floating-point arithmetic. 1985.

17. Kehl CE, Simms AM, Toofanny RD, Daggett V. Dynameomics: A multi-dimensional analysis-
optimized database for dynamic protein data. Protein Engineering Design and Selection. 2008;
21:379–386.

18. Simms AM, Daggett V. 2011 in preparation.

Simms and Daggett Page 13

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 1.
Star and Snowflake Schemas. A star schema (A) is distinguished by a central fact table and a
set of dimensional tables surrounding it. Each dimensional row is associated with one or
more fact table rows. A snowflake schema (B) is a star schema with the addition of
secondary dimensions (DIM2-1 and DIM2–2) that are related to a dimension and thus only
indirectly related to the fact table.

Simms and Daggett Page 14

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 2.
High-level Database Organization. Data in a database are organized into variable length data
structures called rows, which are contained within pages. In SQL Server, extents are groups
of 8 pages and are the smallest data structure read in a single I/O operation. Tables contain
one or more extents for data, and optionally extents containing index data. In order to obtain
optimal performance, tables must be composed of the smallest number of columns using the
smallest appropriate data types resulting in the highest row density.

Simms and Daggett Page 15

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 3.
Dimensional Hierarchies and Groups. The simulation hierarchy (A) links simulation time
(step) through structure to simulation parameters. The structure hierarchy (B) describes
chemical structure starting from individual atoms. The simulation group (C) and structure
group (D) dimensions allow simulations and structures to be placed in curated groups for
analysis.

Simms and Daggett Page 16

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 4.
Structure Dimension Links. The structure dimension links simulations to the parameter
library, the Protein Databank, and also uses standard atom and residue names from the
Chemical Component Dictionary.

Simms and Daggett Page 17

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 5.
Directory Schema Diagram. The Directory database contains a relational implementation of
the four primary dimensions: (A) Simulation, (B) Simulation Group, (C) Structure, and
Structure Group (D).

Simms and Daggett Page 18

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 6.
Simulation and Simulation Group Dimension Tables. Relationships for the simulation
dimension and associated snowflake dimensions.

Simms and Daggett Page 19

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Simms and Daggett Page 20

Table 1

Unique Simulation Attributes. These dimension attributes are the set of starting parameters that uniquely
identify a simulation. Each combination of these values is assigned a single integer simulation identifier
(sim_id), which is then used throughout the warehouse. Managing simulations based on these attributes allows
for a clean separation of physical storage and simulation definition.

Attribute Description

structures The set of structures included in the simulation system

minimized structures The set of minimized structures used as starting structures

temp Simulation temperature (K)

run A locally assigned positive integer used to differentiate multiple
executions

pH Qualitative definition of acidity/basicity of the simulation
environment (high, medium, low)

density Solvent density (g/ml)

random seed Random number seed used for initial random assignment of
velocities

time step Conversion factor for calculating time in picoseconds from a step
(ps), typical value is 0.002 ps

initial box size Dimensions (x, y, z) of periodic box (Å)

c scale Charge scaling factor for electrostatic potential

a scale Scaling factor for 12/6 attractive and 12/6 repulsive terms of the
Lennard Jones potential

cutoff range Maximum distance between two atoms to include electrostatic
interactions (Å)

h3d sync Number of steps to reuse the non-bonded interaction pair list

simulation engine Simulation software used to run the simulation

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Simms and Daggett Page 21

Table 2

Structure Group Type. Structure groups are classified by a type value stored in the
Master_StructureGroupType table. The current types are shown below and can be expanded by adding new
rows to this table.

ID Name Description

1 simulation modification structure changes required for simulation (e.g. protenation).

2 SNP mutation single nucleotide polymorphism

3 holo/apo indicates structure was formed from holo structure

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Simms and Daggett Page 22

Table 3

Simulation Dimension Attributes and Relational Columns. The attributes of the simulation dimension are
mapped to SQL Server data types and stored in the Master_Simulation table. The fixed exact size type
DECIMAL (9,5) (a 5 byte floating point value) is used for floating point quantities because these columns will
be included in a unique index. Structures (and minimized structures) are mapped to a single integer identifier;
other integer values are represented directly.

Attribute Relational Column(s) SQL Data Type

structures struct_alloc_grp_id INT

minimized structures minstruct_alloc_grp_id INT

temp temp SMALLINT

run run SMALLINT

pH pH SMALLINT

density density DECIMAL(9,5)

random seed random_seed INT

time step time_step DECIMAL(9,5)

box dimensions box_x, box_y, box_z DECIMAL(9,5)

c scale cscale DECIMAL(9,5)

a scale ascale DECIMAL(9,5)

cutoff range cutoff_range DECIMAL(9,5)

h3d sync h3d_sync INT

simulation engine sim_sw_id SMALLINT

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Simms and Daggett Page 23

Table 4

Supported and Planned Fact Types. Fact data are stored as tables named using a type abbreviation, an
underscore (“_”), and a simulation identifier. Coordinate trajectories are produced during simulation and
stored in Coord tables (centered and aligned, suitable for viewing) and GCoord tables (untranslated). The
remaining fact types are used to store analysis data derived from the coordinates.

Abbreviation Description

Box Periodic Box Sizea

Bins 3D Spatial Index of Neighbors

Congen Conformational Geneologya

Contact Native Contacts By Timea

Coord Coordinate Trajectorya

Dihed Dihedral Anglesa

DSSP Dictionary Secondary Structure Predictiona

FContact Full Heavy Atom Contact Distance By Time

FContactSolv Full Heavy Atom Contact Distance by Time with Solvent

FDSASum Fine Detail Structure Analysis Summary By Time

Flex Flexibility (Per Atom)

Forces Instantaneous forces

ForcesSolv Instantaneous forces with solvent

ForVel Per Atom Force and Velocity

GCoord Global Coordinate Trajectory

GCoordSolv Global Coordinate Trajectory with Solvent

PhiPsi Phi Psi Anglesa

Radgee Radius of Gyrationa

RMSD Root Mean Square Distance from Starting Structurea

RMSF Root Mean Square Fluctuation

SASA Solvent Accessible Surface Areaa

S2 Side Chain S2 Axis Order Parameters

VCont Verbose Contacts Summary

a
Original 2007 release

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Simms and Daggett Page 24

Table 5

Shared Identifiers. The data warehouse and the ilmm simulation engine share semantics for these identifiers,
allowing interoperability between the warehouse and simulations. In general, the warehouse is responsible for
allocating identifiers.

Field Type Description Valid Ranges ilmm

step Int32 Simulation
step (frame) [0, +2billion) Step

struct_inst Int32 Structure
Instance [0, +2billion)a Molecule Number + 1

struct_id Int32 Structure
Identifier [0, +2billion)a

Stored in system_mmpl.xml after
allocation

atom_number Int32 Atom
Number [0, +2billion)a Atom Number

residue_id Int32 Residue
Identifier [0, +2billion)a

Proxy for residue number, chain
and icode

a
0 is a reserved value.

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Simms and Daggett Page 25

Table 6

Common SQL Server Data Types. SQL Server supports a variety of data types. For numeric dimensional
columns, the smallest fixed size exact numeric types that can accommodate the intended data are preferred.
Fixed characters can be used but it usually preferable to code categorical string values using fixed allocation
numeric columns.

Name Min Sizea Max Sizea

BIGINTc,e 8 8

INTc,e 4 4

SMALLINTc,e 2 2

TINYINTc,e 1 1

DECIMALc,g 5 17

MONEYc,g 8 8

SMALLMONEYc,g 4 4

FLOATc,f 4 8

REALc,f 4 4

CHARc,h 1 8000

NCHARc,h 2 8000

BINARYc,i 1 8000

VARCHARb,d,h 1 8000

NVARCHARb,d,h 2 8000

VARBINARYb,d,i 1 8000

a
Size in bytes.

b
Supports large object extension MAX, potentially resulting in off-page storage.

c
Fixed allocation size.

d
Variable allocation size.

e
Exact integer numeric.

f
Approximate real numeric.

g
Exact real numeric.

h
Character data.

i
Binary data.

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Simms and Daggett Page 26

Ta
bl

e
7

D
im

en
si

on
al

 K
ey

 C
ol

um
n

U
sa

ge
. A

 c
on

si
st

en
t s

et
 o

f
co

lu
m

n
na

m
es

 a
re

 u
se

d
th

ro
ug

ho
ut

 th
e

w
ar

eh
ou

se
 to

 r
ef

er
 to

 d
im

en
si

on
 ta

bl
e

ke
ys

. W
he

re
 p

os
si

bl
e,

th
es

e
re

la
tio

ns
hi

ps
 a

re
 e

nf
or

ce
d

ex
pl

ic
itl

y
th

ro
ug

h
th

e
us

e
of

 p
ri

m
ar

y
ke

y/
fo

re
ig

n
ke

y
co

ns
tr

ai
nt

s.

F
ac

t
st

ep
st

ru
c_

ti
ns

t
st

ru
ct

i_
d

re
si

du
e_

id
at

om
_n

um
be

r
dh

_i
d

ss
_i

d
st

id
in

de
x

in
de

x_
ne

ig
hb

or

B
ox

PK
−

−
−

−
−

−
−

−
−

C
on

ge
n

PK
O

FK
a

+
+

−
−

−
−

−

C
on

ta
ct

PK
O

FK
a

+
+

−
−

−
−

−

FD
SA

Su
m

PK
O

FK
a

+
+

−
−

−
−

−

R
ad

ge
e

PK
O

FK
a

+
+

−
−

−
−

−

R
M

SD
PK

O
FK

a
+

+
−

−
−

−
−

V
co

nt
PK

O
FK

a
+

+
−

−
−

−
−

Fl
ex

PK
O

FK
a

PK
x

−
−

−
−

−

D
ih

ed
PK

O
FK

a
PK

x
FK

c
−

−
−

−

D
SS

P
PK

O
FK

a
PK

x
−

PK
,F

K
d

−
−

−

Ph
iP

si
PK

O
FK

a
PK

x
−

−
PK

,F
K

e
−

−

SA
SA

PK
O

FK
a

PK
x

−
−

−
−

−

C
oo

rd
PK

O
FK

a,
b

+
+

PK
,F

K
b

−
−

−
*

−

Fo
rc

es
PK

O
FK

a,
b

+
+

PK
,F

K
b

−
−

−
−

−

Fo
rV

el
PK

O
FK

a,
b

+
+

PK
,F

K
b

−
−

−
−

−

S2
PK

O
FK

a,
b

+
+

PK
,F

K
b

−
−

−
−

−

R
M

SF
−

O
FK

a
PK

+
−

−
−

−
−

B
in

s
−

−
−

−
−

−
−

−
PK

PK

PK
 =

 P
ri

m
ar

y
K

ey
 C

ol
um

n,
 O

 =
 O

pt
io

na
l P

ri
m

ar
y

K
ey

 C
ol

um
n,

 F
K

 =
 P

ri
m

ar
y

K
ey

 C
ol

um
n

re
fe

re
nc

in
g

di
m

en
si

on
al

 ta
bl

es
:

a St
ru

ct
ur

e,

b ID
,

c D
ih

ed
ra

lA
ng

le
,

d Se
co

nd
ar

yS
tr

uc
tu

re
,

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Simms and Daggett Page 27
e St

at
e.

− =
 n

o
re

la
tio

n,

+ =
 r

el
at

ed
 a

t s
tr

uc
tu

re
 le

ve
l t

o
al

l r
es

id
ue

s
an

d
at

om
s

w
ith

in
 a

 s
tr

uc
tu

re
,

x =
 r

el
at

ed
 to

 a
to

m
s

w
ith

in
 r

es
id

ue
s,

++
re

la
te

d
to

 r
es

id
ue

s
th

ou
gh

 s
pe

ci
fi

c
at

om
s,

* =
 a

ss
ig

nm
en

t o
f

co
or

di
na

te
 to

 s
pe

ci
fi

c
sp

at
ia

l i
nd

ex
 b

in
.

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Simms and Daggett Page 28

Table 8

Dihedral angles definition dimension. The dihedral analysis calculates multiple bond angle values per residue
at each time step. Each value is associated with a specific named bond, which are assigned to an id defined in
this dimension table. This identifier is then used in the fact table in place of an explicit string constant.

id name abbrev.

1 chi1 X1

2 chi2 X2

3 chi21 X21

4 chi22 X22

5 chi3 X3

6 chi31 X31

7 chi32 X32

8 chi4 X4

9 chi5 X5

10 chi6 X6

11 chi61 X61

12 chi62 X62

13 cis cis

14 omega Ω

15 phi Φ

16 psi Ψ

17 theta Θ

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Simms and Daggett Page 29

Table 9

Secondary structure definition dimension. The DSSP analysis produces multiple values per residue and step,
and similar to dihedral analysis, an id is defined for each character and structure definition.

id char. structure

1 a alpha strand, parallel

2 A alpha strand, anti-parallel

3 b beta strand, parallel

4 B beta strand, anti-parallel

5 c mixed alpha/beta strand, parallel

6 C mixed alpha/beta strand, anti-parallel

7 r alpha bridge, parallel

8 R alpha bridge, anti-parallel

9 s beta bridge, parallel

10 S beta bridge, anti-parallel

11 G 3–10 helix (3 residues per turn)

12 H alpha helix (4 residues per turn)

13 I pi helix (5 residues per turn)

14 - loop, or no assigned structure

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Simms and Daggett Page 30

Table 10

Φ/Ψ state constants dimension. Although the Φ/Ψ produces only one value per residue, the calculation also
includes a structure state prediction. The state labels are assigned ids defined in this table and then used in the
fact table in place of string labels.

id state

1 beta

2 other

3 extended

4 helix

J Supercomput. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Simms and Daggett Page 31

Table 11

Naming rules for coordinate and analysis tables. Table names conform to a simple naming standard to avoid
conflicts and to maintain a consistent interface for users.

Rule

1 Length: 7 Character max on the main name, note that a clarifying suffix may be added
such as “Sum” or “PerAtom” does not count towards the total.

2 Characters: No spaces, characters from this set [a-zA-Z1–9_] only.

3 Capitalization: Words capped and abbreviations ALL CAPS.

4 Names and definitions must be assigned in both the Simulation and Directory databases

J Supercomput. Author manuscript; available in PMC 2013 October 01.

