Skip to main content
Log in

Parallelization of the FMM on distributed-memory GPGPU systems for acoustic-scattering prediction

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In this work, we carry out the parallelization of the single level Fast Multipole Method (FMM) for solving acoustic-scattering problems (using the Helmholtz equation) on distributed-memory GPGPU systems. With the aim of enlarging the scope of feasible simulations, the presented solution combines the techniques developed for our distributed-memory CPU solver with our shared-memory GPGPU solver. The performance of the developed solution is proved using two different GPGPU clusters: the first one consists of two workstations with NVIDIA GTX 480 GPUs linked by a Gigabit Ethernet network, and the second one comprises four nodes with NVIDIA Tesla M2090 GPUs linked by an Infiniband network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Dover, New York

    MATH  Google Scholar 

  2. Burton AJ, Miller GF (1971) The application of integral equation methods to the numerical solution of some exterior boundary-value problems. Proc R Soc Lond Ser A, Math Phys Sci 323(1553):201–210

    Article  MathSciNet  MATH  Google Scholar 

  3. Coifman R, Rokhlin V, Wandzura S (1993) The fast multipole method for the wave equation: a pedestrian prescription. IEEE Antennas Propag Mag 35(3):7–12

    Article  Google Scholar 

  4. Eibert TF (2005) A diagonalized multilevel fast multipole method with spherical harmonics expansion of the κ-space integrals. IEEE Trans Antennas Propag 53(2):814–817

    Article  Google Scholar 

  5. Foster I (1995) Designing and building parallel programs: concepts and tools for parallel software engineering. Addison-Wesley, Reading

    MATH  Google Scholar 

  6. GPGPU.org (2011) General-purpose computation on Graphics Processing Units. Available online at: http://gpgpu.org/

  7. Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73:325–348

    Article  MathSciNet  MATH  Google Scholar 

  8. Gumerov NA, Duraiswami R, Borovikov EA (2003) Data structures, optimal choice of parameters, and complexity results for generalized multilevel fast multipole methods in d dimensions. Technical reports from UMIACS

  9. Gumerov NA, Duraiswami R (2008) Fast multipole methods on graphics processors. J Comput Phys 227(18):8290–8313

    Article  MathSciNet  MATH  Google Scholar 

  10. Lashuk I, Chandramowlishwaran A, Langston H, Nguyen T, Sampath R, Shringarpure A, Vuduc R, Ying L, Zorin D, Biros G (2009) A massively parallel adaptive fast-multipole method on heterogeneous architectures. In: Proceedings of the conference on high performance computing networking, storage and analysis (SC ’09), pp 1–12

    Chapter  Google Scholar 

  11. López-Fernández JA, Portugués ML, Taboada JM, Rice HJ, Obelleiro F (2011) HP-FASS: a hybrid parallel fast acoustic scattering solver. Int J Comput Math 88(9):1960–1968

    Article  MATH  Google Scholar 

  12. López-Portugués M, López-Fernández JA, Rodríguez-Campa A, Ranilla J (2011) A GPGPU solution of the FMM near interactions for acoustic scattering problems. J Supercomput 58(3):283–291

    Article  Google Scholar 

  13. López-Portugués M, López-Fernández JA, Menéndez-Canal J, Rodríguez-Campa A, Ranilla J (2011) Acoustic scattering solver based on single level FMM for Multi-GPU systems. J Parallel Distrib Comput. doi:10.1016/j.jpdc.2011.07.013

    Google Scholar 

  14. Message Passing Interface Forum (2009) MPI: A message-passing interface standard, Rel 2.2. Available online at: http://www.mpi-forum.org/

  15. Microway Incorporated (2011) NVIDIA MD SimCluster test drive program. Available online at: http://www.microway.com/

  16. The OpenMP ARB (2004) OpenMP. Available online at: http://www.openmp.org/

  17. Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC (2008) GPU computing. Proc IEEE 96(5):879–899

    Article  Google Scholar 

  18. Rokhlin V (1990) Rapid solution of integral equations of scattering theory in two dimension. J Comput Phys 86(2):424–439

    Article  MathSciNet  Google Scholar 

  19. Rokhlin V (1993) Diagonal forms of translation operators for the Helmholtz equation in three dimensions. Appl Comput Harmon Anal 1(1):82–93

    Article  MathSciNet  MATH  Google Scholar 

  20. Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869

    Article  MathSciNet  MATH  Google Scholar 

  21. Song J, Chew W (1995) Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering. Microw Opt Technol Lett 10(1):14–19

    Article  Google Scholar 

  22. Wu TW (2000) Boundary element acoustics, advances in boundary elements. WIT Press, Southampton

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by “Ministerio de Ciencia e Innovación” from Spain/FEDER under the research projects TEC2011-24492/TEC (iSCAT) and TIN2010-14971, and by “Gobierno del Principado de Asturias” (PCTI)/ FEDER under project PC10-06. The Airbus A300 series geometry has been provided by the research project GRD1-2001-40147 financed by the European Union. Financial support (grant: UNOV-10-BECDOC) given by the University of Oviedo is acknowledged. Finally, many thanks are due to Microway Incorporated by the chance of using their Tesla MD SimCluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ranilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Portugués, M., López-Fernández, J.A., Ranilla, J. et al. Parallelization of the FMM on distributed-memory GPGPU systems for acoustic-scattering prediction. J Supercomput 64, 17–27 (2013). https://doi.org/10.1007/s11227-012-0786-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-012-0786-6

Keywords

Navigation