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Abstract

The paper investigates how the mathematical languagedaskescribe
and to observe automatic computations influence the accaf#éue obtained
results. In particular, we focus our attention on Single ludti-tape Turing
machines which are described and observed through the fl@nsesv math-
ematical language which is strongly based on three metbgdall ideas
borrowed from Physics and applied to Mathematics, nambbydistinction
between the object (we speak here about a mathematicaltpbfesn ob-
servation and the instrument used for this observatioarialations holding
between the object and the tool used for the observatiorgdberacy of the
observation determined by the tool. Results of the observaxecuted by
the traditional and new languages are compared and digtusse
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1 Introduction

Since the beginning of the last century, the fundamentalraatf the concept of
automatic computationattracted a great attention of mathematicians and computer
scientists (seé [5, 15, 16,117,123) 28, 43]). The firstistudad as their refer-
ence context the David Hilbert programme, and as their eefsr language that
introduced by Georg Cantdrl[4]. These approaches lead ferelift mathematical
models of computing machines (see([2, 7, 10]) that, surgigi were discovered
to be equivalent (e.g., anything computable in dealculus is computable by a
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Turing machine). Moreover, these results, and expeciadige obtained by Alonzo
Church, Alan Turing([b, 11, 43] and Kurt Godel, gave fundataé contributions

to demonstrate that David Hilbert programme, which wasdasethe idea that all
of the Mathematics could be precisely axiomatized, canaathlized.

In spite of this fact, the idea of finding an adequate set abrasi for one or
another field of Mathematics continues to be among the musictive goals for
contemporary mathematicians. Usually, when it is necgdsadefine a concept
or an object, logicians try to introduce a number of axiomscdbing the object
in the absolutely best way. However, it is not clear how tahethis absoluteness;
indeed, when we describe a mathematical object or a concetrevlimited by
the expressive capacity of the language we use to make thésipigon. A richer
language allows us to say more about the object and a weakgudge — less.
Thus, the continuous development of the mathematical (ah@my mathemati-
cal) languages leads to a continuous necessity of a tratisorand specification of
axiomatic systems. Second, there is no guarantee thatdiseclaxiomatic system
defines ‘sufficiently well’ the required concept and a combins comparison with
practice is required in order to check the goodness of theptied set of axioms.
However, there cannot be again any guarantee that the newwevill be the last
and definitive one. Finally, the third limitation already miened above has been
discovered by Godel in his two famous incompleteness gmsr(see [11]).

Starting from these considerations, in this paper, we sthdyrelativity of
mathematical languages in situations where they are usetiderve and to de-
scribe automatic computations. We consider the traditiomaputational paradigm
mainly following results of Turing (see [43]) whereas enieggcomputational
paradigms (see, e.g./ |[1,126,/45] 47]) are not consideregl Harparticular, we
focus our attention on different kinds of Turing machineshyiching and extend-
ing the results presented n]42].

The point of view presented in this paper uses strongly threthodological
ideas borrowed from Physics and applied to Mathematicsgharthe distinction
between the object (we speak here about a mathematicaltjobfean observa-
tion and the instrument used for this observation; intatiehs holding between
the object and the tool used for this observation; the acgupéthe observation
determined by the tool.

The main attention is dedicated to numeral sys@aﬂfnat we use to write down
numbers, functions, models, etc. and that are among ow tdahvestigation of
mathematical and physical objects. Itis shown that nunsystems strongly influ-
ence our capabilities to describe both the mathematicaphysical worlds. A new
numeral system introduced in [31,/33] 38]) for performingnpaoitations with infi-
nite and infinitesimal quantities is used for the observatibmathematical objects

1\We are reminded thatmumeralis a symbol or group of symbols that representsimber The
difference between numerals and numbers is the same adfdremtie between words and the things

they refer to. Anumberis a concept that aumeralexpresses. The same number can be represented

by different numerals. For example, the symbols ‘7’, ‘sévand ‘VII' are different numerals, but
they all represent the same number.



and studying Turing machines. The new methodology is basetthe principle
‘The part is less than the whole’ introduced by Ancient Geeakd observed in
practice. It is applied to all sets and processes (finite afiite) and all numbers
(finite, infinite, and infinitesimal).

In order to see the place of the new approach in the histqrarabrama of ideas
dealing with infinite and infinitesimal, see [20,/21] 36} [32].4rhe new methodol-
ogy has been successfully applied for studying a numberpfcagtions: percola-
tion (seel[14, 44]), Euclidean and hyperbolic geometry [88¢30]), fractals (see
[32,[34,[41]44]), numerical differentiation and optimipat (see [[8[ 35, 39, 49]),
infinite series (see [36, 40, 48]), the first Hilbert problesed [37]), and cellular
automata (seé[9]).

The rest of the paper is structured as follows. In Sedflonir®yl& and Multi-
tape Turing machines are introduced along with “classicegults concerning their
computational power and related equivalences; in Sectmibrdef introduction to
the new language and methodology is given whereas theioigxjpbn for analyz-
ing and observing the different types of Turing machinesssubsed in Sectidd 4.
It shows that the new approach allows us to observe Turindhimas with a higher
accuracy giving so the possibility to better characterizé distinguish machines
which are equivalent when observed within the classicah&aork. Finally, Sec-
tion[H concludes the paper.

2 Singleand Multi-tape Turing Machines

The Turing machine is one of the simple abstract computatidevices that can be
used to model computational processes and investigataritie bf computability.
In the following Subsectiorls 2.1 abd P.2, Single and Mualfie¢ Turing machines
will be described along with important classical resultaagrning their computa-
tional power and related equivalences.

2.1 Single Tape Turing Machines
A Turing Machine (see, e.gl, [13,143]) can be defined as alétup

M = (Q,T,b,Z,00,F,3), 1)

whereQ is a finite and not empty set of statésis a finite set of symboldy € I is

a symbol called blankz. C {I" — b} is the set of input/output symbolgg € Qs the
initial state;F C Qs the set of final state$;: {Q—F} xI — Qx T x{RL,N}is

a partial function called the transition function, whérmeans leftR means right,
andN means no move.

Specifically, the machine is supplied with: (daperunning through it which is
divided into cells each capable of containing a sympell, whererl is called the
tape alphabet, ande I is the only symbol allowed to occur on the tape infinitely
often; (ii) aheadthat can read and write symbols on the tape and move the tiape le



and right one and only one cell at a time. The behavior of thehina is specified

by its transition functiond and consists of a sequence of computational steps; in
each step the machine reads the symbol under the head aiesapptransition
functionthat, given the current state of the machine and the symisotéading on

the tape, specifies (if it is defined for these inputs): (i)dpeboly € I to write on

the cell of the tape under the head; (ii) the move of the tagerone cell left,R

for one cell right,N for no move); (iii) the next statg € Q of the machine.

Starting from the definition of Turing Machine introducedab, classical re-
sults (see, e.g.,.[2]) aim at showing that different machiimeterms of provided
tape and alphabet have the same computational powerheg.ate able to execute
the same computations. In particular, two main results eperted below in an
informal way. _

Given a Turing MachineM = {Q,I",b,Z, o, F, 8}, which is supplied with an
infinite tape, it is always possible to define a Turing Machie= {Q',I"",b,>’, o, F’, &'}
which is supplied with a semi-infinite tape (e.g., a tape \&itbft boundary) and is
equivalent taM,, i.e., is able to execute all the computationshf

Given a Turing MachineV = {Q,I",b, >, qo,F,d}, it is always possible to de-
fine a Turing MachineM’ = {Q',I"’,b,%’, qy,F', 8} with || =1 andl" = X' U{b},
which is equivalent tol, i.e., is able to execute all the computationgiéf

It should be mentioned that these results, together withughl conclusion
regarding the equivalences of Turing machines, can bepirgted in the following,
less obvious, way: they show that when we observe Turing mesloy exploiting
the classical framework we are not able to distinguish, ftbe computational
point of view, Turing machines which are provided with alpbis having different
number of symbols and/or different kind of tapes (infinitesemi-infinite) (see
[42] for a detailed discussion).

2.2 Multi-tape Turing Machines

Let us consider a variant of the Turing Machine defined’In (hewe a machine
is equipped with multiple tapes that can be simultaneoustessed and updated
through multiple heads (one per tape). These machines casdaefor a more
direct and intuitive resolution of different kind of comptibnal problems. As an
example, in checking if a string is palindrome it can be usieflhave two tapes on
which represent the input string so that the verificationmefficiently performed
by reading a tape from left to right and the other one fromtrigHeft.

Moving towards a more formal definition, katapes,k > 2, Turing machine
(seel[13]) can be defined (cEl (1)) as a 7-tuple

MK = <Q>r>6>zaq0>|:>6(k)>> (2)
wherez = U!‘:lzi is given by the union of the symbols in the k input/output al-

phabets;,...,%; ' = ZU{b} whereb is a symbol called blankQ is a finite and
not empty set of stategp € Q is the initial statef C Q is the set of final states;
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3 {Q—F}xTyx - xTrs QxTyx---x e x {RL,N}¥is a partial func-
tion called the transition function, whefe = Z; U {b},i = 1,...,k, L means left,
R means right, antl means no move.

This definition of3K means that the machine executes a transition starting
from an internal statg; and with thek heads (one for each tape) above the charac-
tersaiy,...,aig, i-e., if 89 (au, a1, ..., aK) = (4j, @)1, -, Qs Zj, - - -, Zjy.) the ma-
chine goes in the new statg, write on the k tapes the charactexs, ..., a;, re-
spectively, and moves each of its k heads left, right or noamas specified by the
zj, € {RL,N}I=1,... k

A machine can adopt for each tape a different alphabet, incasg, for each
tape, as for the Single-tape Turing machines, the minimuntigoocontaining char-
acters distinct froni is usually represented. In general, a typical configuratican
Multi-tape machine consists of a read-only input tape, Istvead and write work
tapes, and a write-only output tape, with the input and dufgues accessible only
in one direction. In the case oflatapes machine, the instant configuration of the
machine, as for the Single-tape case, must describe theahtsate, the contents
of the tapes and the positions of the heads of the machine.

More formally, for ak-tapes Turing machin®4 = (Q,I",b, %, go,F,8®) with
2= U!‘:lzi (sed ) a configuration of the machine is given by:

gHay T B T Bo#. .. #ak T B, 3

whereq € Q; a; € %I U{e} andB; € I'7Z;U{b}. A configuration idinalif g F.

Thestarting configuration usually requires the input stringn a tape, e.g., the
first tape so thak € 2%, and onlyb symbols on all the other tapes. However, it
can be useful to assume that, at the beginning of a compuoitdtiese tapes have a
starting symbolZp ¢ I = U!‘:ll'i. Therefore, in the initial configuration the head
on the first tape will be on the first character of the inputngtrt, whereas the
heads on the other tapes will observe the synfigpmore formally, by re-placing
I = % U{b,Zo} in all the previous definition, a configuratiam#o; 1 Bi#o, 1
Bo#. .. #ay 1 Pk is aninitial configurationif a; =¢,i=1,...,K By € Z3,Bi = Zo,i =
2,...,kandg=qp.

The application of the transition functia®® at a machine configuration (c.f.
(3)) defines @omputational stepf a Multi-tape Turing Machine. The set of com-
putational steps which bring the machine from the initiatfaguration into a final
configuration defines theomputationexecuted by the machine. As an example,
the computation of a Multi-tape Turing machifiéc which computes the function
fag (X) can be represented as follows:

qo#Tx#Tzo#...#Tzom?Kq#Tx#TfMK(x)#TB#...#TE (4)

o
whereq € F and % indicates the transition among machine configurations.

It is worth noting that, although thietapes Turing Machine can be used for
a more direct resolution of different kind of computatiopabblems, in the clas-
sical framework it has the same computational power of timgl8itape Turing
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machine. More formally, given a Multi-tape Turing Machinési always possible
to define a Single-tape Turing Machine which is able to fuilgidate its behavior
and therefore to completely execute its computations. ttiqudar, the Single-tape
Turing Machines adopted for the simulation use a partidkitadt of the tape which
is divided into tracks (multi-track tape). In this way, ifethape hasn tracks, the
head is able to access (for reading and/or writing) allhtteharacters on the tracks
during a single operation. If for the tracks the alphabefs,,... 'y are adopted
respectively, the machine alphalfets such thatl'| = |1 x --- x | and can be
defined by an injective function from the dét x - -- x ', to the sef"; this func-
tion will associate the symbdi in I" to the tuple(b,b,...,b) in Ty x -+ x Ty In
general, the elements 6fwhich correspond to the elementslin x --- x 'y can
be indicated bya;1, a5, . ..,am| Whereajj € T'j.

By adopting this notation it is possible to demonstrate ¢faatn ak-tapes Tur-
ing MachineMx = {Q,I,b,%,qo,F,3} it is always possible to define a Single-
tape Turing Machine which is able to simuldteomputational steps d#x = in
O(t?) transitions by using an alphabet wiBi{(2|I"|)¥) symbols (se€]2]).

The proof is based on the definition of a machité = {Q',I",b,2’, o, F’, &'}
with a Single-tape divided intak&racks (se€ [2])k tracks for storing the characters
in thek tapes ofMk andk tracks for signing through the markethe positions of
the k heads on th& tapes ofMy. As an example, this kind of tape can represent
the content of each tapes 6fx and the position of each machine heads in its
even and odd tracks respectively. As discussed above, famialg a Single-tape
machine able to represent thedetiacks, it is sufficient to adopt an alphabet with
the required cardinality and define an injective functiorichlassociates a 2k-ple
characters of a cell of the multi-track tape to a symbols is défphabet.

The transition functio® of thek-tapes machine is given B (g, a4, ..., aj) =
(Qjs @155 @), Zjg, - - - Zjy)» With Zj,,...,7;, € {R,L,N}; as a consequence the
corresponding transition functiad of the Single-tape machine, for each transition
specified byd¥ must individuate the current state and the position of theketa
for each track and then write on the tracks the required s{snbmve the markers
and go in another internal state. For each computationala§t@/c, the machine
M’ must execute a sequence of steps for covering the portiapestbetween the
two most distant markers. As in each computational step &enaan move at
most of one cell and then two markers can move away each dtimeost of two
cells, aftert steps ofMy the markers can be at most &lls distant, thus ifMk
executes steps M’ executes at most: 2 _; i =t2+t = O(t?) steps.

Moving to the cost of the simulation in terms of the numbereazfuired char-
acters for the alphabet of the Single-tape machine, welrdwl|[1| = |Z1]| +1
and that|l';| = |Zj| + 2 for 2<i <k. So by multiplying the cardinalities of these
alphabets we obtain thaf’| = 2¢(|Z1|+ 1) [T¥_, (|| +2) = O((2max<i<k|Ti k).



3 The Grossone M ethodology

In this section, we give just a brief introduction to the nuetblogy of the new
approach[[31, 33] dwelling only on the issues directly edab the subject of the
paper. This methodology will be used in Sectidn 4 to studyintumachines and
to obtain some more accurate results with respect to thasénable by using the
traditional framework([5, 43].

In order to start, let us remind that numerous trials haven e during
the centuries to evolve existing numeral systems in such yatha numerals
representing infinite and infinitesimal numbers could bduited in them (see
[314,06,[18 19 25, 29, 46]). Since new numeral systems apgag rarely, in
each concrete historical period their significance for Mathtics is very often
underestimated (especially by pure mathematicians). dercto illustrate their
importance, let us remind the Roman numeral system that mlotesllow one to
express zero and negative numbers. In this system, thessipnelll-X is an in-
determinate form. As a result, before appearing the positioumeral system and
inventing zero mathematicians were not able to create ¢énesinvolving zero and
negative numbers and to execute computations with them.

There exist numeral systems that are even weaker than thaiRone. They
seriously limit their users in executing computations. ustrecall a study pub-
lished recently inScience(see [12]). It describes a primitive tribe living in Ama-
zonia (Pirahd). These people use a very simple numeraryfsir counting: one,
two, many. For Piraha, all quantities larger than two a jmany’ and such
operations as 2+2 and 2+1 give the same result, i.e., ‘madging their weak
numeral system Piraha are not able to see, for instancehensn3, 4, 5, and 6, to
execute arithmetical operations with them, and, in genéwaday anything about
these numbers because in their language there are neithés wor concepts for
that.

In the context of the present paper, it is very important thatweakness of
Piraha’s numeral system leads them to such results as

‘many’ + 1= ‘many’, ‘many’ + 2 = ‘many’, (5)

which are very familiar to us in the context of views on infinitsed in the tradi-
tional calculus
00+ 1=o0o, 004 2 =00, (6)

The arithmetic of Piraha involving the numeral ‘many’ hdsoaa clear similarity
with the arithmetic proposed by Cantor for his Alelﬂths

Oo+1= 0o, Oo+2= 0o, O1+1=0;, O01+2=01. (7)

2This similarity becomes even more pronounced if one considaother Amazonian tribe —
Munduruk{ (seel27]) — who fail in exact arithmetic with nbens larger than 5 but are able to
compare and add large approximate numbers that are far elieir naming range. Particularly,
they use the words ‘some, not many’ and ‘many, really manydigiinguish two types of large
numbers using the rules that are very similar to ones usedaoyo€to operate wittilg and 1,
respectively.



Thus, the modern mathematical numeral systems allow usstingluish a
larger quantity of finite numbers with respect to Piraha dive results that are
similar to those of Piraha when we speak about infinite dtiest This observa-
tion leads us to the following ide&robably our difficulties in working with infinity
is not connected to the nature of infinity itself but is a resfiinadequate numeral
systems that we use to work with infinity, more preciselyxpress infinite num-
bers.

The approach developed in 31,1 83] 38] proposes a numer@nsythat uses
the same numerals for several different purposes for dgalith infinities and
infinitesimals: in Analysis for working with functions the&an assume different in-
finite, finite, and infinitesimal values (functions can alswdaderivatives assuming
different infinite or infinitesimal values); for measuringinite sets; for indicating
positions of elements in ordered infinite sequences; inglsiiby theory, etc. (see
[8,19,[14]22[ 30, 32, 34, 35, B6,137.139] 40| 141,44 48, 49]} itnportant to em-
phasize that the new numeral system avoids situations ofpiee(3)—{(T) providing
results ensuring that d is a numeral written in this system then for amyi.e., a
can be finite, infinite, or infinitesimal) it followa+ 1 > a.

The new numeral system works as follows. A new infinite unitnefasure ex-
pressed by the numeral calledgrossonds introduced as the number of elements
of the set,N, of natural numbers. Concurrently with the introductiongodssone
in the mathematical language all other symbols (kkeCantor'sw, g, 1, ...,
etc.) traditionally used to deal with infinities and infirsilmals are excluded from
the language because grossone and other numbers cortstwititeits help not
only can be used instead of all of them but can be used with rmhigccura(@.
Grossone is introduced by describing its properties pat&dlby the Infinite Unit
Axiom (see [33[ 38]) added to axioms for real numbers (siryilan order to pass
from the setN, of natural numbers to the séi, of integers a new element — zero
expressed by the numeral 0 — is introduced by describingaisapties).

The new numerall allows us to construct different numerals expressing dif-
ferent infinite and infinitesimal numbers and to execute astatons with them.
Let us give some examples. For instance, in Analysis, imaetete forms are not
present and, for example, the following relations holdfoand 0~ (that is in-
finitesimal), as for any other (finite, infinite, or infinitesal) number expressible
in the new numeral system

O
0.0=0:0=0, 0-0=0, =1 0°=1, 1°=1, 0°=0, (8)
o-0t'=0%to=0 0O!'>0 0O%2%>0 0O!'-0O'=0 (9

ot 02 1,0 1 2 1

F:l, F:L O H=1 0o0.0t'=1 0.02%=01t (@10

3Analogously, when the switch from Roman numerals to the i&rabes has been done, numerals
X, V, 1, etc. have been excluded from records using Arabic enais.



The new approach gives the possibility to develop a new Asslfseel[36])
where functions assuming not only finite values but also iitgfiand infinitesimal
ones can be studied. For all of them it becomes possiblerdinte a new notion
of continuity that is closer to our modern physical knowledgunctions assuming
finite and infinite values can be differentiated and integgtat

By using the new numeral system it becomes possible to measuain infi-
nite sets and to see, e.g., that the sets of even and odd raihdhex]/2 elements
each. The sef], of integers has2+1 elements[{ positive elementd,] negative
elements, and zero). Within the countable sets and setachagirdinality of the
continuum (se€ [20, 37, B8]) it becomes possible to distsiginfinite sets having
different number of elements expressible in the numeraésysising grossone and
to see that, for instance,

0
E<D—1<D<D+1<2D+1<252—1<2DZ<2DZ+1<

om?42<280 1ol ol «coP 1P <Py

Another key notion for our study of Turing machines is thatirdfnite se-
qguence. Thus, before considering the notion of the Turinghim& from the point
of view of the new methodology, let us explain how the notidthe infinite se-
guence can be viewed from the new positions.

Traditionally, aninfinite sequencéa,},a, € A, n € N, is defined as a function
having the set of natural number$, as the domain and a sétas the codomain. A
subsequencéb,} is defined as a sequenéa, } from which some of its elements
have been removed. In spite of the fact that the removal oélgmaents fron{a, }
can be directly observed, the traditional approach doeallwt one to register, in
the case where the obtained subsequébggis infinite, the fact tha{b,} has less
elements than the original infinite sequerdeg}.

Let us study what happens when the new approach is used. Remoint
of view of the new methodology, an infinite sequence can bsidered in a dual
way: either as an object of a mathematical study or as a maitiieahinstrument
developed by human beings to observe other objects andgsexe First, let us
consider it as a mathematical object and show that the defindf infinite se-
guences should be done more precise within the new methpdola the finite
case, a sequeneg, ay, .. . ,a, hasn elements and we extend this definition directly
to the infinite case saying that an infinite sequeagey,...,a, hasn elements
wheren is expressed by an infinite numeral such that the operatighsitveatisfy
the methodological Postulate 3. Then the following resde([31, 33]) holds. We
reproduce here its proof for the sake of completeness.

Theorem 3.1 The number of elements of any infinite sequence is less ol equa
to 0.

Proof. The new numeral system allows us to express the number okatem
of the setN as[J. Thus, due to the sequence definition given above, any segquen
havingN as the domain hds elements.
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The notion of subsequence is introduced as a sequence frach wbme of
its elements have been removed. This means that the ressiilvssequence will
have less elements than the original sequence. Thus, wia @lifiaite sequences
having the number of members less than grossone. O

It becomes appropriate now to define t@nplete sequenaes an infinite se-
guence containingl elements. For example, the sequence of natural numbers is
complete, the sequences of even and odd natural numberotacemplete be-

cause they hav% elements each (s€e |31, 33]). Thus, the new approach imposes
a more precise description of infinite sequences than tdéitnaal one: to define

a sequencda,} in the new language, it is not sufficient just to give a formula
for a,, we should determine (as it happens for sequences havingiearfumber

of elements) its number of elements and/or the first and tsteel@ements of the
sequence. If the number of the first element is equal to oneawnaise the record

{an : k} wherea, is, as usual, the general element of the sequencekasdhe
number (that can be finite or infinite) of members of the segegethe following
example clarifies these concepits.

Example 3.1 Let us consider the following three sequences:

(an:0}={4 8 ... 40-1), 40} (12)

{bn:%—l}:{4, 8 .. 4(%—2), 4(%_1)}; (13)
PN 207 207

o= 8 %o, a5 (14)

The three sequences havg=ab, = ¢, = 4n but they are different because they
have different number of members. Sequdrgé has(] elements and, therefore,

is complete{b,} has% —1, and{cn} hasz% elements. O

Let us consider now infinite sequences as one of the instrisnused by math-
ematicians to study the world around us and other matheahatigjects and pro-
cesses. The first immediate consequence of Thebrem 3.1tiarthaequential
process can have at maximurnelements. This means that a process of sequential
observations of any object cannot contain more tﬁaatepﬂ. We are not able
to execute any infinite process physically but we assumexisteace of such a
process; moreover, only a finite number of observationseshehts of the consid-
ered infinite sequence can be executed by a human who isditojt¢he numeral
system used for the observation. Indeed, we can observdtwdg members of a
sequence for which there exist the corresponding numardleichosen numeral
system; to better clarify this point the following exampdediscussed.

41t is worthy to notice a deep relation of this observationtte Axiom of Choice. Since Theo-
rem[3.] states that any sequence can have at maxihelaments, so this fact holds for the process
of a sequential choice, as well. As a consequence, itis resiijple to choose sequentially more than
O elements from a set. This observation also emphasizes thé¢htat the parallel computational
paradigm is significantly different with respect to the senfial one becausgparallel processes can
choosep- [ elements from a set.
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Example 3.2 Let us consider the numeral syster of Pirahé able to express only
numbers 1 and a If we add 8 the new numerall, we obtain a new numeral
system (we call if?). Let us consider now a sequence of natural numiers }.

It goes from 1 td] (note that both numbers, 1 andl can be expressed by numerals
from P). However, the numeral systefis very weak and it allows us to observe
only ten numbers from the sequer{ce O } represented by the following numerals

0 0 g o O

1,2 ——2=--1—=,=+1—=+2 ... O-20-10. (15
\’/’ 2 ’2 ’2’2_{_ 5 T4 %,_’/ ( )
finite e infinite

infinite

The first two numerals i _(15) represent finite numbers, timeaiaing eight nu-
merals express infinite numbers, and dots represent merobéhe sequence of
natural numbers that are not expressibIeAErand, therefore, cannot be observed if
one uses only this numeral system for this purpose. O

In the light of the limitations concerning the process ofisagial observations,
the researcher can choose how to organize the requiredrsmgoéobservations
and which numeral system to use for it, defining so which efeémef the object
he/she can observe. This situation is exactly the same aastumah sciences: be-
fore starting to study a physical object, a scientist chea@seinstrument and its
accuracy for the study.

Example 3.3 Let us consider the set A4,2,3,...,20-1,20} as an object of our
observation. Suppose that we want to organize the procebg skquential count-
ing of its elements. Then, due to Theofem 3.1, starting flteennumber 1 this
process can arrive at maximum fo. If we consider the complete counting se-
quence{n: O}, then we obtain

1,2, 3,4, ... 0-20-1,0,0:1,0:2,0+3,...,20-1,20
(A AN AN AN N AN

(16)
[ steps

Analogously, if we start the process of the sequential dogritom 5, the pro-
cess arrives at maximum fo-+ 4:

1,2,3,4,5 ... 0-1,0,0:1,0+2,0+3,0+4,0+5,...,20-1,200
(AN A A A N A

17)
[l steps

The corresponding complete sequence used in this cdserid : J}. We can also
change the length of the step in the counting sequence argidesnfor instance,
the complete sequeng@én—1:[1}:

1,2,3,4, ... 0-1,0,0+1,0-2, ... 20-3,20-2,20-1,20
N N N 0 o e N

(18)
[l steps
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If we use again the numeral systef’m then among finite numbers it allows us
to see only number 1 because already the next number in theseg, 3, is not
expressible inP. The last element of the sequenclis— 1 and ? allows us to
observe it. O

The introduced definition of the sequence allows us to wotkonty with the
first but with any element of any sequence if the element ofrtterest is express-
ible in the chosen numeral system independently whethesghaence under our
study has a finite or an infinite number of elements. Let ushisenew definition
for studying infinite sets of numerals, in particular, fofatdating the number of
points at the interval0,1) (see [31[.3B]). To do this we need a definition of the
term ‘point’ and mathematical tools to indicate a point. K accept (as is usually
done in modern Mathematics) thapaint Abelonging to the intervdl, 1) is de-
termined by a numerad, x € S, calledcoordinate of the point AvhereS is a set of
numerals, then we can indicate the poinby its coordinatex and we are able to
execute the required calculations.

It is worthwhile to emphasize that giving this definition wavie not used the
usual formulation % belongs to the seR, of real numbers This has been done
because we can express coordinates only by numerals aatedifichoices of nu-
meral systems lead to different sets of numerals and, asil, tesdifferent sets of
numbers observable through the chosen numerals. In factawexpress coordi-
nates only after we have fixed a numeral system (our instrtoféhe observation)
and this choice defines which points we can observe, namalytsphaving coor-
dinates expressible by the chosen numerals. This situgitypical for natural
sciences where it is well known that instruments influeneerésults of observa-
tions. Remind the work with a microscope: we decide the lef/éhe precision we
need and obtain a result which is dependent on the chosdrofesecuracy. If we
need a more precise or a more rough answer, we change thd mnswicroscope.

We should decide now which numerals we shall use to expresslicates of
the points. After this choice we can calculate the numbemnofierals expressible
in the chosen numeral system and, as a result, we obtain thberwf points at
the interval[0,1). Different variants (seé [3[L, 83]) can be chosen dependirth®
precision level we want to obtain. For instance, we can ahagsositional numeral
system with a finite radik that allows us to work with numerals

(O.alaz...a(m,l)ag)b, q < {0,1,...b—2,b—1}, 1<i<. (19)

Then, the number of numerals {19) gives us the number of puwiithin the inter-
val [0,1) that can be expressed by these numerals. Note that a numbgrtis
positional numeral syster (119) cannot have more than gnesdigits (contrarily

to sets discussed in Examplel3.3) because a numeral hgwirig digits would not

be observable in a sequence. In this case () such a record becomes useless in
sequential computations because it does not allow one mtifg@umbers entirely
sinceg — O numerals remain non observed.
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Theorem 3.2 If coordinates of points x [0,1) are expressed by numerals {19),
then the number of the points x oVér1l) is equal to b.

Proof. In the numerald (19) there is a sequence of digitg; . . . _1)&, used
to express the fractional part of the number. Due to the digfinof the sequence
and Theoreni 311, any infinite sequence can have at maximuwiements. As a
result, there i$] positions on the right of the dot that can be filled in by onehef t
b digits from the alphabef0,1, ... ,b— 1} that leads td” possible combinations.
Hence, the positional numeral system using the numeraleeofdrm [19) can
expresd” numbers. O

Corollary 3.1 The number of numerals
(ala2a3-‘-anZanlaD)b> g € {0>l>b—2>b—l}a 1§| < Da (20)

expressing integers in the positional system with a finigixd in the alphabet
{0,1,...b—2,b—1}isequal to b.

Proof. The proof is a straightforward consequence of Thedreth 32isaso
omitted. O

Corallary 3.2 If coordinates of points x (0,1) are expressed by numerals119),
then the number of the points x o€ 1) is equal to b — 1.

Proof. The proof follows immediately from Theorem B.2. O

Note that Corollary_3]2 shows that it becomes possible nowbs®rve and to
register the difference of the number of elements of two itdisets (the interval
[0,1) and the interva(0, 1), respectively) even when only one element (the point
0, expressed by the numeraDO0...0 with [ zero digits after the decimal point)
has been excluded from the first set in order to obtain thenskeope.

4 The Turing Machines observed through the lens of the
Grossone M ethodology

In this Section the different types of Turing machines idtroed in Sectiofl2 are
analyzed and observed by using as instruments of the olbisenthe Grossone
language and methodology presented in Sedflon 3. In pkaticuew results for
Multi-tape Turing machines are presented and discussed.

Before starting the discussion, it is useful to recall themmasults from the
previous Section: (i) any infinite sequence can have maximuglements; (ii)
the elements which we are able to observe in this sequenemdem the adopted
numeral system.

Then, in order to be able to read and to understand the oufpaitTairing
machine, writing its output on the tape using an alphabebntainingb symbols
{0,1,...b—2,b— 1} whereb is a finite number, the researcher (the user) should
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know a positional numeral systefid with an alphabe{0,1,...u—2,u— 1} where
u > b, otherwise the output cannot be decoded by the user. Marethe re-
searcher must be able to observe a number of symbols at tpesdtte the maximal
length of the output sequence that can be computed by madtirerwise the user
is not able to interpret the obtained result ($ee [42] fortaitésl discussion).

In this Section, a first set of results aims to specify, witljhieir accuracy with
respect to that provided by the mathematical language adgedlby Cantor and
adopted by Turing, how and when the computations perfornyed bulti-tape
Turing machine can be observed in a sequence. Moreoversitaan that the
Grossone language and methodology will allow us to performoee accurate in-
vestigation of situations interpreted traditionally l&gquivalences among different
Multi-tape machines and among Multi and Single-tape mahin

4.1 Observing computations performed by a Multi-tape Turing ma-
chine

Before starting to analyze the computations performed bytapes Turing ma-
chine (withk > 2) M = (Q,I,b, %, qo,F,8%) (seel@), Section 2.2), it is worth to
make some considerations about the process of observegahin the light of the
Grossone methodology. As discussed above, if we want taabslee process of
computation performed by a Turing machine while it execateslgorithm, then
we have to execute observations of the machine in a sequénoernents. In
fact, it is not possible to organize a continuous obsermatibthe machine. Any
instrument used for an observation has its accuracy and #iemys be a minimal
period of time related to this instrument allowing one taidguish two different
moments of time and, as a consequence, to observe (and sterg@dhe states of
the object in these two moments. In the period of time padsatgeen these two
moments the object remains unobservable.

Since our observations are made in a sequence, the proaassep¥ations can
have at maximunil elements. This means that inside a computational procisss it
possible to fix more than grossone steps (defined in a wayj subdt possible to
count them one by one in a sequence containing more tharogstements. For
instance, in atime intervédd, 1), up tob™ numerals of the typ€ (19) can be used to
identify moments of time but not more than grossone of thembeaobserved in a
sequence. Moreover, it is important to stress that any geoieself, considered in-
dependently on the researcher, is not subdivided in iteratiintermediate results,
moments of observations, etc. The structure of the languagese to describe
the process imposes what we can say about the process (§fer[42detailed
discussion).

On the basis of the considerations made above, we shouldetie accuracy
(granularity) of the process of the observation of a Turiraghine; for instance we
can choose a single operation of the machine such as readipmlaol from the
tape, or moving the tape, etc. However, in order to be closeuah as possible to
the traditional results, we consider an application of thegition function of the
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machine as our observation granularity (see Se€lion 2).

Moreover, concerning the output of the machine, we consisesymbols writ-
ten on all the k tapes of the machine by using, on eachitapih 1 <i <k, the
alphabetz; of the tape, containing; symbols, plus the blank symbdb)( Due to
the definition of complete sequence (see Seéfion 3) on epelatdeast] symbols
can be produced and observed. This means that on a,tafier the last symbols
belonging to the tape alphabgt, if the sequence is not complete (i.e., if it has
less than] symbols) we can consider a number of blank symbb)snécessary
to complete the sequence. We say that we are consideingplete outpubf a
k-tapes Turing machine when on each tape of the machine wéeleor@scomplete
sequence of symbols belonging3pU {b}.

Theorem 4.1 Let Mx = (Q,I,b,%,qo,F,3%) be a k-tapes, k> 2, Turing ma-
chine. Then, a complete output of the machine will resuligirsymbols.

Proof. Due to the definition of the complete sequence, on each tapevet
mum{[] symbols can be produced and observed and thus by considecorgplete
sequence on each of the k tapes of the machine the complgtgt ofithe machine
will result in kO symbols. O

Having proved that a complete output that can be producedkkitgpes Turing
machine results k(0 symbols, it is interesting to investigate what part of the
complete output produced by the machine can be observedeaguesce taking
into account that it is not possible to observe in a sequerare thand symbols
(see Sectiofi]3). As examples, we can decide to make in a sexjose of the
following observations: (ilJ symbols on one among thetapes of the machine,
(i) % symbols on each of thetapes of the machine; (iii% symbols on 2 among
thek-tapes of the machine, an so on.

Theorem 4.2 Let Mx = (Q,I,b,%,qo,F,3%) be a k-tapes, k> 2, Turing ma-
chine. Let M be the number of all possible complete outpuatisdian be produced
by M. Then it follows M= [1K_; (b 4 1)".

Proof. Due to the definition of the complete sequence, on eachitapih
1 <i <k, at maximum symbols can be produced and observed by usingdpthe
symbols of the alphabé; of the tape plus the blank symbdi)( as a consequence,
the number of all the possible complete sequences that canodeced and ob-
served on a tapeis (b +1)". A complete output of the machine is obtained by
considering a complete sequence on each of thk-tpes of the machine, thus by
considering all the possible complete sequences that carodaced and observed
on each of the k tapes of the machine, the numddef all the possible complete
outputs will results i]_; (b +1)". O

As the numbeM = |‘|!‘:1(bi +1)” of complete outputs that can be produced
by M is larger than grossone, then there can be different seglentimerating
processes that enumerate complete outputs in differers vimany case, each of
these enumerating sequential processes cannot containthar grossone mem-
bers (see Sectidd 3).
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4.2 Equivalences among different Multi-tape machines and among
Multi and Single-tape machines

In the classical framework-tape Turing machines have the same computational
power of Single-tape Turing machines and given a Multi-tapeng MachineMy

it is always possible to define a Single-tape Turing Machihéctvis able to fully
simulate its behavior and therefore to completely exedsteomputations. As
showed for Single-tape Turing machine (se€ [42]), the Gmussnethodology al-
lows us to give a more accurate definition of the equivalemeceray different ma-
chines as it provides the possibility not only to separafferint classes of infinite
sets with respect to their cardinalities but also to meateeaumber of elements
of some of them. With reference to Multi-tape Turing machkinie Single-tape
Turing Machines adopted for their simulation use a parickind of tape which is
divided into tracks (multi-track tape). In this way, if thegoe hasntracks, the head
is able to access (for reading and/or writing) all theharacters on the tracks dur-
ing a single operation. This tape organization leads toaagstiforward definition
of the behavior of a Single-tape Turing machine able to cebept execute the
computations of a given Multi-tape Turing machine (see i8e@.2). However,
the so defined Single-tape Turing machimg& to simulatet computational steps
of M, needs to execut®(t?) transitions {* +t in the worst case) and to use an
alphabet with &(|Z;| + 1) [1*_,(|Zi| + 2) symbols (again see Sectibn.2). By ex-
ploiting the Grossone methodology is is possibile to ohtfaénfollowing result that
has a higher accuracy with respect to that provided by tliitiwaal framework.

Theorem 4.3 Letus consideMk = (Q,I",b, %, o, F,3),a k-tapes, k- 2, Turing
machine, where. = U!‘lei is given by the union of the symbols in the k tape
alphabetszy,..., 2y and I = ZU {b}. If this machine performs t computational
steps such that

t< %(\/4D+l—l), (21)

then there exists\(’ = {Q’,F’,E,Z’,%,F’,é’}, an equivalent Single-tape Turing
machine with ™| = 24(|Z1] 4 1) [T*_,(|Zi| + 2), which is able to simulaté/ and
can be observed in a sequence.

Proof. Let us recall that the definition a#/’ requires for a Single-tape to be
divided into X tracks;k tracks for storing the characters in théapes ofMyk and
k tracks for signing through the markérthe positions of thek heads on thé
tapes ofMy (see SectioR 212). The transition functid® of the k-tapes machine
is given byd™ (ar,ai1, ..., k) = (0}, Q1+, Qs Zjgs - -, Zjy.)» With Zj,...,Zj, €
{R,L,N}; as a consequence the corresponding transition fundtiohthe Single-
tape machine, for each transition specified@% must individuate the current
state and the position of the marker for each track and théte wn the tracks
the required symbols, move the markers and go in anothenaitstate. For each
computational step oMy, M’ must execute a sequence of steps for covering the
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portion of tapes between the two most distant markers. Asdh eomputational
step a marker can move at most of one cell and then two markarmove away
each other at most of two cells, aftesteps ofMy the markers can be at most 2
cells distant, thus ifMk executed steps,M’ executes at most: ¥ _;i =t2+t
steps. In order to be observable in a sequence the nufbef steps, performed
by M’ to simulatet steps ofM, must be less than or equal Namely, it should
bet?+t <O. The fact that this inequality is satisfied for 3(v/40+1—1)
completes the proof. O

5 Concluding Remarks

In the paper, Single and Multi-tape Turing machines have lascribed and ob-
served through the lens of the Grossone language and métlggd®his new lan-
guage, differently from the traditional one, makes it pblesto distinguish among
infinite sequences of different length so enabling a moreirate description of
Single and Multi-tape Turing machines. The possibility xpress the length of an
infinite sequence explicitly gives the possibility to edigtb more accurate results
regarding the equivalence of machines in comparison withotbservations that
can be done by using the traditional language.

It is worth noting that the traditional results and thosespraed in the paper do
not contradict one another. They are just written by usirfgg@int mathematical
languages having different accuracies. Both mathemdtogluages observe and
describe the same objects — Turing machines — but with diffesiccuracies. As a
result, both traditional and new results are correct witipeet to the mathematical
languages used to express them and correspond to differeumntaaies of the ob-
servation. This fact is one of the manifestations of thetikétg of mathematical
results formulated by using different mathematical lamggsain the same way as
the usage of a stronger lens in a microscope gives a posgstoildistinguish more
objects within an object that seems to be unique when viewetvleaker lens.

Specifically, the Grossone language has allowed us to gwvealdfinition of
complete outpubf a Turing machine, to establish when and how the output of a
machine can be observed, and to establish a more accuratiemship between
a Multi-tape Turing machine and a Single-tape one which kites its computa-
tions. Future research efforts will be geared to apply thes&sne language and
methodology to the description and observation of new andrgimy computa-
tional paradigms.
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