

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

https://doi.org/10.1007/s11227-012-0839-x

http://hdl.handle.net/10251/104256

Springer-Verlag

Ramiro Sánchez, C.; Roger Varea, S.; Gonzalez, A.; Almenar Terre, V.; Vidal Maciá, AM.
(2013). Multicore implementation of a fixed-complexity tree-search detector for MIMO
communications. The Journal of Supercomputing (Online). 65(3):1010-1019.
doi:10.1007/s11227-012-0839-x

Noname manuscript No.
(will be inserted by the editor)

Multi-Core Implementation of a Fixed-Complexity

Tree-Search Detector for MIMO Communications

Carla Ramiro · Sandra Roger · Alberto
Gonzalez · Vicenc Almenar · Antonio
M. Vidal

Received: date / Accepted: date

Abstract Multi-core systems allow the e�cient implementation of signal pro-
cessing algorithms for communication systems due to their high parallel pro-
cessing capabilities. In this paper, we present a high-throughput multi-core
implementation of a fixed-complexity tree-search-based detector interesting
for MIMO wireless communication systems. Experimental results confirm that
this implementation allows to accelerate the data detection stage for di↵erent
constellation sizes and number of subcarriers.

Keywords MIMO detection · Sphere decoding · multi-core

1 Introduction

Multiple-input multiple-output (MIMO) systems have the ability to increase
the maximum transmission rates and the achieved reliability and coverage of
current wireless communications without the need for additional bandwidth
nor transmit power [1]. MIMO techniques can be also used to enhance the
performance of orthogonal frequency division multiplexing (OFDM) systems
by exploiting the spatial domain. OFDM is an easy technique to mitigate the
e↵ects of inter-symbol interference in frequency selective channels, turning a
broadband frequency selective channel into a set of narrowband channels by
transmitting data in parallel over the di↵erent subcarriers. OFDM combined
with MIMO systems, also known as MIMO-OFDM [2], allows transmitting
di↵erent streams over di↵erent subcarriers.

C. Ramiro · A. M. Vidal

Department of Information Systems and Computation

Universidad Politecnica de Valencia

E-mail: cramiro@dsic.upv.es, avidal@dsic.upv.es

S. Roger · A. Gonzalez · V. Almenar

Institute of Telecommunications and Multimedia Applications

Universidad Politecnica de Valencia

E-mail: sanrova@iteam.upv.es, agonzal@dcom.upv.es, valmenar@dcom.upv.es

2 Carla Ramiro et al.

To boost the data rates of current generation cellular networks, MIMO
technologies have been adopted by many wireless standards such as LTE [3],
WiMAX and WLAN. The use of MIMO systems, however, complicates the
receiver stage, which has the task of processing the received mixture of signals
a↵ected by the channel in order to recover the transmitted data with the high-
est reliability. In fact, if nearly optimal detection is desired, this stage becomes
often the most computationally expensive within a MIMO system. Further-
more, scalability in the number of subcarriers per MIMO-OFDM symbol and
in the system size are key factors in wireless standards [3]. All the above rea-
sons motivate the search for high-throughput receiver implementations capable
to be reconfigured and scalable with the system parameters.

The practical implementation of MIMO receiver schemes and software-
defined-radio (SDR) platforms have been traditionally developed using dig-
ital signal processors (DSP) [4], field programmable gate arrays (FPGA) or
application-specific integrated circuits (ASIC) [5][6]. Recently, the use of the
last generation multi-core CPUs and GPUs has become attractive for the ef-
ficient implementation of parallel signal processing algorithms with high com-
putation requirements, such as the scheme reported in [7] and [12] respectively.

In this work we demonstrate the usefulness of multi-core CPU to develop
high-throughput implementations of signal processing algorithms for commu-
nication systems. The proposed approach ensures high-throughput nearly op-
timal detection performance in MIMO-OFDM systems.

2 System model and MIMO detection

Let us consider a MIMO system with nT transmit antennas, nR receive anten-
nas (nR � nT) and a certain signal-to-noise ratio (see Fig. 1). The input data
stream is split equally into the nT transmit antennas and sent simultaneously
through the channel, thus overlapping in time and frequency. The baseband
equivalent model for this system is given by

x = Hs+ v, (1)

where s represents the transmitted signal vector composed of the elements
resulting of mapping sets of information bits to symbols belonging to a certain
alphabet of complex numbers (constellation) ⌦ of size M , such as Quadrature
Amplitude Modulation (QAM). Vector x in (1) denotes the received symbol
vector, and v is a complex additive white Gaussian noise vector. The Rayleigh
fading channel matrix H is assumed to be known at the receiver and is formed
by nR ⇥ nT complex-valued elements, hij , which represent the fading gain
from the j-th transmit antenna to the i-th receive antenna. It is important
to note that, in this work, a block fading channel is considered, which means
that it is possible to transmit a long data frame without estimating a new
channel matrix. Since MIMO-OFDM transmission is considered, the system
model holds for the transmission through a single subcarrier out of the Nc

subcarriers used in the system.

Title Suppressed Due to Excessive Length 3

Fig. 1 Block diagram of a MIMO system.

Given the received signal x, the detection problem in MIMO systems con-
sists in determining the transmitted vector ŝ with the highest a posteriori
probability [1]. In practice, this detection problem is carried out by solving
the following least squares problem

ŝ = arg min
s2⌦

nT
kx�Hsk2, (2)

which can be solved by an exhaustive search over a total nT -dimensional lat-
tice points s. The solution of (2) is known as the maximum-likelihood (ML)
estimate. This implementation is cumbersome for practical systems; however,
its complexity can be substantially reduced by means of tree-search detection
methods such as the fixed-complexity sphere decoder (FSD) [8] or many other
sphere decoding (SD) methods [9].

If a QR factorization of the channel matrix (H = QR) is employed, the
problem (2) can be transformed into an equivalent one that can be solved
using a tree structure [10]. Q is an unitary matrix (QQH = I) and R can
be decomposed into an upper triangular nT ⇥ nT matrix, denoted by R0, and
a (nR � nT) ⇥ nT matrix of zeroes. For the sake of simplicity, a system with
nT = nR is assumed.

In case of multiplying (2) by QH and calling y = QHx, the problem (2)
can be equivalently expressed as

ŝ = arg min
s2⌦

nT
{||y �Rs||2}. (3)

In the next section, we will see how the FSD method uses the expression
(3) to solve the detection problem via a tree-search is described.

3 Fixed-Complexity Sphere Decoder

In [8] the authors proposed a MIMO detection strategy intended to overcome
the two main problems of other tree-search methods from an implementa-
tion point of view: their variable complexity and their sequential nature. This

4 Carla Ramiro et al.

algorithm was called fixed-complexity SD (FSD) and combines a preprocess-
ing stage followed by a predetermined tree-search composed of two di↵erent
stages: a full expansion of the tree (FE) in the first (highest) T levels and a
single-path expansion (SE) in the remaining tree-levels nT � T [8].

A search-tree is built containing all the candidate lattice points associated
to the problem to be solved. The tree must have as many levels as transmit
antennas and each symbol value is represented by a tree node. The tree-paths
are built by connecting nodes and stand for candidate solutions. For instance,
a tree-path containing selected symbols from the root up to level i has the
form S(i) = [si, si+1, . . . , snT]

T .
The symbols are detected following a specific ordering also proposed by the

authors in [8] which is based on the following reasoning: if all the possibilities
are searched in one level, the robustness of the signal at such level is not
relevant to the final performance. Therefore, the signals that su↵er the largest
noise amplification are placed at the levels where a FE is performed. On the
other hand, the signals that su↵er the smallest noise amplification are placed
at the levels associated to the SE.

The FSD ordering iteratively orders the nT columns of the channel ma-
trix H. At the i-th iteration only those components still to be detected are
considered. The particular steps carried out for each iteration are the follow-
ing. First, the pseudoinverse of the matrix containing only the columns of the
indexes not selected yet (Hi) is computed:

H+
i
= (HH

i
Hi)

�1HH

i
, i = nT , . . . , 1. (4)

Then, if a symbol for the FE is searched, the index that satisfies the following
is selected k = argmax kH+

i
k2, otherwise, the selected index must fulfill k =

argmin kH+
i
k2.

Although the FSD does not guarantee to find the ML estimate, it achieves
the same average performance as the ML detector provided T � p

nT � 1, as
shown in [8].

Figure 2 shows the search tree of the FSD algorithm for the case with nT =
4 (T = 1) and symbols belonging to a Quadrature Phase-Shift Keying (QPSK)
constellation. At the FE stage, for each survivor path, all the possible values of
the constellation are assigned to the symbol at the current level. The SE stage
starts from each retained path and obtains the remaining unknowns (those in
the lowest nT � T tree-levels) using successive interference cancellation (SIC)
as follows:

ŝi = Q
⇢
yi �

nTX

l=i+1

Ri,lŝl

�
, i = nT � T, . . . , 1. (5)

where Q(·) denotes quantization to the nearest constellation point. After the
set of candidate solutions is built, a sorting stage is necessary to determine
the path with the lowest Euclidean distance to the received vector. These path

Title Suppressed Due to Excessive Length 5

Fig. 2 Decoding tree of the FSD algorithm for a 4⇥ 4 MIMO system with QPSK symbols.

distances are calculated iteratively from the partial Euclidean distance (PED)
at each level, which for level i equals:

ei(S
(i)) = yi �

nTX

j=i

Ri,j ŝj . (6)

Then, the accumulated PED for each path is directly

di(S
(i)) = di+1(S

(i+1)) + |ei(S(i))|2, (7)

assuming that dnT+1(S(nT+1)) = 0.
Since all the SIC problems that compose the SE stage are totally indepen-

dent among themselves, they can be carried out in parallel, which makes the
FSD algorithm very suitable for multi-core implementation.

4 FSD multi-core Implementation

During the last few years, the leading hardware manufacturers have been fo-
cused in developing up to 12 cores processors. Their purpose is to get maximum
performance with minimal consumption using hyper-threading and other tech-
nologies. In this work we made use of a high performance compute with two
Intel Xeon X5680 processors running at 3.33 GHz. Each of them is an hexacore
processor supporting hyper-threading (the system has 24 virtual processors),
with 12 MB of cache memory and 96 GB of GDDR3 main memory.

For the parallelization of the FSD algorithm we assumed a MIMD computer
(i.e. multiple instruction, multiple data) with shared memory. This system has
p processors which share a common central memory. We used the OpenMP
application programming interface [11], which supports multi-platform shared
memory multiprocessing programming in C language.

The proposed multi-core implementation is composed of two di↵erentiated
parts. On the one hand, the preprocessing stage to reorder the channel matrix

6 Carla Ramiro et al.

and to next carry out the QR decomposition of it is performed at the begin-
ning and only every time the channel changes. As a block-fading channel is
considered in this work, it remains constant for the transmission of a whole
time slot (7 OFDM symbols). On the other hand, the tree-search-based detec-
tion is performed in parallel after grouping all the symbols contained in the
time slot.

As it was already described, the FSD ordering requires the computation
of a pseudoinverse matrix in every step. This calculation will be performed
e�ciently by solving the two linear systems that are next presented.

The pseudoinverse matrix to be computed at step i is G = H+
i
. Calling

eHi = (HH

i
Hi) and with eHi = eQi

eRi, if G is multiplied by eHi, it can be
equivalently expressed as:

eHiG = eQi
eRiG = HH

i
. (8)

Next, (8) can be multiplied by eQH

i
resulting in

eQH

i
eQi

eRiG = eRiG = eQH

i
HH

i
. (9)

To solve (9), first an auxiliary matrix Ji is computed as:

Ji = eQH

i
HH

i
, (10)

then, solving the following upper triangular system gives matrix G as a result:

eRiG = Ji. (11)

Algorithm 1 shows the code description to carry out the ordering of the
Nc di↵erent channel matrices necessary to detect the symbols in one time slot
and also the QR decomposition of the reordered channel matrix. Once the
selected ordering is obtained, the MIMO channel matrices H are transformed
via a matrix P into a new channel matrix HP. To keep the system model
unaltered, the detected symbol vector is also reordered as P�1s. Note that
these calculations are distributed among all threads (cores) using the OpenMP
clause schedule dynamic.

Algorithm 2 contains the pseudo-code related to the tree-search detection
stage. The calculation of all the branches of the FSD for Nc di↵erent channel
matrices are again distributed among all the cores, as done in the Algorithm 1.
Given that the calculation of all the subcarriers can be done independently,
because the FSD algorithm is applied performed on di↵erent channel matrices
and symbols received, synchronization among the threads is not required.

Title Suppressed Due to Excessive Length 7

Algorithm 1 Parallel calculations carried out at the FSD preprocessing stage with CPU

cores

1: IN PARALLEL: Distribute among p threads the Nc subcarriers,

2: Get H associated to the current subcarrier from global memory

3: � = {1, 2, · · · , nT }
4: dis1:nT = [1, 1, · · · ,M]

5: P = zeros(nT , nT)

6: for i = nT , . . . , 1 do

7: H
(i)

= H:,�

8: Obtain G solving Eqs. (10) and (11)

9: dmax = 0

10: dmin = 1e6
11: for j = 1, . . . , length(�) do

12: normj = kGj,:k2
13: if disi == M and normj > dmax then

14: dmax = normj

15: k = �j

16: else if disi ⇠= M and normj < dmin then

17: dmin = normj

18: k = �j

19: end if

20: end for

21: Pk,i = 1

22: � = �� {�j}
23: end for

24: Permute columns of matrix H with P

25: H = QR

26: Compute y = Q
H
x for the 7 symbols in the time slot

27: END PARALLEL

Algorithm 2 Parallel calculation of all branches of the hard-output FSD of qth subcarrier

1: IN PARALLEL: Distribute among p threads the Nc subcarriers,

2: for j = 1, . . . , 7 symbols int the time slot do

3: for i = 1, . . . ,M do

4: Assign snT = ⌦i,

5: Get Rq and yq,j associated to the current subcarrier,

6: Compute the PED dnT (S
(nT)
q) with equations (6-7)

7: for k = nT � 1, . . . , 1 do

8: Compute the kth symbol using SIC (5),

9: Update path distance dk(S
(k)
q) using (7),

10: end for

11: Get minimal distance of all paths

12: end for

13: end for

14: END PARALLEL

5 Experimental Results

We consider a 4⇥4 MIMO system with QPSK, 16-QAM and 64-QAM symbol
alphabets, these values correspond to those used in the standards of current
mobile and wireless communications, such as LTE. According to the LTE
standard specifications, a 0.5 ms time slot is composed of 7 MIMO-OFDM

8 Carla Ramiro et al.

symbols plus their respective cyclic prefixes [2]. Furthermore, the performances
with the di↵erent Nc values reported in the LTE standard, i.e. Nc = 150, 300,
600, 900, 1200, are investigated. Two di↵erent performance measures were
considered to evaluate the proposed implementation:

– Speedup, which is defined as the ratio between the computational time
resulting of executing the algorithm sequentially on a single CPU core and
the time to execute the same algorithm using a multi-core approach.

– Throughput, which is defined as the number of processed information bits
per second. The throughput evaluation exposes whether a given implemen-
tation guarantees the real-time requirements of a certain wireless standard.

For all the experiments, the algorithm was executed varying the number
of active cores ranging from 1 to 24 (hyper-threading). The best results were
selected in every case (in most cases those obtained using either 16 or 24 cores).
In general, for numerically intensive computations, hyper-threading does not
improve performance overly, since we have not really 24 physical processors.

Table 1 collects the throughput and runtime results of the proposed multi-
core FSD implementation. Note that, for the QPSK case, the proposed FSD
multi-core implementation can process a whole slot before having received the
following one (i.e. in  0.5 ms) for all the considered Nc values. Thus, the
QPSK configuration allows real-time processing. For the 16-QAM case, the
runtime is less than 0.5 ms only for either Nc = 150 or Nc = 300. Finally,
when 64-QAM symbols are used, none of the configurations meets the real-
time goal. Therefore, the FSD implementation requires further optimizations
to meet real-time for those configurations where the runtime is above 0.5 ms.

Table 1 Throughput and execution time of the proposed multi-core implementation assum-

ing a 4⇥ 4 MIMO system with for di↵erent configurations compared to FSD parallelized on

GPU results in [12].

Throughput(Mbps)/Runtime(ms)

QPSK 16-QAM 64-QAM

FSD (Nc = 150) 131.25 / 0.064 54.55 / 0.308 28.44 / 0.886

FSD (Nc = 300) 173.20 / 0.097 80.19 / 0.419 29.18 / 1.727

FSD (Nc = 600) 182.61 / 0.184 94.78 / 0.709 31.18 / 3.233

FSD (Nc = 900) 182.6 / 0.276 98.25 / 1.026 31.07 / 4.866

FSD (Nc = 1200) 183.61 / 0.366 90.26 / 1.489 31.45 / 6.410

FSD [12] (Nc = 150) 182.61 / 0.046 311.11 / 0.054 115.07 / 0.219

FSD [12] (Nc = 300) 311.11 / 0.054 436.36 / 0.077 123.23 / 0.409

FSD [12] (Nc = 600) 430.77 / 0.078 533.33 / 0.126 130.57 / 0.772

FSD [12] (Nc = 900) 494.12 / 0.102 579.31 / 0.174 131.25 / 1.15

FSD [12] (Nc = 1200) 537.60 / 0.125 610.91 / 0.220 132.81 / 1.52

Figure 3 shows the speedup results for di↵erent values of Nc. The speedup
for the preprocessing stage is common for the constellations as it only de-
pends on the channel matrix. Thus, a single curve regarding preprocessing
speedup is shown in the figure. However, the speedup of the FSD tree-search

Title Suppressed Due to Excessive Length 9

stage depends on the channel matrix and also on the constellation size, thus,
independent curves are represented for each constellation used.

Fig. 3 Speedup for the proposed FSD implementation with di↵erent constellations and

number of subcarriers in a 4⇥ 4 MIMO system.

It can be seen that, generally, the speedup increases with Nc, showing that
the use of multi-core is very promising for high dimensional constellations
and/or LTE configurations managing a large amount of subcarriers. Further-
more, for the FSD tree-search stage, it can be observed that the higher the
constellation size, the higher the achieved speedup. The 64-QAM case is an
exception, as it reaches higher speedup than QPSK configuration but lower
speedup than the 16-QAM one. This non-expected result may be caused by
the need for a higher amount of memory in the 64-QAM together with the
associated cost of memory accesses.

The speedup of the preprocessing stage is a bit lower than that of the FSD
stage. The main reason can be that, at this stage, the threads are working
with big shared variables. These shared variables stored the data for the Nc

subcarriers (H, R, P, y). The cost for di↵erent cores to access blocks in
memory can influence the e�ciency of the algorithm, because a thread can be
running on a CPU and their access to some shared variables are realized on
the memory of another CPU. However, there is a library Unified Parallel C
(UPC) [13], which aims to solve this performance problem in shared memory
multiprocessors, which defines the physical association between shared data
and UPC threads, so that we can store the data in physical memory of the

10 Carla Ramiro et al.

CPU where the thread is running, giving better performance in shared memory
accesses.

6 Conclusions

This work showed the potential of parallel processing to cope with the costly
signal processing algorithms necessary to carry out MIMO wireless commu-
nication. An e�cient multi-core implementation of a fixed-complexity MIMO
detector was here presented. The experimental results indicate that the pro-
posed implementation considerably reduces the execution time required to
perform data detection with respect to a single-core (sequential) CPU imple-
mentation of the same detection algorithm. Furthermore, the runtime of the
proposed approach fulfills the requirements of current wireless communication
standards for some configurations. Therefore, the high throughput and ability
to reconfigure features clearly evidence that multi-core systems are meaningful
to develop versatile and low-cost SDR platforms.

Acknowledgements This work was supported by the TEC2009-13741 project of the Span-

ish Ministry of Science, by the PROMETEO/2009/013 project and ACOMP/2012/076 of

the Generalitat Valenciana, and the Vicerrectorado de Investigación de la UPV through

Programa de Apoyo a la Investigación y desarrollo (PAID-05-11-2898)

References

1. A.J. Paulraj, D.A. Gore, R.U. Nabar and H. Bölcskei, An overview of MIMO
communications - A key to Gigabit wireless, Proceedings of the IEEE, vol. 92, no. 2,

pp.198–218, February 2004.

2. M. Jiang and L. Hanzo, Multiuser MIMO-OFDM for Next-Generation Wireless Sys-
tems, Proceedings of the IEEE, vol. 95, no. 7, pp. 1430-1469, July 2007.

3. 3GPP TS 36.201, V10.0.0, Evolved Universal Terrestrial Radio Access (E-UTRA);
Physical Layer - General Description, December 2010.

4. Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti and K.
Flautner, SODA: A High-Performance DSP Architecture for Software-Defined Radio,
Micro, IEEE, vol. 27, no. 1, pp.114-123, Jan.-Feb. 2007.

5. C.-H. Yang and D. Markovic, A Multi-Core Sphere Decoder VLSI Architecture for
MIMO Communications, Global Telecommunications Conference, pp.1-6, November 2008.

6. D. Wu, J. Eilert and D. Liu, Implementation of A High-Speed MIMO Soft-Output
Symbol Detector for Software Defined Radio, Journal of Signal Processing Systems, vol.

63, no. 1, pp. 27-37, April 2011.

7. K. Tan, H. Liu, J. Zhang, Y. Zhang, J. Fang and G.M. Voelker., Sora: high-
performance software radio using general-purpose multi-core processors, Commununica-

tions of the ACM, vol. 54, no.1, January 2011.

8. L.G. Barbero and J.S. Thompson, Fixing the Complexity of the Sphere Decoder for
MIMO Detection, IEEE Transactions on Wireless Communications, vol. 7, no. 6, pp.

2131-2142, June 2008.

9. B. Hassibi and H. Vikalo, On Sphere Decoding algorithm. Part I, The expected com-
plexity, IEEE Transactions on Signal Processing, vol. 54, no. 5, pp. 2806-2818, August

2005.

10. E. Agrell, T. Eriksson, A. Vardy and K. Zeger, Closest point search in lattices,
IEEE Transactions on Information Theory, vol. 48, no. 8, pp. 2201-2214, August 2002.

Title Suppressed Due to Excessive Length 11

11. OpenMP v3.0, http://www.openmp.org/mp-documents/spec30.pdf, May 2008.

12. S. Roger, C. Ramiro, A. Gonzalez, V. Almenar and A.M. Vidal, An e�cient
GPU implementation of fixed-complexity sphere decoders for MIMO wireless systems ,

Integrated Computer-Aided Engineering, In Press.

13. Unified Parallel C, http://upc.lbl.gov/

