Skip to main content

Advertisement

Log in

An energy-efficient clustered distributed coding for large-scale wireless sensor networks

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

A wireless sensor network (WSN) usually consists of a large number of battery-powered low-cost sensors with limited data collection and processing capacity. In order to prolong the lifetime of the WSN with a target error performance, a novel clustered distributed coding framework, referred to as distributed multiple-sensor cooperative turbo coding (DMSCTC), is developed for a large-scale WSN with sensor grouped in cooperative cluster. In the proposed DMSCTC scheme, a simple forward error correction is employed at each sensor and a simple multi-sensor joint coding is adopted at the cluster head, while complicated joint iterative decoding is implemented only at the data collector. The proposed DMSCTC scheme achieves extra distributed coding gain and cooperative spatial diversity without introducing extra complexity burden on the sensors by transferring the complicated joint decoding process to the data collector. With the proposed scheme, the WSN can achieve the target error performance with less power consumption, thus prolonging its lifetime. The error performance and energy efficiency of the proposed DMSCTC scheme are analyzed, and followed by Monte Carlo simulations. Both analytical and simulation results show that the DMSCTC can substantially improve the energy efficiency of the clustered WSN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

AWGN:

Additive white Gaussian noise

BCH:

Bose–Chaudhuri–Hocquenghem code

BER:

Bit error rate

BLEP:

Block error probability

BPSK:

Binary phase-shift keying

CC:

Cooperative cluster

CH:

Cluster head

CKN:

Connected K-neighborhood

CODEC:

Coder and decoder

CRC:

Cyclic redundancy check code

CSI:

Channel state information

CSMA:

Carrier sense multiple access

CWEF:

Conditional weight enumerating function

DCC:

Distributed channel coding

DMSCTC:

Distributed multiple-sensor cooperative turbo coding

DTC:

Distributed turbo code

DTPC:

Distributed turbo product code

FEC:

Forward error control

HEED:

Hybrid energy efficient distributed clustering

HM:

Hamming code

IRWEF:

Input-redundancy weight enumerating function

LDPC:

Low density parity check

LEACH:

Low energy adaptive clustering hierarchy

LLR:

Log-likelihood ratio

MAP:

Maximum a posteriori probability

MCS:

Modulation and coding scheme

MIMO:

Multiple-input multiple-output

PCBC:

Parallel concatenated block code

PCCC:

Parallel concatenated convolutional code

PCHC:

Parallel concatenated hybrid code

RCCT:

Robust clustering with cooperative transmission

RN:

Relay node

RS:

Reed–Solomon code

RSC:

Recursive systematic convolutional code

SIR:

Soft-information relaying

SISO-MDS:

Soft-input soft-output decoding—minimum distance search

SN:

Source node

TDMA:

Time-division multiple access

TS:

Time slot

WSN:

Wireless sensor network

\(\boldsymbol{x}_{S_{i}}\), x R :

Transmitted signal by the ith SN and the RN

\(h_{S_{i}R}\), \(h_{S_{i}D}\), h RD :

CIR of the S i -to-R, S i -to-D, R-to-D link

\(\boldsymbol{n}_{S_{i}R}\), \(\boldsymbol{n}_{S_{i}D}\), n RD :

AWGN of the S i -to-R, S i -to-D, R-to-D link

N 0 :

Energy density of the AWGN

d 0, \(d_{S_{i}R}\), \(d_{S_{i}D}\), d RD :

Reference distance, and the distance between the nodes S i , R and D

α :

Pathloss exponent

\(P_{t,S_{i}}\), P t,R :

Transmit power at the node S i and R

\(\gamma_{S_{i}R}\), \(\gamma_{S_{i}D}\), γ RD :

Instantaneous SNR of the S i -to-R, S i -to-D, R-to-D link

Γ SR , Γ RD :

Average SNR of the S i -to-R and R-to-D link

C S , C R , C D :

Codeword generated at the node S i , R and D

U k , P k :

Systematic bits and parity bits generated at the kth SN

\(\boldsymbol{U}'_{k}\), \(\boldsymbol{P}'_{k}\) :

Systematic bits and parity bits generated at the RN

\(\boldsymbol{L}_{S_{i}R}\), \(\boldsymbol{L}_{S_{i}D}\), L RD :

LLR information of the link of S i -to-R, S i -to-D, R-to-D

\(\boldsymbol{L}^{(S)}_{S_{k}}\), \(\boldsymbol{L}^{(P)}_{S_{k}}\), \(\boldsymbol{L}^{(e)}_{S_{k}}\), \(\boldsymbol{L}^{(a)}_{S_{k}}\) :

LLR information of the systematic bits and parity bits, the exterior information and the a priori information of the kth codeword generated at the kth SN

\(\boldsymbol{L}^{(S)}_{R_{k}}\), \(\boldsymbol{L}^{(P)}_{R_{k}}\), \(\boldsymbol{L}^{(e)}_{R_{k}}\), \(\boldsymbol{L}^{(a)}_{R_{k}}\) :

LLR information of the systematic bits and parity bits, the exterior information and the a priori information of the codeword generated at RN

\(A^{C_{S}}(W,Z_{S})\) :

Input-redundancy weight enumerating function of C S

\(A^{C_{S}}_{w,j}\) :

Number of codewords with information weight w and parity weight j

\(A^{C_{S}}_{w}(Z_{S})\) :

Conditional weight enumerating function of codeword C S

\(A^{C_{D}}_{w}(Z_{S},Z_{R})\) :

Conditional weight enumerating function of codeword C D

P(e|γ):

Conditional block error ratio

\(E_{T_{x}}(N,d)\), \(E_{R_{x}}(N)\) :

Energy consumed by the transmitter circuitry and the receiver circuitry

E enc, E dec :

Energy consumed by encoder and decoder

E elec, E amp :

Energy consumed by transmitter/receiver circuit and the amplifier

P rad :

Transmit power

References

  1. Lee S, Song H, Lee HS (2009) Wireless sensor network design for tactical military applications: remote large-scale environments. In: Proc MILCOM 2009, pp 1–7

    Google Scholar 

  2. Hussain MA (2009) WSN research activities for military application. In: Proc ICACT 2009, pp 271–274

    Google Scholar 

  3. Ng JK (2012) Ubiquitous healthcare: healthcare systems and application enabled by mobile and wireless technologies. J Converg 3(2):15–20

    Google Scholar 

  4. Mishra SA, Tijare DS, Asutkar GM (2011) Design of energy aware air pollution monitoring system using WSN. Int J Adv Eng Technol 1(2):107–116

    Google Scholar 

  5. Akyildiz LF, Su W, Sankarasubramaniam Y, Cayiric E (2002) A survey on sensor networks. IEEE Commun Mag 40(8):102–114

    Article  Google Scholar 

  6. Sankarasubramaniam Y, Akyildiz I, Mclaughlin S (2003) Energy efficiency based packet size optimization in wireless sensor networks. In: Proc 1st IEEE SNPA 2003, pp 1–8

    Google Scholar 

  7. Younis O, Fahmy S (2004) HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Trans Mob Comput 3(4):660–669

    Google Scholar 

  8. Younis S, Krunz M, Ramasubramanian S (2006) Node clustering in wireless sensor networks: recent developments and deployment challenges. IEEE Netw 20(3):20–25

    Article  Google Scholar 

  9. Asaduzzaman, Kong HY (2009) Coded diversity for cooperative MISO based wireless sensor networks. IEEE Commun Lett 13(7):516–518

    Article  Google Scholar 

  10. Sartipi M, Fekri F (2004) Source and channel coding in wireless sensor networks using LDPC codes. In: Proc SECON 2004, pp 309–316

    Google Scholar 

  11. Shih E, Cho S, Ickes N, Min R, Sinha A, Wang A, Chandrakasan A (2001) Physical layer droved protocol and algorithm design for energy-efficient wireless sensor networks. In: Proc ACM SIGMOBILE 2001, pp 272–286

    Google Scholar 

  12. Balakrishnan G, Yang M, Jiang Y, Kim Y (2007) Performance analysis of error control codes for wireless sensor networks. In: Proc ITNG 2007, pp 876–879

    Google Scholar 

  13. Yamazato T, Okada H, Katayama M, Ogawa A (2004) A simple data relay process and turbo code application to wireless sensor networks. In: Proc ISWCS 2004, pp 398–402

    Google Scholar 

  14. Li L, Maunder RG, Al-Hashimi BM, Hanzo L (2010) An energy-efficient error correction scheme for IEEE802.15.4 wireless sensor networks. IEEE Trans Circuits Syst II, Express Briefs 57(3):233–237

    Article  Google Scholar 

  15. Islam MR (2010) Selection of error control/correction codes in wireless sensor network. In: Proc ICECE 2010, pp 674–677

    Google Scholar 

  16. Sadeghi N, Iniewski K, Howard S, Gaudet VC, Kasnavi S, Schlegel C (2006) Analysis of error control code use in ultra-low-power wireless sensor networks. In: Proc ISCAS 2006, pp 3558–3561

    Google Scholar 

  17. Kashani ZH, Shiva M (2006) BCH coding and multi-hop communication in wireless sensor networks. In: Proc WOCN 2006, pp 1–5

    Google Scholar 

  18. Kashani ZH, Shiva M (2006) Channel coding in multi-hop wireless sensor networks. In: Proc ITST 2006, pp 965–968

    Google Scholar 

  19. Abughalieh N, Steenhaut K, Nowe A (2010) Low power channel coding for wireless sensor networks. In: Proc SCVT 2010, pp 1–5

    Google Scholar 

  20. Qaisar B, Radha H (2007) Optimal progressive error recovery for wireless sensor networks using irregular LDPC codes. In: Proc CISS 2007, pp 232–237

    Google Scholar 

  21. McDonagh J, Sala M, O’hAllmhurain A, Katewa V, Popovici E (2007) Efficient construction and implementation of short LDPC codes for wireless sensor networks. In: Proc ECCTD 2007, pp 703–706

    Google Scholar 

  22. Abughalieh N, Steenhaut K, Nowe A (2011) Adaptive parallel concatenation turbo codes for wireless sensor networks. In: Proc ICCIT 2011, pp 180–183

    Google Scholar 

  23. Shukair M, Namuduri K (2009) LDPC-like belief propagation algorithm for consensus building in wireless sensor networks. In: Proc 43rd annual conf inform sci systems (CISS’09), pp 805–810

    Google Scholar 

  24. Zhou Z, Zhou S, Cui S, Cui J (2008) Energy-efficient cooperative communication in a clustered wireless sensor network. IEEE Trans Veh Technol 57(6):3618–3628

    Article  Google Scholar 

  25. Cui S, Goldsmith AJ, Bahai A (2004) Energy-efficiency of MIMO and cooerative MIMO in sensor networks. IEEE J Sel Areas Commun 22(6):1089–1098

    Article  Google Scholar 

  26. Ochiai H, Mitran P, Poor HV, Tarokh V (2005) Collaborative beamforming for distributed wireless ad hoc sensor networks. IEEE Trans Signal Process 53(11):4110–4124

    Article  MathSciNet  Google Scholar 

  27. Hult T, Mohammend A (2007) Cooperative beamforming for wireless sensor networks. In: Proc EuCAP 2007, pp 1–4

    Google Scholar 

  28. Chen J, Abedi A (2011) Distributed turbo coding and decoding for wireless sensor networks. IEEE Commun Lett 15(2):166–168

    Article  Google Scholar 

  29. Xia Z, Qu Y, Yu H, Xu Y (2009) A distributed cooperative product code for multi-source multi-relay single-destination wireless network. In: Proc APCC 2009, pp 736–739

    Google Scholar 

  30. Li Y, Vucetic B, Wong TF, Dohler M (2006) Distributed turbo coding with soft information relaying in multihop relay networks. IEEE J Sel Areas Commun 24(11):2040–2050

    Article  Google Scholar 

  31. Heinzelman WR, Chandrakasan AP, Balakrishnan H (2002) An application-specific protocol architecture for wireless microsensor networks. IEEE Trans Wirel Commun 1(4):660–670

    Article  Google Scholar 

  32. Ghelichi M, Jahanbakhsh SK, Sanaei E (2008) RCCT: robust clustering with cooperative transmission for energy efficient wireless sensor networks. In: Proc ITNG 2008, pp 761–766

    Google Scholar 

  33. Singh B, Lobigal DK (2012) A novel energy-aware cluster head selection based on particle swarm optimization for wireless sensor networks. Human-Centr Comput Inf Sci 2(13):1–28. http://www.hcis-journal.com/content/2/1/13

    Google Scholar 

  34. Nath S, Gibbons PB (2007) Communicating via fireflies: geographic routing on duty-cycled sensors. In: Proc IPSN 2007, pp 440–449

    Google Scholar 

  35. Papaharalabos S, Sweeney P, Evans BG (2007) SISO algorithms based on max-log-map and log-map turbo decoding. IET Commun 1(1):49–54

    Article  Google Scholar 

  36. Chase D (1972) Class of algorithms for decoding block codes with channel measurement information. IEEE Trans Inf Theory 18(1):170–182

    Article  MathSciNet  MATH  Google Scholar 

  37. Asatani J, Koumoto T, Fujiware T, Kasami T (2004) Soft-input soft-output decoding algorithm of linear block codes based on minimum distance search. In: Proc ISIT 2004, p 344

    Google Scholar 

  38. Benedetto S, Montorsi G (1996) Unveiling turbo codes: some results on parallel concatenated coding scheme. IEEE Trans Inf Theory 42(2):409–428

    Article  MATH  Google Scholar 

  39. Simon MK, Alouini MS (2000) Digital communication over fading channels: a unified approach to performance analysis. Wiley, New York

    Book  Google Scholar 

  40. Hunter T (2004) Coded cooperation: a new framework for user cooperation in wireless networks. PhD dissertation, Univ of Texas at Dallas

  41. Balakrishnan G, Yang M, Jiang Y, Kim Y (2007) Performance analysis of error control codes for wireless sensor networks. In: Proc intl conf inform tech (ITNG’07), pp 876–879

    Google Scholar 

  42. Zhao B, Valenti MC (2003) Distributed turbo coded diversity for relay channel. Electron Lett 39(10):786–787

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Professor Mei Yang at the University of Nevada for providing the energy consumption data of several coding schemes.

This work was supported in part by the National Natural Science Foundation of China under Grant 61171106, National Basic Research Program of China (973 Program) under Grant 2012CB316005, National Key Technology R&D Program of China under Grant 2012ZX03-004-005, Research Fund for the Doctoral Program of Higher Education under Grant 20090005120002, and the fundamental research funds for the central universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Shu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Y., Li, Y., Shu, L. et al. An energy-efficient clustered distributed coding for large-scale wireless sensor networks. J Supercomput 66, 649–669 (2013). https://doi.org/10.1007/s11227-012-0848-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-012-0848-9

Keywords

Navigation