Skip to main content
Log in

Optimal management of dynamic information in Delay Tolerant Networks

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

To improve the performance of information retrieval in Delay Tolerant Networks (DTN), multiple replicas of information are often deployed. In this paper, we mainly study dynamic information, which evolves with time. For simplicity, we use the information IM as an example. We use the discrete time model, and the time is divided into many slots. In each slot, a new version of the information is created. We say that one node’s age is k if it receives a replica of the information IM k−1 slots ago. Due to the constraint of the buffer or other factors, we cannot deploy too many replicas for a specific message. The goal of this paper is to study efficient ways for distributing the limited replicas to maximize the availability of the information. In particular, we consider two policies, which are source-control policy and destination-control policy, respectively. In the first one, if the source node encounters with one node whose age is k, it will forward a new version of the information to this node with probability p(k). In the second policy, if one node’s age is k, it discards the replica with probability p(k). We prove that the optimal value of p(k) in both cases conforms to the threshold form. Simulations based on both synthetic and real motion traces show the accuracy of our model. Numerical results show that the destination-control policy is better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

S :

The source node

N :

The number of relay nodes

P i,j :

The transition probability from age (state) i to j

λ :

The parameter of the inter-meeting time

q :

The probability of two nodes meet in one time slot

Δ :

The duration of one time slot

π i :

The stationary probability that a node is in state i

K :

The maximal age of the information

p(k):

The forwarding or discarding probability in age k

U(k):

The utility function

σ :

The maximal number of replicas

p :

The vector of the forwarding or discarding probability

M(p),T(p):

The objective function and the average number of replicas

References

  1. Fall K (2003) A delay-tolerant network architecture for challenged internets. In: Proceedings of ACM SIGCOMM, pp 27–34

    Google Scholar 

  2. Papastergios G, Psaras I, Tsaoussidis V (2009) Deep-space transport protocol: a novel transport scheme for space DTNs. Comput Commun 32(16):1757–1767

    Article  Google Scholar 

  3. Soares V, Farahmand F, Rodrigues J (2011) Traffic differentiation support in vehicular delay-tolerant networks. Telecommun Syst 48(1–2):151–162

    Article  Google Scholar 

  4. Costa P, Mascolo C, Musolesi M, Picco GP (2008) Socially-aware routing for publish-subscribe in delay-tolerant mobile ad hoc networks. IEEE J Sel Areas Commun 26(5):748–760

    Article  Google Scholar 

  5. Bulut E, Wang Z, Szymanski B (2010) Cost effective multi-period spraying for routing in delay tolerant networks. IEEE/ACM Trans Netw 18(5):1530–1543

    Article  Google Scholar 

  6. Xian Y, Huang C-T, Cobb J (2011) Look-ahead routing and message scheduling in delay-tolerant networks. Comput Commun 34(18):2184–2194

    Article  Google Scholar 

  7. Gu B, Hong X, Wang P (2011) Analysis for bio-inspired thrown-box assisted message dissemination in delay tolerant networks. Telecommun Syst. doi:10.1007/s11235-011-9554-9

    Google Scholar 

  8. Li Q, Zhu S, Cao G (2010) Routing in socially selfish delay tolerant networks. In: Proceedings of INFOCOM, pp 1–9

    Google Scholar 

  9. Xu K, Hui P, Li V, Crowcroft J, Latora V, Lio P (2009) Impact of altruism o opportunistic communications. In: Proceedings of ICUFN, pp 153–158

    Google Scholar 

  10. Altman E, Nain P, Bermond JC (2009) Distributed storage management of evolving files in delay tolerant ad hoc networks. In: Proceedings of IEEE INFOCOM, pp 1431–1439

    Google Scholar 

  11. Podlipnig S, Boszormenyi L (2003) A survey of web cache replacement strategies. ACM Comput Surv 35(4):374–398

    Article  Google Scholar 

  12. Yang K, Chiu G (2011) A hybrid pull-based with piggybacked push protocol for cache sharing. Comput J 54(12):2017–2032

    Article  Google Scholar 

  13. Reich J, Chaintreau A (2009) The age of impatience: optimal replication schemas for opportunistic networks. In: Proceedings of ACM international conf on emerging networking experiments and technologies, pp 85–96

    Chapter  Google Scholar 

  14. Ionannidis S, Massoulie L, Chaintreau A (2010) Distributed caching over heterogeneous mobile networks. In: Proceedings of ACM international conf on measurement and modelling of computer systems, pp 311–322

    Google Scholar 

  15. Huang Y, Gao Y, Nahrstedt K, He W (2009) Optimizing file retrieval in delay-tolerant content distribution community. In: Proceedings of the 29th conf on distributed computing systems, pp 308–316

    Google Scholar 

  16. Gao W, Cao G (2011) Supporting cooperative caching in disruption tolerant networks. In: Proceedings of the 31th conf on distributed computing systems, pp 151–161

    Google Scholar 

  17. Zhu X, Li Q, Cao G et al (2011) Social-based cooperative caching in DTNs: a contact duration aware approach. In: Proceedings of IEEE conf on mobile ad-hoc and sensor systems, pp 92–101

    Google Scholar 

  18. Zhu X, Li Q, Gao W, Dai Y (2011) Contact duration aware data replication in delay tolerant networks. In: Proceedings of IEEE conf on network protocols (ICNP), pp 236–245

    Google Scholar 

  19. Hyytiä E, Virtamo J, Lassila P et al (2011) When does content float? Characterizing availability of anchored information in opportunistic content sharing. In: Proceedings of the 30th IEEE conf on computer communications, pp 3137–3145

    Google Scholar 

  20. Ott J, Hyytiä E, Lassila P et al (2011) Floating content: information sharing in urban areas. In: Proceedings of IEEE international conf on pervasive computing and communications, pp 136–146

    Google Scholar 

  21. Chaintreauk A, Boudec JYL, Ristanovic N (2009) The age of gossip: spatial mean field regime. In: Proceedings of ACM international conf on measurement and modelling of computer systems, pp 109–120

    Google Scholar 

  22. Altman E, El-Azouzi R, Menasché DS et al. Forever young: aging control in DTNs. Online referencing. http://arxiv.org/PS_cache/arxiv/pdf/1009/1009.4733v1.pdf

  23. Krifa A, Barakat C, Spyropoulos T (2008) Optimal buffer management policies for delay tolerant networks. In: Proceedings of annual IEEE communications society conf on sensor, mesh and ad hoc communications and networks, pp 260–268

    Chapter  Google Scholar 

  24. Krifa A, Barakat C, Spyropoulos T (2010) Message drop and scheduling in DTNs: theory and practice. Technical report, HAL INRIA, Referencing. http://hal.archives-ouvertes.fr/docs/00/54/23/09/PDF/TMC-DTN.pdf

  25. Karagiannis T, Le Boudec J, Vojnovi M (2007) Power law and exponential decay of intercontact times between mobile devices. In: Proceedings of annual international conf on mobile computing and networking, pp 183–194

    Google Scholar 

  26. Cai H, Eun D (2009) Crossing over the bounded domain: from exponential to power-law intermeeting time in mobile ad hoc networks. IEEE/ACM Trans Netw 17:1578–1591

    Article  Google Scholar 

  27. Gao W, Li Q, Zhao B et al (2009) Multicasting in delay tolerant networks: a social network perspective. In: Proceedings of ACM MobiHoc, pp 299–308

    Chapter  Google Scholar 

  28. Lee K, Yi Y, Jeong J et al (2010) Max-contribution: on optimal resource allocation in delay tolerant networks. In: Proceedings of IEEE INFOCOM, pp 1–9

    Chapter  Google Scholar 

  29. Zhu H, Fu L, Xue G et al (2010) Recognizing exponential inter-contact time in VANETs. In: Proceedings of IEEE INFOCOM, pp 1–5

    Google Scholar 

  30. Shaked M, Shantikumar JG (1994) Stochastic orders and their applications. Academic Press, New York

    MATH  Google Scholar 

  31. Keranen A, Ott J, Karkkainen T (2009) The ONE simulator for DTN protocol evaluation. In: Proceedings of SIMUTOOLS

    Google Scholar 

  32. SJU Traffic information grid team, Grid Computing Centre, Shanghai Taxi Trace Data, Online Referencing. http://wirelesslab.sjtu.edu.cn/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahui Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Deng, S. & Huang, H. Optimal management of dynamic information in Delay Tolerant Networks. J Supercomput 66, 320–338 (2013). https://doi.org/10.1007/s11227-013-0909-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-013-0909-8

Keywords

Navigation