Skip to main content
Log in

Efficient application of GPGPU for lava flow hazard mapping

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The individuation of areas that are more likely to be impacted by new events in volcanic regions is of fundamental relevance for mitigating possible consequences, both in terms of loss of human lives and material properties. For this purpose, the lava flow hazard maps are increasingly used to evaluate, for each point of a map, the probability of being impacted by a future lava event. Typically, these maps are computed by relying on an adequate knowledge about the volcano, assessed by an accurate analysis of its past behavior, together with the explicit simulation of thousands of hypothetical events, performed by a reliable computational model. In this paper, General-Purpose Computation with Graphics Processing Units (GPGPU) is applied, in conjunction with the SCIARA lava flow Cellular Automata model, to the process of building the lava invasion maps. Using different GPGPU devices, the paper illustrates some different implementation strategies and discusses numerical results obtained for a case study at Mt. Etna (Italy), Europe’s most active volcano.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Behncke B, Neri M (2003) Cycles and trends in the recent eruptive behaviour of Mount Etna (Italy). Can J Earth Sci 40:1405–1411

    Article  Google Scholar 

  2. Dibben C (2008) Leaving the city for the suburbs—the dominance of ‘ordinary’ decision making over volcanic risk perception in the production of volcanic risk on Mt Etna. J Volcanol Geotherm Res 172:288–299

    Article  Google Scholar 

  3. Barberi F, Brondi F, Carapezza ML, Cavarra L, Murgia C (2003) Earthen barriers to control lava flows in the 2001 eruption of Mt Etna. J Volcanol Geotherm Res 123:231–243

    Article  Google Scholar 

  4. Ishihara K, Iguchi M, Kamo K (1990) Numerical simulation of lava flows on some volcanoes in Japan. In: IAVCEI proceedings in volcanology, pp 174–207

    Google Scholar 

  5. Del Negro C, Fortuna L, Herault A, Vicari A (2008) Simulations of the 2004 lava flow at Etna volcano using the MAGFLOW Cellular Automata model. Bull Volcanol 70:805–812

    Article  Google Scholar 

  6. Avolio MV, Crisci GM, Di Gregorio S, Rongo R, Spataro W, D’Ambrosio D (2006) Pyroclastic flows modeling using cellular automata. Comput Geosci 32:897–911

    Article  Google Scholar 

  7. Crisci GM, Rongo R, Di Gregorio S, Spataro W (2004) The simulation model SCIARA: the 1991 and 2001 lava flows at Mount Etna. J Volcanol Geotherm Res 132:253–267

    Article  Google Scholar 

  8. NVIDIA CUDA C Programming Guide (2010) v. 3.2

  9. von Neumann J (1966) Theory of self-reproducing automata. University of Illinois Press, Champaign. Edited and completed by A Burks

    Google Scholar 

  10. D’Ambrosio D, Spataro W (2007) Parallel evolutionary modeling of geological processes. Parallel Comput 33(3):186–212

    Article  MathSciNet  Google Scholar 

  11. Setoodeh S, Adams DB, Gürdal Z, Watson LT (2006) Pipeline implementation of cellular automata for structural design on message-passing multiprocessors. Math Comput Model 43:966–975

    Article  MATH  Google Scholar 

  12. Di Gregorio S, Serra R (1999) An empirical method for modeling and simulating some complex macroscopic phenomena by cellular automata. Future Gener Comput Syst 16:259–271

    Article  Google Scholar 

  13. Spataro W, Avolio MV, Lupiano V, Trunfio GA, Rocco R, D’Ambrosio D (2010) The latest release of the lava flows simulation model SCIARA: first application to Mt Etna (Italy) and solution of the anisotropic flow direction problem on an ideal surface. In: Proceedings of the international conference on computational science 2010. Procedia computer science, vol 1, pp 17–26

    Google Scholar 

  14. Crisci GM, Di Gregorio S, Nicoletta F, Rongo R, Spataro W (1999) Analysing lava risk for the Etnean area: simulation by cellular automata methods. Nat Hazards 20:215–229

    Article  Google Scholar 

  15. NVIDIA CUDA C Best Practices Guide (2012)

  16. Zuo W, Chen Q (2010) Fast and informative flow simulations in a building by using fast fluid dynamics model on graphics processing unit. Build Environ 45(3):747–757

    Article  MathSciNet  Google Scholar 

  17. Riegel E, Indinger T, Adams NA (2009) Implementation of a Lattice–Boltzmann method for numerical fluid mechanics using the nVIDIA CUDA technology. Comput Sci Res Dev 23:241–247

    Article  Google Scholar 

  18. Preis T (2011) GPU computing in econophysics and statistical physics. Eur Phys J Spec Top 194:87–119

    Article  Google Scholar 

  19. Roberts M, Sousa MC, Mitchell JR (2010) A work-efficient GPU algorithm for level set segmentation. In: SIGGRAPH 2010 conference, vol 53

    Google Scholar 

  20. Filippone G, Spataro W, Spingola G, D’Ambrosio D, Rongo R, Perna G, Di Gregorio S (2011) GPGPU programming and cellular automata: implementation of the SCIARA lava flow simulation code. In: Proceedings of the 23rd European Modeling and Simulation Symposium (EMSS), Rome, Italy, 12–14 September 2011, pp 696–702

    Google Scholar 

  21. Bilotta G, Rustico E, Hérault A, Vicari A, Russo G, Del Negro C, Gallo G (2011) Porting and optimizing MAGFLOW on CUDA. Ann Geophys 5:54

    Google Scholar 

  22. D’Ambrosio D, Filippone G, Rongo R, Spataro W, Trunfio GA (2012) Cellular automata and GPGPU: an application to lava flow modeling. Int J Grid and High Perform Comput 4(3):30–47

    Article  Google Scholar 

  23. Crisci GM, Avolio MV, Behncke B, D’Ambrosio D, Di Gregorio S, Lupiano V, Neri M, Rongo R, Spataro W (2010) Predicting the impact of lava flows at Mount Etna. J Geophys Res 115(B4):1–14

    Article  Google Scholar 

  24. Rongo R, Avolio MV, Behncke B, D’Ambrosio D, Di Gregorio S, Lupiano V, Neri M, Spataro W, Crisci GM (2011) Defining high-detail hazard maps by a cellular automata approach: application to Mount Etna (Italy). Ann Geophys 54:568–578

    Google Scholar 

  25. Walter R, Worsch T (2004) Efficient simulation of CA with few activities. In: ACRI 2004. LNCS, vol 3305, pp 101–110

    Google Scholar 

Download references

Acknowledgements

This work was partially funded by the European Commission—European Social Fund (ESF) and by the Regione Calabria (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Filippone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Ambrosio, D., Filippone, G., Marocco, D. et al. Efficient application of GPGPU for lava flow hazard mapping. J Supercomput 65, 630–644 (2013). https://doi.org/10.1007/s11227-013-0949-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-013-0949-0

Keywords

Navigation