Skip to main content
Log in

A maximum likelihood-based distributed protocol for passive RFID dense reader environments

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In passive RFID Dense Reader Environments, a large number of passive RFID readers coexist in a single facility. Dense environments are particularly susceptible to reader-to-tag and reader-to-reader collisions. Both may degrade the system performance, decreasing the number of identified tags per time unit. Some proposals have been suggested to avoid or handle these collisions, but requiring extra hardware or making a non-efficient use of the network resources. This paper proposes MALICO, a distributed mechanism-based protocol that exploits a maximum-likelihood estimator to improve the performance of the well-known Colorwave protocol. Using the derivation of the joint occupancy distribution of urns and balls via a bivariate inclusion and exclusion formula, MALICO permits every reader to estimate the number of neighboring readers (potential colliding readers). This information helps readers to schedule the identification time with the aim at decreasing collision probability among neighboring readers. MALICO provides higher throughput than the distributed state-of-the-art proposals for dense reader environments and can be implemented in real RFID systems without extra hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Finkenzeller K (2004) RFID handbook: fundamentals and applications in contactless smart cards and identification, 2nd edn. Wiley, New York

    Google Scholar 

  2. Wang G, Wang T, Jia W, Guo M, Li J (2010) Adaptive location updates for mobile sinks in wireless sensor networks. J Supercomput 47(2):127–145

    Article  Google Scholar 

  3. ETSI EN 302 208 (2010) Version 1.3.1. Available online at: http://www.etsi.org

  4. Leong KS, Ng ML, Cole PH (2005) The reader collision problem in RFID systems. In: Proceedings of IEEE international symposium on microwave, antenna, propagation and EMC technologies for wireless communications, pp 658–661

    Chapter  Google Scholar 

  5. Yoon W, Vaidya NH (2010) RFID reader collision problem: performance analysis and medium access. Wirel Commun Mob Comput. doi:10.1002/wcm.972

    Google Scholar 

  6. Wang D, Wang J, Zhao JY (2006) A novel solution to the reader collision problem in RFID system. In: Proceedings of IEEE international conference on wireless communications, networking and mobile computing, pp 1–4

    Google Scholar 

  7. Chung HB, Mo H, Kim N, Pyo C (2007) An advanced RFID system to avoid collision of RFID reader, using channel holder and dual sensitivities. Microw Opt Technol Lett 49(11):2643–2647. doi:10.1002/mop.22808

    Article  Google Scholar 

  8. Kim J, Lee W, Kim E, Kim D, Suh K (2007) Optimized transmission power control of interrogators for collision arbitration in UHF RFID systems. IEEE Commun Lett 11(1):22–24

    Article  Google Scholar 

  9. Chen NK, Chen JL, Lee CC (2009) Array-based reader anti-collision scheme for highly efficient RFID network applications. Wirel Commun Mob Comput 9:976–987

    Article  Google Scholar 

  10. Eom JB, Yim SB, Lee TJ (2009) An efficient reader anti-collision algorithm in dense RFID networks with mobile RFID readers. IEEE Trans Ind Electron 56(7):2326–2336

    Article  Google Scholar 

  11. Montrucchio B, Rebaudengo M, Ferrero R, Gandino F (2010) Fair anti-collision protocol in dense RFID networks. In: Proceedings of third international EURASIP workshop on RFID technology, pp 101–105

    Google Scholar 

  12. EPCGlobal (2008) EPC radio-frequency identity protocols Class-1 Generation-2 UHF RFID. Version 1.2.0. http://www.epcglobalinc.org

  13. Hsu CH, Chen YM, Kang HJ (2008) Performance effective and low-complexity redundant reader detection in wireless RFID networks. EURASIP J Wirel Commun Netw 2008:1–19

    Article  Google Scholar 

  14. Birari SM, Iyer S (2005) Pulse: a mac protocol for RFID networks. In: Proceedings of international workshop on RFID and ubiquitous sensor networks

    Google Scholar 

  15. Liu L, Yan D, Lai X, Lai S (2008) A new kind of RFID reader anti-collision algorithm. In: Proceedings of IEEE international conference on circuits and systems for communications, pp 559–563

    Google Scholar 

  16. Kwang-il H, Kyung-tae K, Doo-seop E, Sangbin L, Sunshin A (2009) Distributed tag access with collision avoidance among mobile RFID readers. In: Proceedings of international conference on computational science and engineering, pp 621–626

    Google Scholar 

  17. Sungjun K, Sangbin L, Sunshin A (2006) Reader collision avoidance mechanism in ubiquitous sensor and RFID networks. In: Proceedings of international workshop on wireless network testbeds, experimental evaluation and characterization, pp 101–102

    Google Scholar 

  18. Waldrop J, Engels DW, Sarma SE (2003) Colorwave: an anticollision algorithm for the reader collision problem. In: Proceedings of IEEE international conference on communications, pp 1206–1210

    Google Scholar 

  19. Gandino F, Ferrero R, Montrucchio B, Rebaudengo M (2011) Probabilistic DCS: an RFID reader to reader anti-collision protocol. J Netw Comput Appl 34(3):821–832

    Article  Google Scholar 

  20. Waldrop J, Engels DW, Sarma SE (2003) Colorwave: a MAC for RFID reader networks. In: Proceedings of IEEE conference on wireless communications and networking, vol 3, pp 1701–1704

    Google Scholar 

  21. Bueno-Delgado MV, Vales-Alonso J, Angerer C, Rupp M (2010) Study of RFID schedulers in dense reader environments. In: Proceedings of IEEE international conference on industrial technology (ICIT), Valparaiso, Chile, March 2010

    Google Scholar 

  22. Drodi R (2005). RFID white paper. Available online at: http://www.mtiwe.com

  23. EPCGlobal Network. Avaliable online at: http://www.epcglobalinc.org

  24. Charalambides ChA (2005) Derivation of a joint occupancy distribution via a bivariate inclusion and exclusion formula. Metrika 62(2–3):149–160

    Article  MathSciNet  MATH  Google Scholar 

  25. Abramson N (1973) Packet switching with satellites. In: Proceedings of the national computer conference and exposition, New York, USA, June 1973

    Google Scholar 

  26. Vales-Alonso J, Bueno-Delgado MV, Egea-Lopez E, Gonzalez-Castano FJ, Alcaraz J (2011) Multiframe maximum-likelihood tag estimation for RFID anticollision protocols. IEEE Trans Ind Inform 7(3):487–496

    Article  Google Scholar 

  27. Saleri F, Quarteroni A (2003) Scientific computing with matlab. Springer, New York

    MATH  Google Scholar 

  28. Bueno-Delgado MV, Vales-Alonso J (2011) On the optimal frame-length configuration on passive RFID systems. J Netw Comput Appl 34(3):854–876

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the MICINN/FEDER project grant TEC2010-21405-C02-02/TCM (CALM) and the framework of the project from Fundación Séneca “Programa de Ayudas a Grupos de Excelencia de la Region de Murcia”, Plan Regional de Ciencia y Tecnología 2007/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Bueno-Delgado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bueno-Delgado, M.V., Pavón-Mariño, P. A maximum likelihood-based distributed protocol for passive RFID dense reader environments. J Supercomput 64, 456–476 (2013). https://doi.org/10.1007/s11227-012-0779-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-012-0779-5

Keywords

Navigation