Skip to main content
Log in

Hyper-Hamiltonian laceability of balanced hypercubes

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The balanced hypercube, proposed by Wu and Huang, is a new variation of hypercube. The particular property of the balanced hypercube is that each processor has a backup processor that shares the same neighborhood. A Hamiltonian bipartite graph with bipartition \(V_{0}\cup V_{1}\) is said to be Hamiltonian laceable if there is a Hamiltonian path between any two vertices \(x\in V_{0}\) and \(y\in V_{1}\). A graph \(G\) is hyper-Hamiltonian laceable if it is Hamiltonian laceable and, for any vertex \(v\in V_{i}\), \(i\in \{0,1\}\), there is a Hamiltonian path in Gv between any pair of vertices in \(V_{1-i}\). In this paper, we mainly prove that the balanced hypercube is hyper-Hamiltonian laceable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abraham S, Padmanabhan K (1991) The twisted cube topology for multiprocessors: a study in network asymmetry. J Parallel Distrib Comput 13:104–110

    Article  Google Scholar 

  2. Choudum SA, Sunitha V (2002) Augmented cubes. Networks 40(2):71–84

    Article  MATH  MathSciNet  Google Scholar 

  3. Cull P, Larson SM (1995) The Möbius cubes. IEEE Trans Comput 44:647–659

    Article  MATH  MathSciNet  Google Scholar 

  4. Dally WJ (1990) Performance analysis of \(k\)-ary \(n\)-cube interconnection networks. IEEE Trans Comput 39(6):775–785

    Article  MathSciNet  Google Scholar 

  5. Efe K (1992) The crossed cube architecture for parallel computation. IEEE Trans Parallel Distrib Syst 3(5):513–524

    Article  Google Scholar 

  6. El-amawy A, Latifi S (1991) Properties and performance of folded hypercubes. IEEE Trans Parallel Distrib Syst 2(1):31–42

    Article  Google Scholar 

  7. Harary F, Lewinter M (1987) Hypercubes and other recursively defined Hamilton laceable graphs. Congr Numer 60:81–84

    MathSciNet  Google Scholar 

  8. Hsieh SY, Chen GH, Ho CW (2000) Hamiltonian-laceablity of star graphs. Networks 36:225–232

    Article  MATH  MathSciNet  Google Scholar 

  9. Hsieh SY, Kuo CN (2007) Hamiltonian-connectivity and strongly Hamiltonian-laceablity of folded hypercubes. Comput Math Appl 53:1040–1044

    Article  MATH  MathSciNet  Google Scholar 

  10. Hsu W (1993) Fibonacci cubes—a new interconnection topology. IEEE Trans Parallel Distrib Syst 4(1):3–12

    Article  Google Scholar 

  11. Huang K, Wu J (1995) Area efficient layout of balanced hypercubes. Int J High Speed Electron Syst 6(4):631–645

    Article  Google Scholar 

  12. Huang K, Wu J (1997) Fault-tolerant resource placement in balanced hypercubes. Inform Sci 99(3–4):159–172

    Google Scholar 

  13. Jo S, Park J, Chwa K (2013) Paired 2-disjoint path covers and strongly Hamiltonian laceability of bipartite hypercube-like graphs. Inform Sci 242:103–112

    Article  MathSciNet  Google Scholar 

  14. Leighton FT (1992) Introduction to parallel algorithms and architectures: arrays, trees, hypercubes. Morgan Kaufmann Publishers, San Mateo, California

    MATH  Google Scholar 

  15. Lewinter M, Widulski W (1997) Hyper-Hamilton laceable and caterpillar-spannable product graphs. Comput Math Appl 34(11):99–104

    Article  MATH  MathSciNet  Google Scholar 

  16. Li TK, Tan JJM, Hsu LH, Sung TY (2001) The shuffle-cubes and their generalization. Inform Process Lett 77:35–41

    Article  MATH  MathSciNet  Google Scholar 

  17. Lü H, Li X, Zhang H (2012) Matching preclusion for balanced hypercubes. Theor Comput Sci 465: 10–20

    Google Scholar 

  18. Park JH, Kim HC, Lim HS (2006) Many-to-many disjoint path covers in hypercube-like interconnection networks with faulty elements. IEEE Trans Parallel Distrib Syst 17(3):227–240

    Article  Google Scholar 

  19. Preparata FP, Vuillemin J (1981) The cube-connected cycles: a versatile network for parallel computation. Comput Arch Syst 24:300–309

    MathSciNet  Google Scholar 

  20. Simmons G (1978) Almost all \(n\)-dimensional rectangular lattices are Hamilton laceable. Congr Numer 21:103–108

    MathSciNet  Google Scholar 

  21. Tsai TH, Kung TL, Tan JJM, Hsu LH (2009) On the enhanced hyper-Hamiltonian laceability of hypercubes. In: Proceedings of the 3rd WSEAS International Conference on Computer Engineering and Applications (CEA’09), pp 62–67

  22. Wagh MD, Guzide O (2006) Mapping cycles and trees on wrap-around butterfly graphs. SIAM J Comput 35(3):741–765

    Article  MATH  MathSciNet  Google Scholar 

  23. West DB (2001) Introduction to graph theory, 2nd edn. Prentice Hall, USA

    Google Scholar 

  24. Wu J, Huang K (1997) The balanced hypercube: a cube-based system for fault-tolerant applications. IEEE Trans Comput 46(4):484–490

    Article  MathSciNet  Google Scholar 

  25. Xiang Y, Stewart IA (2011) Augmented \(k\)-ary \(n\)-cubes. Inform Sci 181:239–256

    Article  MATH  MathSciNet  Google Scholar 

  26. Xu JM (2001) Topological structure and analysis of interconnection networks. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  27. Xu M, Hu H, Xu J (2007) Edge-pancyclicity and Hamiltonian laceability of the balanced hypercubes. Appl Math Comput 189:1393–1401

    Article  MATH  MathSciNet  Google Scholar 

  28. Yang M (2010) Bipanconnectivity of balanced hypercubes. Comput Math Appl 60:1859–1867

    Article  MATH  MathSciNet  Google Scholar 

  29. Yang M (2012) Super connectivity of balanced hypercubes. Appl Math Comput 219:970–975

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous referees for their comments and constructive suggestions that greatly improved the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heping Zhang.

Additional information

This research is supported by the National Natural Science Foundation of China (No. 61073046).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lü, H., Zhang, H. Hyper-Hamiltonian laceability of balanced hypercubes. J Supercomput 68, 302–314 (2014). https://doi.org/10.1007/s11227-013-1040-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-013-1040-6

Keywords

Navigation