Skip to main content
Log in

Thermal camera networks for large datacenters using real-time thermal monitoring mechanism

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Thermal cameras provide fine-grained thermal information that enables monitoring and autonomic thermal management in large datacenters. The real-time thermal monitor network employing thermal cameras is proposed to cooperatively localize hotspots and extract their characteristics (i.e., temperature, size, and shape). These characteristics are adopted to classify the causes of hotspots and make energy-efficient thermal management decisions such as job migration. Specifically, a sculpturing algorithm for extracting and reconstructing shape characteristics of hotspots is proposed to minimize the network overhead. Experimental results show the validity of all the algorithms proposed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Bash CE, Patel CD, Sharma RK (2006) Dynamic thermal management of air cooled data centers. In: Proceedings of the 10th international conference on thermal and thermomechanical phenomena in electronics systems (ITHERM), San Diego, CA, USA, May 2006, pp 445–452

    Google Scholar 

  2. Beitelmal A, Patel C (2007) Thermo-fluids provisioning of a high performance high density data center. Distrib Parallel Databases 21:227–238

    Article  Google Scholar 

  3. Chase JS, Anderson DC, Thakar PN, Vahdat AN, Doyle RP (2001) Managing energy and server resources in hosting centers. In: Proceedings of the 18th symposium on operating systems principles (SOSP), Chateau Lake Louise, Banff, Canada, October 2001

    Google Scholar 

  4. Chew LW, Ang L, Seng KP (2008) Survey of image compression algorithms in wireless sensor networks. Inf Technol 4:1–9

    Google Scholar 

  5. Choi J, Kim Y, Sivasubramaniam A, Srebric J, Wang Q, Lee J (2008) A cfd-based tool for studying temperature in rack-mounted servers. IEEE Trans Comput 57(8):1129–1142

    Article  MathSciNet  Google Scholar 

  6. Das R, Kephart J, Lefurgy C, Tesauro G, Levine D, Chan H (2008) Autonomic multi-agent management of power and performance in data centers. In: Proceedings of the 7th international conference on autonomous agents and multiagent systems (AAMAS), Estoril, Portugal, May 2008

    Google Scholar 

  7. Erdem UM, Sclaroff S (2006) Automated camera layout to satisfy task-specific and floor plan-specific coverage requirements. Comput Vis Image Underst 103(3):156–169

    Article  Google Scholar 

  8. Hajebi K, Zelek JS (2006) Sparse disparity map from uncalibrated infrared stereo images. In: Proceedings of the Canadian conference on computer and robot vision, Waterloo, Canada, June 2006, pp 17

    Chapter  Google Scholar 

  9. Hajebi K, Zelek JS (2008) Structure from infrared stereo images. In: Proceedings of the computer and robot vision (CRV), Ontario, Canada, May 2008, pp 105–112

    Google Scholar 

  10. Hamann H, Lùandpez V, Stepanchuk A (2010) Thermal zones for more efficient data center energy management. In: Thermal and thermomechanical phenomena in electronic systems (ITherm), June 2010, pp 1–6

    Google Scholar 

  11. Harris C, Stephens M (1988) A combined corner and edge detection. In: Proceedings of the alvey vision conference, Manchester, UK, August 1988, pp 147–151

    Google Scholar 

  12. Jiang N, Parashar M (2009) Enabling autonomic power-aware management of instrumented data centers. In International symposium on parallel and distributed processing, pp 1–8

    Google Scholar 

  13. Kadir T, Brady M (2001) Saliency, scale and image description. Int J Comput Vis 45(2):83–105

    Article  MATH  Google Scholar 

  14. Koomey JG (2007) Estimating total power consumption by servers in the US and the world. In: A report by the Lawrence Berkeley National Laboratory

    Google Scholar 

  15. Kunt M, Ikonomopoulos A, Kocher M (1985) Second-generation image-coding techniques. Proc IEEE 73(4):549–574

    Article  Google Scholar 

  16. Lee EK, Kulkarni I, Pompili D, Parashar M (2010) Proactive thermal management in Green datacenter. J Supercomput, 1–31

  17. Lenchner J, Isci C, Kephart J, Mansley C, Connell J, McIntosh S (2011) Toward data center self-diagnosis using a mobile robot. In: International conference on autonomic computing (ICAC), Karlsruhe, Germany, June 2011

    Google Scholar 

  18. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  19. Moore J, Chase J, Ranganathan P, Sharma R (2005) Making scheduling “cool”: temperature-aware workload placement in data centers. In: Proceedings of the USENIX annual technical conference (ATEC), Anaheim, CA, April 2005

    Google Scholar 

  20. Mukherjee T, Tang Q, Ziesman C, Gupta S, Cayton P (2007) Software architecture for dynamic thermal management in datacenters. In: Communication systems software and middleware (COMSWARE), January 2007, pp 1–11

    Google Scholar 

  21. Nasrabadi N, King R (1988) Image coding using vector quantization: a review. IEEE Trans Commun 36(8):957–971

    Article  Google Scholar 

  22. Patel C (2003) A vision of energy aware computing from chips to data centers. In: Proceedings of the international symposium on micro-mechanical engineering (ISMME), Tsuchiura, Ibaraki, Japan, December 2003

    Google Scholar 

  23. Patel C, Bash C, Belady C (2001) Computational fluid dynamics modeling of high compute density data centers to assure system inlet air specifications. In: Proceedings of the ASME international electronic packaging technical conference and exhibition, Kauai, HI, USA, July 2001

    Google Scholar 

  24. Patel C, Bash C, Sharma R, Beitelmal A, Friedrich R (2003) Smart cooling of datacenters. In: Proceedings of the PacificRim/ASME international electronics packaging technology conference and exhibition (IPACK), Kauai, HI, USA, July 2003

    Google Scholar 

  25. Pon R, Batalin MA, Gordon J, Kansal A, Liu D, Rahimi M, Shirachi L, Yu Y, Hansen M, Kaiser W, Srivastava M, Sukhat G, Estrin D (2005) Networked infomechanical systems: a mobile embedded networked sensor platform. In: Proceedings of the 4th international symposium on information processing in sensor networks (IPSN), Los Angeles, CA, USA

    Google Scholar 

  26. Prakash S, Lee PY, Caelli T (2006) 3D mapping of surface temperature using thermal stereo. In: Proceedings of control, automation, robotics and vision (ICARCV), Singapore, December 2006, pp 1–4

    Google Scholar 

  27. Reid MM, Millar RJ, Black ND (1997) Second-generation image coding: an overview. ACM Comput Surv 29:3–29

    Article  Google Scholar 

  28. Said A, Pearlman WA (1996) A new fast/efficient image codec based on set partitioning in hierarchical trees. IEEE Trans Circuits Syst Video Technol 6(12):243–250

    Article  Google Scholar 

  29. Shapiro JM (1993) Embedded image coding suing zerotrees of wavelet coefficients. IEEE Trans Signal Process 41(12):3445–3462

    Article  MATH  Google Scholar 

  30. Sharma R, Bash C, Patel C, Friedrich R, Chase J (2005) Balance of power: dynamic thermal management for internet data centers. IEEE Internet Comput 9(1):42–49

    Article  Google Scholar 

  31. Tang Q, Gupta S, Varsamopoulos G (2008) Energy-efficient thermal-aware task scheduling for homogeneous high-performance computing data centers: a cyber-physical approach. IEEE Trans Parallel Distrib Syst 19(11):1458–1472

    Article  Google Scholar 

  32. Tang Q, Gupta SKS, Varsamopoulos G (2008) Energy-efficient thermal-aware task scheduling for homogeneous high-performance computing data centers: a cyber-physical approach. IEEE Trans Parallel Distrib Syst 19(11):1458–1472

    Article  Google Scholar 

  33. Taubman D (2000) High performance scalable image compression with EBCOT. IEEE Trans Image Process 9(7):1158–1170

    Article  Google Scholar 

  34. Wallace GK (1991) The JPEG still picture compression standard. Commun ACM 34(4):30–44

    Article  Google Scholar 

  35. Zhang C-N, Wu X (1999) A hybrid approach of wavelet packet and directional decomposition for image compression. In: IEEE Canadian conference on electrical and computer engineering, vol 2, pp 755–760

    Google Scholar 

Download references

Acknowledgement

We acknowledge the contribution of Alex Weiner served as a technical reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Liu.

Additional information

This work was performed while H. Liu was visiting the CPS Lab, Rutgers University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Lee, E.K., Pompili, D. et al. Thermal camera networks for large datacenters using real-time thermal monitoring mechanism. J Supercomput 64, 383–408 (2013). https://doi.org/10.1007/s11227-012-0781-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-012-0781-y

Keywords

Navigation