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Abstract

The paper investigates how the mathematical languages usedto describe
and to observe automatic computations influence the accuracy of the obtained
results. In particular, we focus our attention on Single andMulti-tape Turing
machines which are described and observed through the lens of a new math-
ematical language which is strongly based on three methodological ideas
borrowed from Physics and applied to Mathematics, namely: the distinction
between the object (we speak here about a mathematical object) of an ob-
servation and the instrument used for this observation; interrelations holding
between the object and the tool used for the observation; theaccuracy of the
observation determined by the tool. Results of the observation executed by
the traditional and new languages are compared and discussed.

Key Words: Theory of automatic computations, Observability of Turing machines,
Relativity of mathematical languages, Infinite sequences,Infinite sets

1 Introduction

Since the beginning of the last century, the fundamental nature of the concept of
automatic computationsattracted a great attention of mathematicians and computer
scientists (see [5, 15, 16, 17, 23, 24, 28, 43]). The first studies had as their refer-
ence context the David Hilbert programme, and as their reference language that
introduced by Georg Cantor [4]. These approaches lead to different mathematical
models of computing machines (see [2, 7, 10]) that, surprisingly, were discovered
to be equivalent (e.g., anything computable in theλ-calculus is computable by a
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Turing machine). Moreover, these results, and expecially those obtained by Alonzo
Church, Alan Turing [5, 11, 43] and Kurt Gödel, gave fundamental contributions
to demonstrate that David Hilbert programme, which was based on the idea that all
of the Mathematics could be precisely axiomatized, cannot be realized.

In spite of this fact, the idea of finding an adequate set of axioms for one or
another field of Mathematics continues to be among the most attractive goals for
contemporary mathematicians. Usually, when it is necessary to define a concept
or an object, logicians try to introduce a number of axioms describing the object
in the absolutely best way. However, it is not clear how to reach this absoluteness;
indeed, when we describe a mathematical object or a concept we are limited by
the expressive capacity of the language we use to make this description. A richer
language allows us to say more about the object and a weaker language – less.
Thus, the continuous development of the mathematical (and not only mathemati-
cal) languages leads to a continuous necessity of a transcription and specification of
axiomatic systems. Second, there is no guarantee that the chosen axiomatic system
defines ‘sufficiently well’ the required concept and a continuous comparison with
practice is required in order to check the goodness of the accepted set of axioms.
However, there cannot be again any guarantee that the new version will be the last
and definitive one. Finally, the third limitation already mentioned above has been
discovered by Gödel in his two famous incompleteness theorems (see [11]).

Starting from these considerations, in this paper, we studythe relativity of
mathematical languages in situations where they are used toobserve and to de-
scribe automatic computations. We consider the traditional computational paradigm
mainly following results of Turing (see [43]) whereas emerging computational
paradigms (see, e.g., [1, 26, 45, 47]) are not considered here. In particular, we
focus our attention on different kinds of Turing machines byenriching and extend-
ing the results presented in [42].

The point of view presented in this paper uses strongly threemethodological
ideas borrowed from Physics and applied to Mathematics, namely: the distinction
between the object (we speak here about a mathematical object) of an observa-
tion and the instrument used for this observation; interrelations holding between
the object and the tool used for this observation; the accuracy of the observation
determined by the tool.

The main attention is dedicated to numeral systems1 that we use to write down
numbers, functions, models, etc. and that are among our tools of investigation of
mathematical and physical objects. It is shown that numeralsystems strongly influ-
ence our capabilities to describe both the mathematical andphysical worlds. A new
numeral system introduced in [31, 33, 38]) for performing computations with infi-
nite and infinitesimal quantities is used for the observation of mathematical objects

1We are reminded that anumeralis a symbol or group of symbols that represents anumber. The
difference between numerals and numbers is the same as the difference between words and the things
they refer to. Anumberis a concept that anumeralexpresses. The same number can be represented
by different numerals. For example, the symbols ‘7’, ‘seven’, and ‘VII’ are different numerals, but
they all represent the same number.
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and studying Turing machines. The new methodology is based on the principle
‘The part is less than the whole’ introduced by Ancient Greeks and observed in
practice. It is applied to all sets and processes (finite and infinite) and all numbers
(finite, infinite, and infinitesimal).

In order to see the place of the new approach in the historicalpanorama of ideas
dealing with infinite and infinitesimal, see [20, 21, 36, 37, 42]. The new methodol-
ogy has been successfully applied for studying a number of applications: percola-
tion (see [14, 44]), Euclidean and hyperbolic geometry (see[22, 30]), fractals (see
[32, 34, 41, 44]), numerical differentiation and optimization (see [8, 35, 39, 49]),
infinite series (see [36, 40, 48]), the first Hilbert problem (see [37]), and cellular
automata (see [9]).

The rest of the paper is structured as follows. In Section 2, Single and Multi-
tape Turing machines are introduced along with “classical”results concerning their
computational power and related equivalences; in Section 3a brief introduction to
the new language and methodology is given whereas their exploitation for analyz-
ing and observing the different types of Turing machines is discussed in Section 4.
It shows that the new approach allows us to observe Turing machines with a higher
accuracy giving so the possibility to better characterize and distinguish machines
which are equivalent when observed within the classical framework. Finally, Sec-
tion 5 concludes the paper.

2 Single and Multi-tape Turing Machines

The Turing machine is one of the simple abstract computational devices that can be
used to model computational processes and investigate the limits of computability.
In the following Subsections 2.1 and 2.2, Single and Multi-tape Turing machines
will be described along with important classical results concerning their computa-
tional power and related equivalences.

2.1 Single Tape Turing Machines

A Turing Machine (see, e.g., [13, 43]) can be defined as a 7-tuple

M =
〈
Q,Γ, b̄,Σ,q0,F,δ

〉
, (1)

whereQ is a finite and not empty set of states;Γ is a finite set of symbols;̄b∈ Γ is
a symbol called blank;Σ ⊆{Γ− b̄} is the set of input/output symbols;q0 ∈Q is the
initial state;F ⊆ Q is the set of final states;δ : {Q−F}×Γ 7→ Q×Γ×{R,L,N} is
a partial function called the transition function, whereL means left,Rmeans right,
andN means no move.

Specifically, the machine is supplied with: (i) ataperunning through it which is
divided into cells each capable of containing a symbolγ ∈ Γ, whereΓ is called the
tape alphabet, and̄b∈ Γ is the only symbol allowed to occur on the tape infinitely
often; (ii) aheadthat can read and write symbols on the tape and move the tape left
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and right one and only one cell at a time. The behavior of the machine is specified
by its transition functionδ and consists of a sequence of computational steps; in
each step the machine reads the symbol under the head and applies thetransition
functionthat, given the current state of the machine and the symbol itis reading on
the tape, specifies (if it is defined for these inputs): (i) thesymbolγ ∈ Γ to write on
the cell of the tape under the head; (ii) the move of the tape (L for one cell left,R
for one cell right,N for no move); (iii) the next stateq∈ Q of the machine.

Starting from the definition of Turing Machine introduced above, classical re-
sults (see, e.g., [2]) aim at showing that different machines in terms of provided
tape and alphabet have the same computational power, i.e., they are able to execute
the same computations. In particular, two main results are reported below in an
informal way.

Given a Turing MachineM = {Q,Γ, b̄,Σ,q0,F,δ}, which is supplied with an
infinite tape, it is always possible to define a Turing MachineM ′= {Q′,Γ′, b̄,Σ′,q′0,F

′,δ′}
which is supplied with a semi-infinite tape (e.g., a tape witha left boundary) and is
equivalent toM , i.e., is able to execute all the computations ofM .

Given a Turing MachineM = {Q,Γ, b̄,Σ,q0,F,δ}, it is always possible to de-
fine a Turing MachineM ′= {Q′,Γ′, b̄,Σ′,q′0,F

′,δ′}with |Σ′|= 1 andΓ′ =Σ′∪{b̄},
which is equivalent toM , i.e., is able to execute all the computations ofM .

It should be mentioned that these results, together with theusual conclusion
regarding the equivalences of Turing machines, can be interpreted in the following,
less obvious, way: they show that when we observe Turing machines by exploiting
the classical framework we are not able to distinguish, fromthe computational
point of view, Turing machines which are provided with alphabets having different
number of symbols and/or different kind of tapes (infinite orsemi-infinite) (see
[42] for a detailed discussion).

2.2 Multi-tape Turing Machines

Let us consider a variant of the Turing Machine defined in (1) where a machine
is equipped with multiple tapes that can be simultaneously accessed and updated
through multiple heads (one per tape). These machines can beused for a more
direct and intuitive resolution of different kind of computational problems. As an
example, in checking if a string is palindrome it can be useful to have two tapes on
which represent the input string so that the verification canbe efficiently performed
by reading a tape from left to right and the other one from right to left.

Moving towards a more formal definition, ak-tapes,k ≥ 2, Turing machine
(see [13]) can be defined (cf. (1)) as a 7-tuple

MK =
〈

Q,Γ, b̄,Σ,q0,F,δ(k)
〉
, (2)

whereΣ =
⋃k

i=1Σi is given by the union of the symbols in the k input/output al-
phabetsΣ1, . . . ,Σk; Γ = Σ∪{b̄} whereb̄ is a symbol called blank;Q is a finite and
not empty set of states;q0 ∈ Q is the initial state;F ⊆ Q is the set of final states;
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δ(k) : {Q−F}×Γ1× ·· ·×Γk 7→ Q×Γ1× ·· ·×Γk×{R,L,N}k is a partial func-
tion called the transition function, whereΓi = Σi ∪{b̄}, i = 1, . . . ,k, L means left,
Rmeans right, andN means no move.

This definition ofδ(k) means that the machine executes a transition starting
from an internal stateqi and with thek heads (one for each tape) above the charac-
tersai1, . . . ,ai k, i.e., if δ(k)(q1,ai1, . . . ,ai k) = (q j ,a j 1, . . . ,a j k,zj 1, . . . ,zj k) the ma-
chine goes in the new stateq j , write on the k tapes the charactersa j 1, . . . ,a j k re-
spectively, and moves each of its k heads left, right or no move, as specified by the
zj l ∈ {R,L,N}, l = 1, . . . ,k.

A machine can adopt for each tape a different alphabet, in anycase, for each
tape, as for the Single-tape Turing machines, the minimum portion containing char-
acters distinct from̄b is usually represented. In general, a typical configurationof a
Multi-tape machine consists of a read-only input tape, several read and write work
tapes, and a write-only output tape, with the input and output tapes accessible only
in one direction. In the case of ak-tapes machine, the instant configuration of the
machine, as for the Single-tape case, must describe the internal state, the contents
of the tapes and the positions of the heads of the machine.

More formally, for ak-tapes Turing machineMK =
〈
Q,Γ, b̄,Σ,q0,F,δ(k)

〉
with

Σ =
⋃k

i=1Σi (see 2) a configuration of the machine is given by:

q#α1 ↑ β1#α2 ↑ β2#. . .#αk ↑ βk, (3)

whereq∈Q; αi ∈ ΣiΓ∗
i ∪{ε} andβi ∈ Γ∗

i Σi ∪{b̄}. A configuration isfinal if q∈ F.
Thestartingconfiguration usually requires the input stringx on a tape, e.g., the

first tape so thatx ∈ Σ∗
1, and onlyb̄ symbols on all the other tapes. However, it

can be useful to assume that, at the beginning of a computation, these tapes have a
starting symbolZ0 /∈ Γ =

⋃k
i=1 Γi. Therefore, in the initial configuration the head

on the first tape will be on the first character of the input string x, whereas the
heads on the other tapes will observe the symbolZ0, more formally, by re-placing
Γi = Σi ∪ {b̄,Z0} in all the previous definition, a configurationq#α1 ↑ β1#α2 ↑
β2#. . .#αk ↑ βk is aninitial configurationif αi = ε, i = 1, . . . ,k,β1 ∈ Σ∗

1,βi = Z0, i =
2, . . . ,k andq= q0.

The application of the transition functionδ(k) at a machine configuration (c.f.
(3)) defines acomputational stepof a Multi-tape Turing Machine. The set of com-
putational steps which bring the machine from the initial configuration into a final
configuration defines thecomputationexecuted by the machine. As an example,
the computation of a Multi-tape Turing machineMK which computes the function
fMK

(x) can be represented as follows:

q0# ↑ x# ↑ Z0#. . .# ↑ Z0

→
MK q# ↑ x# ↑ fMK

(x)# ↑ b̄#. . .# ↑ b̄ (4)

whereq∈ F and
→

MK indicates the transition among machine configurations.
It is worth noting that, although thek-tapes Turing Machine can be used for

a more direct resolution of different kind of computationalproblems, in the clas-
sical framework it has the same computational power of the Single-tape Turing
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machine. More formally, given a Multi-tape Turing Machine it is always possible
to define a Single-tape Turing Machine which is able to fully simulate its behavior
and therefore to completely execute its computations. In particular, the Single-tape
Turing Machines adopted for the simulation use a particularkind of the tape which
is divided into tracks (multi-track tape). In this way, if the tape hasm tracks, the
head is able to access (for reading and/or writing) all themcharacters on the tracks
during a single operation. If for them tracks the alphabetsΓ1, . . . Γm are adopted
respectively, the machine alphabetΓ is such that|Γ| = |Γ1×·· ·×Γm| and can be
defined by an injective function from the setΓ1×·· ·×Γm to the setΓ; this func-
tion will associate the symbol̄b in Γ to the tuple(b̄, b̄, . . . , b̄) in Γ1×·· ·×Γm. In
general, the elements ofΓ which correspond to the elements inΓ1×·· ·×Γm can
be indicated by[ai1,ai2, . . . ,aim] whereai j ∈ Γ j .

By adopting this notation it is possible to demonstrate thatgiven ak-tapes Tur-
ing MachineMK = {Q,Γ, b̄,Σ,q0,F,δ(k)} it is always possible to define a Single-
tape Turing Machine which is able to simulatet computational steps ofMK = in
O(t2) transitions by using an alphabet withO((2|Γ|)k) symbols (see [2]).

The proof is based on the definition of a machineM ′ = {Q′,Γ′, b̄,Σ′,q′0,F
′,δ′}

with a Single-tape divided into 2k tracks (see [2]);k tracks for storing the characters
in thek tapes ofMK andk tracks for signing through the marker↓ the positions of
thek heads on thek tapes ofMk. As an example, this kind of tape can represent
the content of each tapes ofMk and the position of each machine heads in its
even and odd tracks respectively. As discussed above, for obtaining a Single-tape
machine able to represent these 2k tracks, it is sufficient to adopt an alphabet with
the required cardinality and define an injective function which associates a 2k-ple
characters of a cell of the multi-track tape to a symbols in this alphabet.

The transition functionδ(k) of thek-tapes machine is given byδ(k)(q1,ai1, . . . ,ai k)=
(q j ,a j 1, . . . ,a j k,zj 1, . . . ,zj k), with zj 1, . . . ,zj k ∈ {R,L,N}; as a consequence the
corresponding transition functionδ′ of the Single-tape machine, for each transition
specified byδ(k) must individuate the current state and the position of the marker
for each track and then write on the tracks the required symbols, move the markers
and go in another internal state. For each computational step of MK , the machine
M ′ must execute a sequence of steps for covering the portion of tapes between the
two most distant markers. As in each computational step a marker can move at
most of one cell and then two markers can move away each other at most of two
cells, aftert steps ofMK the markers can be at most 2t cells distant, thus ifMK

executest steps,M ′ executes at most: 2∑t
i=1 i = t2+ t = O(t2) steps.

Moving to the cost of the simulation in terms of the number of required char-
acters for the alphabet of the Single-tape machine, we recall that |Γ1| = |Σ1|+ 1
and that|Γi| = |Σi|+2 for 2≤ i ≤ k. So by multiplying the cardinalities of these
alphabets we obtain that:|Γ′|= 2k(|Σ1|+1)∏k

i=2(|Σi |+2) =O((2max1≤i≤k |Γi|)k).
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3 The Grossone Methodology

In this section, we give just a brief introduction to the methodology of the new
approach [31, 33] dwelling only on the issues directly related to the subject of the
paper. This methodology will be used in Section 4 to study Turing machines and
to obtain some more accurate results with respect to those obtainable by using the
traditional framework [5, 43].

In order to start, let us remind that numerous trials have been done during
the centuries to evolve existing numeral systems in such a way that numerals
representing infinite and infinitesimal numbers could be included in them (see
[3, 4, 6, 18, 19, 25, 29, 46]). Since new numeral systems appear very rarely, in
each concrete historical period their significance for Mathematics is very often
underestimated (especially by pure mathematicians). In order to illustrate their
importance, let us remind the Roman numeral system that doesnot allow one to
express zero and negative numbers. In this system, the expression III-X is an in-
determinate form. As a result, before appearing the positional numeral system and
inventing zero mathematicians were not able to create theorems involving zero and
negative numbers and to execute computations with them.

There exist numeral systems that are even weaker than the Roman one. They
seriously limit their users in executing computations. Letus recall a study pub-
lished recently inScience(see [12]). It describes a primitive tribe living in Ama-
zonia (Pirahã). These people use a very simple numeral system for counting: one,
two, many. For Pirahã, all quantities larger than two are just ‘many’ and such
operations as 2+2 and 2+1 give the same result, i.e., ‘many’.Using their weak
numeral system Pirahã are not able to see, for instance, numbers 3, 4, 5, and 6, to
execute arithmetical operations with them, and, in general, to say anything about
these numbers because in their language there are neither words nor concepts for
that.

In the context of the present paper, it is very important thatthe weakness of
Pirahã’s numeral system leads them to such results as

‘many’+1= ‘many’, ‘many’+2= ‘many’, (5)

which are very familiar to us in the context of views on infinity used in the tradi-
tional calculus

∞+1= ∞, ∞+2= ∞. (6)

The arithmetic of Pirahã involving the numeral ‘many’ has also a clear similarity
with the arithmetic proposed by Cantor for his Alephs2:

ℵ0+1= ℵ0, ℵ0+2= ℵ0, ℵ1+1= ℵ1, ℵ1+2= ℵ1. (7)

2This similarity becomes even more pronounced if one considers another Amazonian tribe –
Mundurukú (see [27]) – who fail in exact arithmetic with numbers larger than 5 but are able to
compare and add large approximate numbers that are far beyond their naming range. Particularly,
they use the words ‘some, not many’ and ‘many, really many’ todistinguish two types of large
numbers using the rules that are very similar to ones used by Cantor to operate withℵ0 andℵ1,
respectively.
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Thus, the modern mathematical numeral systems allow us to distinguish a
larger quantity of finite numbers with respect to Pirahã butgive results that are
similar to those of Pirahã when we speak about infinite quantities. This observa-
tion leads us to the following idea:Probably our difficulties in working with infinity
is not connected to the nature of infinity itself but is a result of inadequate numeral
systems that we use to work with infinity, more precisely, to express infinite num-
bers.

The approach developed in [31, 33, 38] proposes a numeral system that uses
the same numerals for several different purposes for dealing with infinities and
infinitesimals: in Analysis for working with functions thatcan assume different in-
finite, finite, and infinitesimal values (functions can also have derivatives assuming
different infinite or infinitesimal values); for measuring infinite sets; for indicating
positions of elements in ordered infinite sequences; in probability theory, etc. (see
[8, 9, 14, 22, 30, 32, 34, 35, 36, 37, 39, 40, 41, 44, 48, 49]). Itis important to em-
phasize that the new numeral system avoids situations of thetype (5)–(7) providing
results ensuring that ifa is a numeral written in this system then for anya (i.e., a
can be finite, infinite, or infinitesimal) it followsa+1> a.

The new numeral system works as follows. A new infinite unit ofmeasure ex-
pressed by the numeral① calledgrossoneis introduced as the number of elements
of the set,N, of natural numbers. Concurrently with the introduction ofgrossone
in the mathematical language all other symbols (like∞, Cantor’sω, ℵ0,ℵ1, ...,
etc.) traditionally used to deal with infinities and infinitesimals are excluded from
the language because grossone and other numbers constructed with its help not
only can be used instead of all of them but can be used with a higher accuracy3.
Grossone is introduced by describing its properties postulated by the Infinite Unit
Axiom (see [33, 38]) added to axioms for real numbers (similarly, in order to pass
from the set,N, of natural numbers to the set,Z, of integers a new element – zero
expressed by the numeral 0 – is introduced by describing its properties).

The new numeral① allows us to construct different numerals expressing dif-
ferent infinite and infinitesimal numbers and to execute computations with them.
Let us give some examples. For instance, in Analysis, indeterminate forms are not
present and, for example, the following relations hold for① and①−1 (that is in-
finitesimal), as for any other (finite, infinite, or infinitesimal) number expressible
in the new numeral system

0·① = ① ·0= 0, ①−① = 0,
①

①
= 1, ①0 = 1, 1① = 1, 0① = 0, (8)

0·①−1 = ①−1 ·0= 0, ①−1 > 0, ①−2 > 0, ①−1−①−1 = 0, (9)

①−1

①−1 = 1,
①−2

①−2 = 1, (①−1)0 = 1, ① ·①−1 = 1, ① ·①−2 = ①−1. (10)

3Analogously, when the switch from Roman numerals to the Arabic ones has been done, numerals
X, V, I, etc. have been excluded from records using Arabic numerals.
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The new approach gives the possibility to develop a new Analysis (see [36])
where functions assuming not only finite values but also infinite and infinitesimal
ones can be studied. For all of them it becomes possible to introduce a new notion
of continuity that is closer to our modern physical knowledge. Functions assuming
finite and infinite values can be differentiated and integrated.

By using the new numeral system it becomes possible to measure certain infi-
nite sets and to see, e.g., that the sets of even and odd numbers have①/2 elements
each. The set,Z, of integers has 2①+1 elements (① positive elements,① negative
elements, and zero). Within the countable sets and sets having cardinality of the
continuum (see [20, 37, 38]) it becomes possible to distinguish infinite sets having
different number of elements expressible in the numeral system using grossone and
to see that, for instance,

①

2
< ①−1< ① < ①+1< 2①+1< 2①2−1< 2①2 < 2①2+1<

2①2+2< 2①−1< 2① < 2①+1< 10① < ①①−1< ①① < ①①+1. (11)

Another key notion for our study of Turing machines is that ofinfinite se-
quence. Thus, before considering the notion of the Turing machine from the point
of view of the new methodology, let us explain how the notion of the infinite se-
quence can be viewed from the new positions.

Traditionally, aninfinite sequence{an},an ∈ A, n∈ N, is defined as a function
having the set of natural numbers,N, as the domain and a setA as the codomain. A
subsequence{bn} is defined as a sequence{an} from which some of its elements
have been removed. In spite of the fact that the removal of theelements from{an}
can be directly observed, the traditional approach does notallow one to register, in
the case where the obtained subsequence{bn} is infinite, the fact that{bn} has less
elements than the original infinite sequence{an}.

Let us study what happens when the new approach is used. From the point
of view of the new methodology, an infinite sequence can be considered in a dual
way: either as an object of a mathematical study or as a mathematical instrument
developed by human beings to observe other objects and processes. First, let us
consider it as a mathematical object and show that the definition of infinite se-
quences should be done more precise within the new methodology. In the finite
case, a sequencea1,a2, . . . ,an hasn elements and we extend this definition directly
to the infinite case saying that an infinite sequencea1,a2, . . . ,an hasn elements
wheren is expressed by an infinite numeral such that the operations with it satisfy
the methodological Postulate 3. Then the following result (see [31, 33]) holds. We
reproduce here its proof for the sake of completeness.

Theorem 3.1 The number of elements of any infinite sequence is less or equal
to ①.

Proof. The new numeral system allows us to express the number of elements
of the setN as①. Thus, due to the sequence definition given above, any sequence
havingN as the domain has① elements.
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The notion of subsequence is introduced as a sequence from which some of
its elements have been removed. This means that the resulting subsequence will
have less elements than the original sequence. Thus, we obtain infinite sequences
having the number of members less than grossone. ✷

It becomes appropriate now to define thecomplete sequenceas an infinite se-
quence containing① elements. For example, the sequence of natural numbers is
complete, the sequences of even and odd natural numbers are not complete be-

cause they have①2 elements each (see [31, 33]). Thus, the new approach imposes
a more precise description of infinite sequences than the traditional one: to define
a sequence{an} in the new language, it is not sufficient just to give a formula
for an, we should determine (as it happens for sequences having a finite number
of elements) its number of elements and/or the first and the last elements of the
sequence. If the number of the first element is equal to one, wecan use the record
{an : k} wherean is, as usual, the general element of the sequence andk is the
number (that can be finite or infinite) of members of the sequence; the following
example clarifies these concepts.

Example 3.1 Let us consider the following three sequences:

{an : ①}= {4, 8, . . . 4(①−1), 4①}; (12)

{bn :
①

2
−1}= {4, 8, . . . 4(

①

2
−2), 4(

①

2
−1)}; (13)

{cn :
2①

3
}= {4, 8, . . . 4(

2①

3
−1), 4

2①

3
}. (14)

The three sequences have an = bn = cn = 4n but they are different because they
have different number of members. Sequence{an} has① elements and, therefore,

is complete,{bn} has ①
2 −1, and{cn} has2①

3 elements. ✷

Let us consider now infinite sequences as one of the instruments used by math-
ematicians to study the world around us and other mathematical objects and pro-
cesses. The first immediate consequence of Theorem 3.1 is that any sequential
process can have at maximum① elements. This means that a process of sequential
observations of any object cannot contain more than① steps4. We are not able
to execute any infinite process physically but we assume the existence of such a
process; moreover, only a finite number of observations of elements of the consid-
ered infinite sequence can be executed by a human who is limited by the numeral
system used for the observation. Indeed, we can observe onlythose members of a
sequence for which there exist the corresponding numerals in the chosen numeral
system; to better clarify this point the following example is discussed.

4It is worthy to notice a deep relation of this observation to the Axiom of Choice. Since Theo-
rem 3.1 states that any sequence can have at maximum① elements, so this fact holds for the process
of a sequential choice, as well. As a consequence, it is not possible to choose sequentially more than
① elements from a set. This observation also emphasizes the fact that the parallel computational
paradigm is significantly different with respect to the sequential one becausep parallel processes can
choosep·① elements from a set.
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Example 3.2 Let us consider the numeral system,P , of Pirahã able to express only
numbers 1 and 2. If we add toP the new numeral①, we obtain a new numeral
system (we call it̂P ). Let us consider now a sequence of natural numbers{n : ①}.
It goes from 1 to① (note that both numbers, 1 and①, can be expressed by numerals
from P̂ ). However, the numeral system̂P is very weak and it allows us to observe
only ten numbers from the sequence{n : ①} represented by the following numerals

1,2︸︷︷︸
f inite

, . . .
①

2
−2,

①

2
−1,

①

2
,
①

2
+1,

①

2
+2

︸ ︷︷ ︸
in f inite

, . . . ①−2,①−1,①︸ ︷︷ ︸
in f inite

. (15)

The first two numerals in (15) represent finite numbers, the remaining eight nu-
merals express infinite numbers, and dots represent membersof the sequence of
natural numbers that are not expressible inP̂ and, therefore, cannot be observed if
one uses only this numeral system for this purpose. ✷

In the light of the limitations concerning the process of sequential observations,
the researcher can choose how to organize the required sequence of observations
and which numeral system to use for it, defining so which elements of the object
he/she can observe. This situation is exactly the same as in natural sciences: be-
fore starting to study a physical object, a scientist chooses an instrument and its
accuracy for the study.

Example 3.3 Let us consider the set A={1,2,3, . . . ,2①-1,2①} as an object of our
observation. Suppose that we want to organize the process ofthe sequential count-
ing of its elements. Then, due to Theorem 3.1, starting from the number 1 this
process can arrive at maximum to①. If we consider the complete counting se-
quence{n : ①}, then we obtain

1,2, 3, 4, . . . ①−2,①−1,①,①+1,①+2,①+3, . . . ,2①−1,2①

xxxx xx x

︸ ︷︷ ︸
① steps

(16)

Analogously, if we start the process of the sequential counting from 5, the pro-
cess arrives at maximum to①+4:

1,2,3,4,5 . . . ①−1,①,①+1,①+2,①+3,①+4,①+5, . . . ,2①−1,2①

x xxx xxx

︸ ︷︷ ︸
① steps

(17)

The corresponding complete sequence used in this case is{n+4 : ①}. We can also
change the length of the step in the counting sequence and consider, for instance,
the complete sequence{2n−1 : ①}:

1,2,3,4, . . . ①−1,①,①+1,①+2, . . . 2①−3,2①−2,2①−1,2①xx x x xx x

︸ ︷︷ ︸
① steps

(18)
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If we use again the numeral system̂P , then among finite numbers it allows us
to see only number 1 because already the next number in the sequence, 3, is not
expressible in̂P . The last element of the sequence is2①− 1 and P̂ allows us to
observe it. ✷

The introduced definition of the sequence allows us to work not only with the
first but with any element of any sequence if the element of ourinterest is express-
ible in the chosen numeral system independently whether thesequence under our
study has a finite or an infinite number of elements. Let us use this new definition
for studying infinite sets of numerals, in particular, for calculating the number of
points at the interval[0,1) (see [31, 33]). To do this we need a definition of the
term ‘point’ and mathematical tools to indicate a point. If we accept (as is usually
done in modern Mathematics) that apoint Abelonging to the interval[0,1) is de-
termined by a numeralx, x∈ S, calledcoordinate of the point AwhereS is a set of
numerals, then we can indicate the pointA by its coordinatex and we are able to
execute the required calculations.

It is worthwhile to emphasize that giving this definition we have not used the
usual formulation “x belongs to the set,R, of real numbers”. This has been done
because we can express coordinates only by numerals and different choices of nu-
meral systems lead to different sets of numerals and, as a result, to different sets of
numbers observable through the chosen numerals. In fact, wecan express coordi-
nates only after we have fixed a numeral system (our instrument of the observation)
and this choice defines which points we can observe, namely, points having coor-
dinates expressible by the chosen numerals. This situationis typical for natural
sciences where it is well known that instruments influence the results of observa-
tions. Remind the work with a microscope: we decide the levelof the precision we
need and obtain a result which is dependent on the chosen level of accuracy. If we
need a more precise or a more rough answer, we change the lens of our microscope.

We should decide now which numerals we shall use to express coordinates of
the points. After this choice we can calculate the number of numerals expressible
in the chosen numeral system and, as a result, we obtain the number of points at
the interval[0,1). Different variants (see [31, 33]) can be chosen depending on the
precision level we want to obtain. For instance, we can choose a positional numeral
system with a finite radixb that allows us to work with numerals

(0.a1a2 . . .a(①−1)a①)b, ai ∈ {0,1, . . .b−2,b−1}, 1≤ i ≤ ①. (19)

Then, the number of numerals (19) gives us the number of points within the inter-
val [0,1) that can be expressed by these numerals. Note that a number using the
positional numeral system (19) cannot have more than grossone digits (contrarily
to sets discussed in Example 3.3) because a numeral havingg>① digits would not
be observable in a sequence. In this case (g> ①) such a record becomes useless in
sequential computations because it does not allow one to identify numbers entirely
sinceg−① numerals remain non observed.

12



Theorem 3.2 If coordinates of points x∈ [0,1) are expressed by numerals (19),
then the number of the points x over[0,1) is equal to b①.

Proof. In the numerals (19) there is a sequence of digits,a1a2 . . .a(①−1)a①, used
to express the fractional part of the number. Due to the definition of the sequence
and Theorem 3.1, any infinite sequence can have at maximum① elements. As a
result, there is① positions on the right of the dot that can be filled in by one of the
b digits from the alphabet{0,1, . . . ,b−1} that leads tob① possible combinations.
Hence, the positional numeral system using the numerals of the form (19) can
expressb① numbers. ✷

Corollary 3.1 The number of numerals

(a1a2a3 . . .a①−2a①−1a①)b, ai ∈ {0,1, . . .b−2,b−1}, 1≤ i ≤ ①, (20)

expressing integers in the positional system with a finite radix b in the alphabet
{0,1, . . .b−2,b−1} is equal to b①.

Proof. The proof is a straightforward consequence of Theorem 3.2 and is so
omitted. ✷

Corollary 3.2 If coordinates of points x∈ (0,1) are expressed by numerals (19),
then the number of the points x over(0,1) is equal to b① −1.

Proof. The proof follows immediately from Theorem 3.2. ✷

Note that Corollary 3.2 shows that it becomes possible now toobserve and to
register the difference of the number of elements of two infinite sets (the interval
[0,1) and the interval(0,1), respectively) even when only one element (the point
0, expressed by the numeral 0.00. . .0 with ① zero digits after the decimal point)
has been excluded from the first set in order to obtain the second one.

4 The Turing Machines observed through the lens of the
Grossone Methodology

In this Section the different types of Turing machines introduced in Section 2 are
analyzed and observed by using as instruments of the observation the Grossone
language and methodology presented in Section 3. In particular, new results for
Multi-tape Turing machines are presented and discussed.

Before starting the discussion, it is useful to recall the main results from the
previous Section: (i) any infinite sequence can have maximum① elements; (ii)
the elements which we are able to observe in this sequence depend on the adopted
numeral system.

Then, in order to be able to read and to understand the output of a Turing
machine, writing its output on the tape using an alphabetΣ containingb symbols
{0,1, . . .b− 2,b− 1} whereb is a finite number, the researcher (the user) should
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know a positional numeral systemU with an alphabet{0,1, . . .u−2,u−1} where
u ≥ b, otherwise the output cannot be decoded by the user. Moreover, the re-
searcher must be able to observe a number of symbols at least equal to the maximal
length of the output sequence that can be computed by machine, otherwise the user
is not able to interpret the obtained result (see [42] for a detailed discussion).

In this Section, a first set of results aims to specify, with higher accuracy with
respect to that provided by the mathematical language developed by Cantor and
adopted by Turing, how and when the computations performed by a Multi-tape
Turing machine can be observed in a sequence. Moreover, it isshown that the
Grossone language and methodology will allow us to perform amore accurate in-
vestigation of situations interpreted traditionally likeequivalences among different
Multi-tape machines and among Multi and Single-tape machines.

4.1 Observing computations performed by a Multi-tape Turing ma-
chine

Before starting to analyze the computations performed by ak-tapes Turing ma-
chine (withk≥ 2) MK =

〈
Q,Γ, b̄,Σ,q0,F,δ(k)

〉
(see (1), Section 2.2), it is worth to

make some considerations about the process of observation itself in the light of the
Grossone methodology. As discussed above, if we want to observe the process of
computation performed by a Turing machine while it executesan algorithm, then
we have to execute observations of the machine in a sequence of moments. In
fact, it is not possible to organize a continuous observation of the machine. Any
instrument used for an observation has its accuracy and there always be a minimal
period of time related to this instrument allowing one to distinguish two different
moments of time and, as a consequence, to observe (and to register) the states of
the object in these two moments. In the period of time passingbetween these two
moments the object remains unobservable.

Since our observations are made in a sequence, the process ofobservations can
have at maximum① elements. This means that inside a computational process itis
possible to fix more than grossone steps (defined in a way) but it is not possible to
count them one by one in a sequence containing more than grossone elements. For
instance, in a time interval[0,1), up tob① numerals of the type (19) can be used to
identify moments of time but not more than grossone of them can be observed in a
sequence. Moreover, it is important to stress that any process itself, considered in-
dependently on the researcher, is not subdivided in iterations, intermediate results,
moments of observations, etc. The structure of the languagewe use to describe
the process imposes what we can say about the process (see [42] for a detailed
discussion).

On the basis of the considerations made above, we should choose the accuracy
(granularity) of the process of the observation of a Turing machine; for instance we
can choose a single operation of the machine such as reading asymbol from the
tape, or moving the tape, etc. However, in order to be close asmuch as possible to
the traditional results, we consider an application of the transition function of the
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machine as our observation granularity (see Section 2).
Moreover, concerning the output of the machine, we considerthe symbols writ-

ten on all the k tapes of the machine by using, on each tapei, with 1≤ i ≤ k, the
alphabetΣi of the tape, containingbi symbols, plus the blank symbol (b̄). Due to
the definition of complete sequence (see Section 3) on each tape at least① symbols
can be produced and observed. This means that on a tapei, after the last symbols
belonging to the tape alphabetΣi , if the sequence is not complete (i.e., if it has
less than① symbols) we can consider a number of blank symbols (b̄) necessary
to complete the sequence. We say that we are considering acomplete outputof a
k-tapes Turing machine when on each tape of the machine we consider a complete
sequence of symbols belonging toΣi ∪{b̄}.

Theorem 4.1 Let MK =
〈
Q,Γ, b̄,Σ,q0,F,δ(k)

〉
be a k-tapes, k≥ 2, Turing ma-

chine. Then, a complete output of the machine will results ink① symbols.

Proof. Due to the definition of the complete sequence, on each tape atmaxi-
mum① symbols can be produced and observed and thus by consideringa complete
sequence on each of the k tapes of the machine the complete output of the machine
will result in k① symbols. ✷

Having proved that a complete output that can be produced by ak-tapes Turing
machine results ink① symbols, it is interesting to investigate what part of the
complete output produced by the machine can be observed in a sequence taking
into account that it is not possible to observe in a sequence more than① symbols
(see Section 3). As examples, we can decide to make in a sequence one of the
following observations: (i)① symbols on one among thek-tapes of the machine,

(ii) ①
k symbols on each of thek-tapes of the machine; (iii)①2 symbols on 2 among

thek-tapes of the machine, an so on.

Theorem 4.2 Let MK =
〈
Q,Γ, b̄,Σ,q0,F,δ(k)

〉
be a k-tapes, k≥ 2, Turing ma-

chine. Let M be the number of all possible complete outputs that can be produced
by MK . Then it follows M= ∏k

i=1(bi +1)①.

Proof. Due to the definition of the complete sequence, on each tapei, with
1≤ i ≤ k, at maximum① symbols can be produced and observed by using thebi

symbols of the alphabetΣi of the tape plus the blank symbol (b̄); as a consequence,
the number of all the possible complete sequences that can beproduced and ob-
served on a tapei is (bi +1)①. A complete output of the machine is obtained by
considering a complete sequence on each of the thek-tapes of the machine, thus by
considering all the possible complete sequences that can beproduced and observed
on each of the k tapes of the machine, the numberM of all the possible complete
outputs will results in∏k

i=1(bi +1)①. ✷

As the numberM = ∏k
i=1(bi +1)① of complete outputs that can be produced

by MK is larger than grossone, then there can be different sequential enumerating
processes that enumerate complete outputs in different ways, in any case, each of
these enumerating sequential processes cannot contain more than grossone mem-
bers (see Section 3).
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4.2 Equivalences among different Multi-tape machines and among
Multi and Single-tape machines

In the classical frameworkk-tape Turing machines have the same computational
power of Single-tape Turing machines and given a Multi-tapeTuring MachineMK

it is always possible to define a Single-tape Turing Machine which is able to fully
simulate its behavior and therefore to completely execute its computations. As
showed for Single-tape Turing machine (see [42]), the Grossone methodology al-
lows us to give a more accurate definition of the equivalence among different ma-
chines as it provides the possibility not only to separate different classes of infinite
sets with respect to their cardinalities but also to measurethe number of elements
of some of them. With reference to Multi-tape Turing machines, the Single-tape
Turing Machines adopted for their simulation use a particular kind of tape which is
divided into tracks (multi-track tape). In this way, if the tape hasm tracks, the head
is able to access (for reading and/or writing) all themcharacters on the tracks dur-
ing a single operation. This tape organization leads to a straightforward definition
of the behavior of a Single-tape Turing machine able to completely execute the
computations of a given Multi-tape Turing machine (see Section 2.2). However,
the so defined Single-tape Turing machineM , to simulatet computational steps
of MK , needs to executeO(t2) transitions (t2 + t in the worst case) and to use an
alphabet with 2k(|Σ1|+1)∏k

i=2(|Σi|+2) symbols (again see Section 2.2). By ex-
ploiting the Grossone methodology is is possibile to obtainthe following result that
has a higher accuracy with respect to that provided by the traditional framework.

Theorem 4.3 Let us considerMK =
〈
Q,Γ, b̄,Σ,q0,F,δ(k)

〉
,a k-tapes, k≥ 2, Turing

machine, whereΣ =
⋃k

i=1Σi is given by the union of the symbols in the k tape
alphabetsΣ1, . . . ,Σk and Γ = Σ∪{b̄}. If this machine performs t computational
steps such that

t 6
1
2
(
√

4①+1−1), (21)

then there existsM ′ = {Q′,Γ′, b̄,Σ′,q′0,F
′,δ′}, an equivalent Single-tape Turing

machine with|Γ′|= 2k(|Σ1|+1)∏k
i=2(|Σi|+2), which is able to simulateMK and

can be observed in a sequence.

Proof. Let us recall that the definition ofM ′ requires for a Single-tape to be
divided into 2k tracks;k tracks for storing the characters in thek tapes ofMK and
k tracks for signing through the marker↓ the positions of thek heads on thek
tapes ofMk (see Section 2.2). The transition functionδ(k) of thek-tapes machine
is given byδ(k)(q1,ai1, . . . ,ai k) = (q j ,a j 1, . . . ,a j k,zj 1, . . . ,zj k), with zj 1, . . . ,zj k ∈
{R,L,N}; as a consequence the corresponding transition functionδ′ of the Single-
tape machine, for each transition specified byδ(k) must individuate the current
state and the position of the marker for each track and then write on the tracks
the required symbols, move the markers and go in another internal state. For each
computational step ofMK , M ′ must execute a sequence of steps for covering the
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portion of tapes between the two most distant markers. As in each computational
step a marker can move at most of one cell and then two markers can move away
each other at most of two cells, aftert steps ofMK the markers can be at most 2t
cells distant, thus ifMK executest steps,M ′ executes at most: 2∑t

i=1 i = t2 + t
steps. In order to be observable in a sequence the numbert2+ t of steps, performed
by M ′ to simulatet steps ofMK , must be less than or equal to①. Namely, it should
be t2 + t 6①. The fact that this inequality is satisfied fort 6 1

2(
√

4①+1− 1)
completes the proof. ✷

5 Concluding Remarks

In the paper, Single and Multi-tape Turing machines have been described and ob-
served through the lens of the Grossone language and methodology. This new lan-
guage, differently from the traditional one, makes it possible to distinguish among
infinite sequences of different length so enabling a more accurate description of
Single and Multi-tape Turing machines. The possibility to express the length of an
infinite sequence explicitly gives the possibility to establish more accurate results
regarding the equivalence of machines in comparison with the observations that
can be done by using the traditional language.

It is worth noting that the traditional results and those presented in the paper do
not contradict one another. They are just written by using different mathematical
languages having different accuracies. Both mathematicallanguages observe and
describe the same objects – Turing machines – but with different accuracies. As a
result, both traditional and new results are correct with respect to the mathematical
languages used to express them and correspond to different accuracies of the ob-
servation. This fact is one of the manifestations of the relativity of mathematical
results formulated by using different mathematical languages in the same way as
the usage of a stronger lens in a microscope gives a possibility to distinguish more
objects within an object that seems to be unique when viewed by a weaker lens.

Specifically, the Grossone language has allowed us to give the definition of
complete outputof a Turing machine, to establish when and how the output of a
machine can be observed, and to establish a more accurate relationship between
a Multi-tape Turing machine and a Single-tape one which simulates its computa-
tions. Future research efforts will be geared to apply the Grossone language and
methodology to the description and observation of new and emerging computa-
tional paradigms.
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Franco Angeli Editore, Milan, 2 edition, 2006.

[3] V. Benci and M. Di Nasso. Numerosities of labeled sets: a new way of
counting.Advances in Mathematics, 173:50–67, 2003.

[4] G. Cantor.Contributions to the founding of the theory of transfinite numbers.
Dover Publications, New York, 1955.

[5] A. Church. An unsolvable problem of elementary number theory. American
Journal of Mathematics, 58:345–363, 1936.

[6] J.H. Conway and R.K. Guy.The Book of Numbers. Springer-Verlag, New
York, 1996.

[7] S. Barry Cooper.Computability Theory. Chapman Hall/CRC, 2003.

[8] S. De Cosmis and R. De Leone. The use of grossone in mathematical pro-
gramming and operations research.Applied Mathematics and Computation,
218(16):8029–8038, 2012.

[9] L. D’Alotto. Cellular automata using infinite computations. Applied Mathe-
matics and Computation, 218(16):8077–8082, 2012.

[10] M. Davis. Computability& Unsolvability. Dover Publications, New York,
1985.
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