
HAL Id: hal-03221862
https://hal.science/hal-03221862

Submitted on 10 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Energy and Memory-Efficient Distributed
Self-reconfiguration for Modular Sensor/Robot

Networks
Hicham Lakhlef, Hakim Mabed, Julien Bourgeois

To cite this version:
Hicham Lakhlef, Hakim Mabed, Julien Bourgeois. An Energy and Memory-Efficient Distributed Self-
reconfiguration for Modular Sensor/Robot Networks. Journal of Supercomputing, 2014, 69 (2), pp.908
- 929. �hal-03221862�

https://hal.science/hal-03221862
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

An Energy and Memory-Efficient Distributed
Self-reconfiguration for Modular Sensor/Robot
Networks

Hicham LAKHLEF · Hakim MABED ·
Julien BOURGEOIS

Received: date / Accepted: date

Abstract Self-reconfiguration for mobile microrobots currently needs a posi-
tioning system and a map of the target shape. Traditional positioning solutions
like GPS or multilateration are not applicable in the micro-world, and maps
sharing does not scale. In the literature, if we want a self-reconfiguration of
microrobots to a target shape consists of millions of positions, each microrobot
should have a memory capacity of at least millions positions. Therefore, this is
not scalable. In this paper, nodes do not record any position. We present self-
reconfiguration methods where nodes are unaware of their positions and where
they do not have the final coordinates of each microrobot. In other words,
nodes do not store the coordinates that build the target shape. Therefore,
memory usage for each node is hugely reduced to O(1) and communications
are limited to neighboring nodes. These algorithms aim to improve the logi-
cal topology of a set of microrobots by restructuring their physical topology.
For that end, we consider, here, the case of restructuring a set of microrobots
from a chain to a square and we study two algorithms: the first algorithm
ensures the connectivity of the network at the end of the algorithm, where
the second guarantees the connectivity of the network through the execution
time. The paper presents both analytical and experimental assessments of the
algorithms performances using the declarative language Meld and executed
under the Dynamic Physical Rendering Simulator (DPRSim).

H. Lakhlef
UFC/FEMTO-ST, UMR CNRS 6174, 1 cours Leprince-Ringuet, Montbeliard, France
E-mail: hlakhlef@femto-st.fr

H. Mabed
UFC/FEMTO-ST, UMR CNRS 6174, 1 cours Leprince-Ringuet, Montbeliard, France
E-mail: hakim.mabed@femto-st.fr

J. Bourgeois
UFC/FEMTO-ST, UMR CNRS 6174, 1 cours Leprince-Ringuet, Montbeliard, France
E-mail: julien.bourgeois@femto-st.fr

2 Hicham LAKHLEF et al.

Keywords Distributed algorithm · Self-reconfiguration · Energy-Efficiency ·
Mobility · MEMS microrobot

1 Introduction

Recent advances in micro and nano-technologies made possible the design
and the development of a large variety of Micro Electro-Mechanical Systems
(MEMS) which are miniaturized and low-power devices that can sense and act
[44][45]. It is expected that these small devices, referred to as MEMS nodes,
will be mass-produced, making their production cost almost negligible. Their
applications will require a massive deployment of nodes, thousands or even
millions [41] [11], which will give birth to the concept of Distributed Intelligent
MEMS [3].

These last years, impressive progresses have been reported in producing
miniaturized autonomous robots [26][22] that even scaled down to less than
1 mm [12], this last category will be referred as microrobots or node in the
rest of the paper. A microrobot is defined as a system which can sense, act
and take decisions by itself i.e. without relying on a central processing and
actuation unit [22].

The potential applications of such microrobots are tremendous, whether
working at an individual micro-scale or grouped to act at a macro-scale. Con-
sidering the batch-fabrication process of MEMS components, microrobots will
be cheap and, once ready, will be part of our daily lives. The most promising
application is the the Claytronics project [7] [1] [2] [27] [8] where the aim is
the design of a programmable matter. The building blocks of Claytronics are
millimeter-scale microrobots that stick together and rotate around each other.

Modular microrobots topic is gaining an increasing attention since large-
scale swarms of robots will be able to perform several missions and tasks
in a wide range of applications such as odor localization, firefighting, med-
ical service, surveillance, search, rescue, and security. To achive these tasks
the microrobots have to do the self-reconfiguration. In the literature, the self-
reconfiguration can be seen from two points of view. On the one hand, it can be
defined as a protocol, centralized or distributed, which transforms the physi-
cal topology created by the interconnected nodes to another physical topology
which is more optimal for communication and exchange [10]. On the other
hand, the physical topology can be changed by moving the network nodes,
changing the way they are connected and, thus, changing the overall shape of
the network [32][8]. Both definitions have one thing in common which is the
change of the physical form, but they differ in the purpose of the reconfigura-
tion. The objective of the first definition is the optimization of logical topology
for better communication complexity, and the purpose of the second definition
is the reconfiguration to any desired shape. The self-reconfiguration is difficult
to control as it involves the distributed coordination of a large number of
identical modules connected in time-varying ways. The range of exchanged
information and the amount of displacement, determine the communication

Title Suppressed Due to Excessive Length 3

and the energy complexity of the distributed algorithm. When the informa-
tion exchange involves close neighbors and the algorithm does not need a map
of the target shape, the complexity is moderate and the resulting distributed
self-reconfiguration scales gracefully with network size.
An open issue is whether distributed self-reconfiguration would result in an
optimal configuration with a moderate complexity in message, execution time,
number of movements and memory usage.

This work takes place within the Claytronics project and aims at optimiz-
ing the logical topology of the network through rearrangement of the physical
topology, as we will see in the next sections. While part of the Claytronics
project, this system could be applied to any work which has the same con-
straints and objectives.

2 Related Works

The term self-organization is often used interchangeably with self-reconfiguration,
though it is also used to express the partitioning and clustering of ad hoc or
wireless networks to groups called cliques or clusters. The term self-organization
can be found in protocols for sensor networks to form polygon or sphere from
a central node [23,43]. Redeployment is also a new term to address the self-
reconfiguration for sensor networks [14,20,21,24,31].
For the self-reconfiguration with robots or microrobots there are the protocols
[32,34] where the desired configuration is grown from an initial seed module,
and a generator inputs from a 3D CAD model of a desired configuration and
outputs a set of overlapping blocks. In the second step this representation is
combined with a control algorithm to produce the final configurations. These
solutions are using the predefined positions of the target shape. In [37–39] the
authors present protocols of self-reconfiguration for hexagonal metamorphic
robots for specific shape using the map of the target shape.
A growing number of researches with centralized algorithms on this subject
has been done in the literature, among them we find the proposed control al-
gorithms for self-assembly and/or reconfiguration in [13,30]. Other approaches
give each unit a unique ID and the predefined positions of the target shape;
see [42]. The disadvantages of these methods are the centralized computing
and the need to individually identify nodes. More distributed approaches that
use the predefined positions of the final shape include [6,9,33,35]. The authors
of [34,36] have demonstrated algorithms for self-reconfiguration and directed
growth of cubic units based on gradients and cellular automata. The authors
in [4] have shown how a simulated modular robot (Proteo) can self-configure
into useful and emergent morphologies when the individual modules use local
sensing and local control rules.
Claytronics, which stands for clay-electronics is the name of a robotics project
by Carnegie Mellon University. Within Claytronics micro-scale robots called
Catoms. The idea of having hundreds of thousands of catoms that assemble
together to create new solid objects of any shape or size. The challenges are

4 Hicham LAKHLEF et al.

vast, but once a reality it will have many applications. Much like the cells in
a body or complex organism, each small member of the ensemble engages to
do its own part and communication between parts results in a unified form.
A growing body of research is done in Claytronics project. In [7] the authors
show a metamodel for the configuration of catoms beginning from an initial
configuration to achieve a second desired configuration using creation and de-
struction of catoms, the authors use these two functions due to the inability of
motion of Catoms in the presence of neighbors that can be considered as bar-
riers. In [8,27] the authors present a scalable distributed reconfiguration algo-
rithm with the Hierarchical Median Decomposition, to achieve arbitrary target
configurations without a global communication. In [2] the authors present a
scalable protocol for Catoms self-reconfiguration with the MELD language [1,
29] using the creation and destruction of nodes. In these works the positions
of the target shape are predefined, and each Catoms know all correct positions
at the beginning, consequently each node needs a large memory space to save
these positions. Also, authors assume each node is aware of its current posi-
tion. In contrast to existing solutions, in our paper the self-reconfiguration is
without predefined positions of the target shape. Furthermore, the protocol
is distributed and works with anonymous networks (without ID for nodes).
The first not deeply studied idea of self-reconfiguration without map appears
in [15–18]. This paper details the idea and studies the impact of the connec-
tivity. We presented in [19] an algorithm of reconfiguration from any starting
physical topology to a square, this algorithm does not ensure the connectivity
of the network during the reconfiguration and needs more memory compared
to these algorithms.

3 Contributions

In this paper, we propose a new approach for asynchronous self-reconfiguration
of modular microrobots where the target form is built incrementally, and each
node in the current increment acts as a landmark point for other nodes to form
the next increment. Our algorithms are asynchronous in the sense that each
node runs the instructions independently and it is responsible for counting the
rounds itself, without dependence on other nodes rounds. The proposed model
makes the assumption that each node can obtain the state of all its neighbors
to achieve self-reconfiguration. Using these states the nodes collaborate and
help each other, without global information from the network. Our algorithms
are scalable and do not depend on the network size. Contrary to existing works,
our algorithms do not need information on the correct positions of the target
shape. Consequently, memory usage is reduced to O(1). The nodes are unaware
of their positions on the plan, knowing that to have the localization for nodes,
we should go either with using GPS that provides accurate positions. However,
GPS consume a significant amount of energy, which is leading researchers to
find famous protocols using the multilateration method [5,25,40] where the
error is always a problem. In all applications of self-reconfiguration knowing

Title Suppressed Due to Excessive Length 5

the exact location is an important factor to receiving expected programmed
behavior. This paper provides a self-reconfiguration standalone and portable
because it is independent of the map that builds the target shape.
We propose scalable algorithms for nodes self-reconfiguration differentiated
by the type of motion considered for nodes. In our protocols, the network is
modeled as a chain that we will be converted to a square that represents the
best physical topology for message exchange. We analyze the complexity of the
number of messages sent and the number of movements (energy). In our paper,
the number of movements for each node is predicted, so each node can make
sure that it has correctly followed the algorithm and this makes the algorithm
energy-aware. We make a comparative study between algorithms depending on
the type of motion. At the end, we present the results of simulation made with
the declarative language MELD [1] and the open source simulator DPRSim
[46]. By choosing a straight chain as the initial shape, we aim to study the
performance of our approach in extreme case. Indeed, the chain form represents
the worst physical topology for many distributed algorithms in terms of fault
tolerance, propagation procedures and convergence. First, the number of direct
contacts between microrobots is minimal and secondly the average distance
between two robots (in terms of number of hops) is of (n+1)/3 where n is the
number of robots. Also, a chain of microrobots represents the worst case for
message broadcasting complexity with O(n). The redeployment into a square
organization allows to obtain the best messages broadcasting complexity with
O(
√
n).

The remainder of this paper is organized as follows: Section 4 discusses the
model and terminology. Section 5 discusses the proposed algorithms. Section
6 analyzes the number of messages sent and the number of movements, shows
how to generalize and extend the algorithms, and discusses the simulation
results. Finally, Section 7 summarizes our conclusions and illustrates our
suggestions for future work.

4 Model and Definitions

Within Claytronics, a Catom (figure 1) referred throughout this paper as a
node is modeled as a sphere which can have at most six 2D-neighbors with-
out overlapping (see figure 3). Each node is able to sense the direction of
its physical neighbors (east (E), west (W), north-east (NE), south-east (SE),
south-west (SW) and north-west (NW)). The starting physical topology is a
chain of n nodes linked together. Until now, the node can have at the be-
ginning neighbors in directions SE or NW or in the both directions in the
same time, we show in Section 6.3 how to generalize the algorithm. A node
A is in neighbor’s list of node B if A touches physically B, see figure 2. In
the Claytronics project, communications are only possible through contact,
meaning only neighbors can have direct communication.

Consider the connected undirected graph G = (V,E) modeling the net-
work, v ∈ V , is a node belongs to the network and, e ∈ E is a bidirectional

6 Hicham LAKHLEF et al.

Fig. 1 Two catoms

 D2

 D1
A

B

A

A

Fig. 2 Traveled distance in one movement = 2R,
the node A travels 2xR in one movement

R
M0

M

P1

P2

P3

P4

P5

P6

a=60°

EW

NE

SE

NW

SW

wt

Ux

Uy

Fig. 3 Node modeling, in each
movement the node travels the same
distance

A

B

C

D

t0
t

t

1

2

A

A

Fig. 4 Message transmission, there will be mes-
sage exchange if the node needs to know the state
of a non-neighbor node

edge of communication between two physical neighbors. For each node v ∈ V ,
we denote the set of neighbors of v as N(v) = {u, (u, v) ∈ E}. Each node
v ∈ V knows the set of its neighbors in G, denoted N(v). We assemble our
terminology as such:
Connectivity : in a graph G = (V,E), if ∀v ∈ V,∀u ∈ V , ∃Cv,u ⊆ E :
Cv,u = (ev,−, ..., e−,−, ..., e−,u), where ex,y is an edge from x to y and Cv,u

represents a path from v to u.
Snap − Connectivity : let T be the total execution time of our distributed
algorithm DA and t0..., tm are the time slots of execution of DA. There is a
Snap-Connectivity in DA with the dynamic graph Gt(Vti , Eti) the network
state at the instant ti, if ∀ti, i ∈ {1, ...,m}, Gti(Vti , Eti) maintains the connec-
tivity.
B − non − snap − connectivity : we say that DA guarantees a B-non-snap-
connectivity if it ensures non-snap-connectivity at ti or at t = ti + ... + tm−1
and verifies the following conditions:
Let N0 be the node’s v set of neighbors at t0, and let Ns be the node’s v set
of neighbors at ts with Ns=N0, and let N0/s be the node’s v set of neighbors
at t0 or at ts and Ni its neighbors set at ti, i 6= 0.
- If r ∈ N0/s, and r /∈ Ni and ∀e ∈ Ni, e ∈ N0/s then r ∈ Ni+B at t(i+B). Or
- if r ∈ N0/s, and r /∈ Ni and ∃e ∈ Ni, e /∈ N0/s then v is snap-connected with
all its neighbors of t(i+B+j), j = {1, ...,m− i−B}.
Tree: the tree is any connected graph without cycles. In the tree, a node is a
child or a parent. The leaf is a node without child
We call the own number movements of a given node the number of move-
ments performed by it. In this paper, we present how the node can preca-

Title Suppressed Due to Excessive Length 7

cluate(predict) its own number movements, so it can make sure that it has
correctly executed the algorithm.
To calculate the number of movements we agree on these proposals:
Consider figure 3 which represents a node microrobot. We say that a node
has done a single movement if the distance between its old position and the
new position is exactly twice the radius D1=2R. For example if the node
is in a position at a distance D2 from the old position it has done two
movement (figure 2). Since 360◦ is divisible into six equal angles at 60◦

each, as the perimeter at an angle a is Pa=πRa/180 and P = 2πR and
P1 = P2 = P3 = P4 = P5 = P6, the node can have without overlapping at
most six neighbors and in each round the node travels the same distance.
Now, in a Cartesian plane, consider the curve of the following Cartesian para-
metric equation:

x(t) = Rcos(wt)

y(t) = Rsin(wt)

wherewt ∈ [0..2π[

(1)

With w a constant and the M point represents the contact point between the
node in movement and the node around which it moves.
. This is a closed curve as x(0) = x(2π/w) et y(0) = y(2π/w). Noting that
x(t)2 + y(t)2 = R2. This means that M describes a circle with center O and
radius R (like figure 3). If t means the time, the circle is described after a
period T = 2π/w which means the period of revolution. So, the velocity vector
is written:

→
V=

(
−Rsin wt
Rcos wt

)
(2)

The arc length traveled by M is l(t) =
∫
||
→
V ||.dt = Rwt. So in one round the

microrobot of radius R travels to Ra.
Message exchange between physical neighbors is carried without complexity,
because the node can see directly the state of its physical neighbor. On the
other side, if a node to decide needs to know the state of a non-physical
neighbor this is carried through exchange of message since the node will wait
to decide. For example, in figure 4:

– At t0: Node A needs to know the state of B to move to the new position.
This motion is done without exchanging of messages.

– At t2: If A is in the new position and needs to know the state of D to
move, D sends a message to C informing it of its state, after C forwards
the message to A. There is a message exchange; A must wait two rounds
for the input to decide.

– If at t0 or at t1 a message has been sent from D to C, A at t2 can have the
state of D with simple consultation of C’s state, without message exchange.

8 Hicham LAKHLEF et al.

5 Proposed Protocols

In this section we present the proposed self-reconfiguration algorithms. We
start by presenting an algorithm named Algorithm with Unsafe Connectiv-
ity (AUC), which ensures 1-non-snap-connectivity. After, we present an al-
gorithm named Algorithm with Safe Connectivity (ASC), which ensures a
snap-connectivity.

5.1 Algorithm with Unsafe Connectivity (AUC)

In AUC, the node can move around its physical neighbor or move to a posi-
tion with a distance equaling twice the radius from the original (old) position.
These two kinds of motions are carried with the help of neighbors to learn the
direction and the new position. The node that doesn’t have a neighbor at the
beginning cannot move because it does not know where it is and where are the
other nodes. Therefore, the algorithm should make sure to do not lose nodes.
Description of the algorithm
The algorithm runs in rounds. In each round the demon (scheduler) chooses
the verifiable predicates to run. We introduce in the algorithm a priority mech-
anism between predicates: the demon chooses predicate with the best priority
and ignore in the current round the predicates with the lowest priority. The
predicates labeled with P1 are predicates having the highest priority than
those labeled by P2.
The distributed algorithm uses an incremental process. In a completed in-
crement the nodes that build it belong already to the target shape. At the
beginning, the initiator belongs to the target shape, so it helps its neighbors
to take corrects positions. The nodes already in the form act as a landmark to
the neighbor nodes to complete a new layer. The nodes already in the target
shape change their states with predicates (1) and (5) and become constants.
At the beginning, all nodes are initialized with the bad state (2) except the ini-
tiator (1), the node can check if its neighbor has the state good using predicate
(5). With the predicate (12) if the node has bad state and it had in the NW
direction a neighbor in the previous round, then it moves to the old position
that was occupied by this former neighbor, it travels exactly 2R.
The nodes of the current layer may move either at left directly or NW di-
rectly with the last three predicates. The node can change its state to good if
it cannot move left or NW using the predefined movement predicates. With
the instruction (13) the node moves to left around neighbors having the state
good. It will have the neighbor that used it to move in the NE direction. This
node repeats the same motion until it arrives to the diagonal node that have
the state spe. It can move around this last only if the diagonal node does not
have a node in the E direction. All diagonal nodes have the state spe with the
predicate (7). And with (14) the node moves to NW until it takes a correct
position.

Title Suppressed Due to Excessive Length 9

Variables and predicates:

– v, u1, u2: variables denote a node belongs to the network.
– {u}: a set of nodes.
– good, bad, spe: states, a node can take one or two states at the same

time, knowing that it cannot take the two states spe and bad or good
and bad at the same time.

– Nx(v): the neighbor in the direction x of the node v, with x ∈
{(N), (E), (W), (NE), (SE), or(NW)}.

– thisRound: integer denotes the current round.
– connectedv: true if the node v is connected to the network, false

else (Boolean).
– Statev(k): the state of the node v, taking one or two of these states
k ∈ {good, bad, spe}.

– NxlastRoundv(): the node v had a neighbor in the direction x in the
previous round.

– Statev(n, good): the node v has n neighbors that have the state good
State(good).

– cannotMovev(): the node v has one neighbor having the state good.
– moveTov(PNnw): move to the position PVnw where was a neighbor
Nnw in the direction nw in the previous round.

– moveAroundgoodv(u, Px): the node v moves around the neighbor u
in such a way that u shifts in the direction x for v.

Predicates checked only in the first round

1: Initiator(v) ≡ Nnw(v) = � ∧ connectedv.
2: Statev(bad) ≡ connectedv ∧ ¬Initiator(v).
3: Statev(good) ≡ Initiator(v).
4: Statev(spe) ≡ Initiator(v).

Predicates checked in each round

5:(P1): Statev(good) ≡ (Ne(v) = u1 ∧ Stateu1(good) ∧ Nne(u1) =
�)∨Statev(3, good)∨ (Statev(2, good)∧ (Nne(v) = u1∧Stateu1(spe))∨
(Nw(v) = u1 ∧ Stateu1(good))) ∨ Statev(spe).
6: Statev(n, good) ≡ (Nx(v) = {u} , |u| = n ∧ State{u}(good)).
7: (P1): Statev(spe) ≡ (Nnw(v) = u1)) ∧ (Nne(v) = u2, Stateu2(spe)).
8: thisRound≡ GetCurrentRound().
9: hasNnwv(thisRound) ≡ Nnw(v) = u1 ∧ Stateu1(bad).
10: NnwlastRoundv(LastRound) ≡ hasNnwv(thisRound− 1).
11: (P2): moveTov(PNnw) ≡ Statev(bad) ∧
NnwlastRoundv(LastRound) ∧ ¬hasNnwv(thisRound).
12: cannotMovev() ≡ (Nx(v) = {u} , |u| = 1 ∧ Stateu(good)).
13: (P2): moveAroundgoodv(u1, Pne) ≡ ¬(cannotMovev()) ∧
(Statev(bad)) ∧ (Nnw(v) = u1 ∧ Stateu1(good)).
14:(P2): moveAroundgoodv(u1, Pe) ≡ ¬(cannotMovev()) ∧
(Statev(bad)) ∧ (Nne(v) = u1 ∧ Stateu1(good)).

Algorithm 1: the AUC Algorithm.

10 Hicham LAKHLEF et al.

State change has priority as the moving actions to avoid bad motion, be-
cause when the node is in a good position (can change its state to good) it
should ignore the predicate of motion. For this purpose we use a priority mech-
anism in our algorithm. To avoid message exchange the node can change its
state to good if it has 3 good neighbors or one neighbor has spe state and has
neighbors in the both direction NE and NW (6).
The algorithm guarantees 1-Non-Snap-Connectivity
This means, there is no message following a path Cv,u that it cannot be trans-
mitted (must wait on the same node)to another new node for two or more
than two consecutive rounds. An algorithm ensures 1-Non-snap-connectivity
if it does not ensure a snap-connectivity and it is not a B − Non − snap −
connectivity, with B > 1.
AUC does not ensure a snap-connectivity because, for instance, in the second
round the neighbor node of the initiator moves around the initiator using the
instruction moveAroundgoodv(u1, Pe), it will have a single neighbor in the
direction E leaving a gap where it had two neighbors. If we assume that the
message has arrived at another former neighbor, the message will wait for an-
other round or more so that it is transmittable to the initiator, the equivalent
of which ∃v ∈ V,∃u ∈ V ∃ti, where @Cv,u.
We show by induction that AUC does not guarantee a 2 − Non − snap −
connectivity. We assume that AUC ensures a 2−Non− snap− connectivity
namely ∃v ∈ V,∃u ∈ V ∃ti,∃ti+1, where @Cv,u, when the message should wait
two consecutive rounds. Assume that the message is waiting at the end of ti.
At this time the predicate moveTov(PNnw) is available for the node having
the message, and as the demon is equitable this node will run this predicate
because the predicate Statev(good) is not verifiable, so it moves at the posi-
tion of its last neighbor and it will find a new neghbor because this last cannot
move (cannotMovev() ≡ (Nx(v)). Therefore, at ti+1 the message can be trans-
mitted to another node. Since AUC is not a 2−Non− snap− connectivity it
is not B −Non− snap− connectivity, B > 2.
To complete the proof that AUC guarantees a 1−Non− snap− connectivity,
it remains to show for the node where the message was blocked at the time
ti that this node is Snap-connected with its neighbors that had at ti+1+j , j =
{1, ..., n− i− 1}. This can be proven through reverse since the node will move
with the predicate moveAroundgoodv(u1, Pe) around nodes having a good
state and have neighbors having a good state. Because these nodes cannot
move (Statev(good)) the message can be transmitted at each time from or to
neighboring nodes of ti+1+j , j = {1, ..., n− i− 1}.

Predicting the number of movements

To form the matrix of our square of N ∗N , we begin with an incremental
process with a single node that we assume in a correct square 1x1. Then, we
add each time a new layer that contains the number of nodes of the last column
plus the number of nodes of the last line of the current square plus one node.
For example, to reach the square 2x2 we have to add a new layer with three

Title Suppressed Due to Excessive Length 11

1

2

3
4

5
6

7

8
9

10

11

12
13

14

15
16

p

p+15

p+1

p+2 p+3

p+4

p+5

p+6 p+7 p+8

p+9

p+10

p+11

p+12 p+13 p+14 p+15

Fig. 5 Nodes positioning into the final square shape

1

2

3
4

5
6

7

8
9

10

11

12
13

14

15
16

L0

L1

L2

L3

S0

S1

S2

S3

Fig. 6 Nodes partitioning into levels

nodes. Consider figure 5, the node i will take a place p + x. Following the
path from top to bottom the node i will always move before the other nodes.
If node A is before node C, then A will take a place p + c, while C will take
a place p + k, with k > c. Each time, we add a new layer with a number of
nodes equal to the number of nodes in the previous layer plus two nodes; this
is expressed on the form of this numerical arithmetic sequence:

Uj = Uj−1 + 2. (3)

Where: Uj is the number of nodes in the layer j and Uj−1 is the number of
nodes in layer j − 1.
In the chain we take a partitioning of nodes into levels. A level is associated to
one or more nodes. The nodes take their levels through the following process:
the root level (level 0) is associated to the first node (the root), for the other
nodes, each level is associated to a number of nodes equal to the number of
nodes of the previous level plus 2 (figure 6 shows an example). So each node

12 Hicham LAKHLEF et al.

i gets one level at the end. To calculate the number of movements, we use
another sequence similar to equation (3) though with a different interpretation:

S1 = 2.

Sj = Sj−1 + 2.
(4)

With Sj is a number associated to nodes that have the level j.
The number of movements for each node i having the level j can be given with
the composition of two sequences Ui,j and Sj .

U1 = 0.

Ui,j = Uj−1 + Sj .
(5)

Where: Ui,j and Uj is the number of movements of node i of level j, or the
number of movements of nodes that have the level j.

Theorem 1 Let n be the network size. n−
√
n is the highest number of move-

ments in this algorithm where
√
n is an integer number. Special case: If

√
n

is not an integer number, the highest number of movements is: d
√
ne d
√
ne −

d
√
ne, and the number of the own movements is given with the same sequences.

5.2 Algorithm with Safe Connectivity (ASC)

In this algorithm, each node can move only around its physical neighbor. To
ensure a snap-connectivity only nodes that do not cause network disconnec-
tivity can move around neighbors. For this purpose, we introduce the use of
the tree to dynamically manage the leaf nodes that can move.

Title Suppressed Due to Excessive Length 13

Variables and predicates:

– Parent(v, u): means the node v is parent of node u.
– isLeaf(v): the node v is a leaf in the tree.

Predicates checked only in the first round
1: Initiator(v) ≡ Nnw(v) = � ∧ connectedv.
2: Statev(bad) ≡ connectedv ∧ ¬Initiator(v).
3: Statev(good) ≡ Initiator(v).
4: Statev(spe) ≡ Initiator(v).

Predicates checked in each round

5: Parent(v, v) ≡ Initiator(v).
6: Parent(v, u) ≡ (Parent(w, v), u 6=
w) ∧ neighbor(v, u) ∧ Stateu(bad) ∧ (6 ∃z ∈ N(v), Parent(v, z)).
7: isLeaf(v) ≡ (∀u ∈ N(v),¬Parent(v, u) ∧ ¬Parent(v, v)).
8: (P1): Statev(good) ≡ (Ne(v) = u ∧ Stateu(good) ∧Nne(u) =
�) ∨ Statev(3, good) ∨ (Statev(2, good) ∧ (Nne(v) =
u ∧ Stateu(spe)) ∨ (Nw(v) = u ∧ Stateu(good))) ∨ Statev(spe).
9: Statev(n, good) ≡ (Nx(v) = {u} , |u| = n ∧ State{u}(good)).
10: (P1): Statev(spe) ≡ (Nnw(v) = u1)) ∧ (Nne(v) = u2, Stateu2(spe)).
11: (P2): moveAroundbadv(u1, Pe) ≡
isLeaf(v) ∧ Statev(bad) ∧ (Nnw(v) = u1 ∧ Stateu1(bad)).
12: (P2): moveAroundbadv(u1, Pse) ≡
isLeaf(v) ∧ Statev(bad) ∧ (Nne(v) = u1 ∧ Stateu1(bad)).
13: (P2): moveAroundgoodv(u1, Pne) ≡
isLeaf(v) ∧ Statev(bad) ∧ (Nnw(v) = u1 ∧ Stateu1(good)).
14: (P2): moveAroundgoodv(u1, Pe) ≡
isLeaf(v) ∧ Statev(bad) ∧ (Nne(v) = u1 ∧ Stateu1(good)).

Algorithm 2: the ASC Algorithm.

Description of the algorithm
Unlike to AUC, to ensure a snap-connectivity in ASC, only the leaf nodes can
move. For this purpose we introduce the use of the tree to dynamically manage
the leaf nodes that can move. The algorithm runs in rounds, in each round
satisfied predicates are chosen to run. We introduce a priority mechanism
between predicates, in a current round predicates with the best priority are
chosen to run and others with lowest priority are ignored. We notice, in ASC
predicates labeled with P1 are considered more prior than those labeled by P2.

ASC seeks the desired form using an incremental process. In a completed
increment the nodes that build it belong already to the form. The initiator
which is the root initializes the tree and becomes a parent of itself (5), a node
if does not have a parent becomes a child of one of the neighbor parents (6).
A node is a leaf if all its neighbors are parents (7). At the beginning all nodes
are initialized with the bad sate with predicate (2). The initiator belongs to

14 Hicham LAKHLEF et al.

the target shape, so it changes its state to good (3), it will help its neighbors
or future neighbors to take correct positions. The nodes already in the target
shape act as a landmark to neighbor or future neighbor nodes to complete a
new layer. The nodes already in the form change their states with predicates
(3) and (8) and become constants. The node can check if its neighbors have
the good state with predicates (3) and (8). The node that starts the move is
the lowest node in the chain, which is the leaf of the first tree built, it rises
until the root using motion around other nodes with predicates (11) and (12).
The nodes of the current layer (layer being built) may make motion either
at left directly or NW directly with the last three predicates. The node can
change its state to good with (3) if it cannot move to left or in NW. With
the predicate (13) the node moves at left, it will have the neighbor that used
it to move at NE direction, it repeats the same motion until it arrives to the
diagonal node that have the state spe, it cannot move around this last only if
the diagonal node has not a neighbor node in the E direction. Diagonal nodes
take the state spe with predicates (4) and (10). With (14) the node moves
until it takes a correct position. The state change has a priority as the moving
actions to avoid bad motion, this why we introduce the priority in our algo-
rithm. To avoid message exchange the node can change its state to good if it
has 3 neighbors having the state good (9) or one neighbor has spe state and
has neighbors in the both NE and NW directions with predicate (10).
The algorithm guarantees a snap-connectivity
This algorithm guarantees a snap-connectivity because it uses a tree where
only the leaves can move. The mobile leaves in the algorithm are unable to
gap in the structure since they are surrounded by the neighbors which allow
an interlocking network of safeties. We divide the leaves movements into two
families: (1) A node moves around another without having a new neighbor to
replace it. In this case there is no ti since the message, exchanged through
the movement of the neighboring node, cannot be sent. (2) A node that has
moved receives a neighbor after moving position to replace it and becomes a
neighboring node with another. This means another route for the message of
Cv,u which will not be blocked for all ti, i ∈ {1, ..., n}.
Predicting the number of movements
As in AUC, to form the shape we use the same principle of increments. Ex-

amining the figure 5, the node i will take a position p + x. Unlike AUC, the
node i will either remain stationary or move only after all nodes succeeding
it. This means if A precedes B in the same layer, A takes the position p + c,
while B takes the position p + k, with c > k. As in equation (3) the number
of nodes added in each layer can be expressed with an arithmetic sequence.

In the chain we take a partitioning of nodes into levels. A level is associated
to one or more nodes: the first nodes that have i ≤

√
n take the level 0 (level

0), the first x = (2
√
n− 2) nodes after the node i =

√
n take the level 1, and

the second x− 2 nodes take the next level and so on by subtracting each time
2 from the last x, this is well illustrated in figure 7. So each node i gets one
level at the end.

Title Suppressed Due to Excessive Length 15

1

2

3
4

5
6

7

8
9

10

11

12
13

14

15
16

L0

L1

L2

L3

S0

S1

S2

S3

Fig. 7 Nodes partitioning into levels

If the number of nodes n is a square of an integer number, the number of
movements for each node i of level j can be given with the composition of two
sequences Ui,j and Sj .

Sj =

0, if j = 0

2
√
n− 5, if j = 1

Sj−1 − 2, otherwise

(6)

With Sj is a number associated to nodes that have the level j.

Ui,j =

0, if j = O.

2, if i =
√
n+ 1, j = 1.

Ui−1 − Sj , if l(i− 1) 6= j.

Ui−1 + 2, otherwise.

(7)

Where: Ui,j and Uj is the number movements of node i of level j or the number
of movements of nodes that have the level j.

Theorem 2 Let n be the network size. n is the highest number of movements
in this algorithm.

Special case : If the number of nodes n is not a square of an integer number.
To calculate the number of movements of a given node we consider a similar
partitioning system as before. The highest number of movements to reach the
final form remains n.
Let q = b

√
nc, and diff = n− q2.

16 Hicham LAKHLEF et al.

Ui,j =

0, if i ≤ q.
diff + 2q − 1, if i = q + 1.

Ui−1 − 2, ifq + diff ≥ i > q

diff + 2, if i = q + diff + 1.

Ui−1 − Sj , if i > q + diff, L(i+ 1) 6= j.

Ui−1 + 2, otherwise.

(8)

6 Analysis and evaluation

In this section we discuss and analyze the number of states required, the
generalization of the algorithms and the simulation results.

6.1 The three-state minimum

In this section we prove that three states are necessary to achieve AUC and
ASC.
With just a single state it is impossible for the nodes to self-configure since
they cannot distinguish whether they are in a good position or not. Further-
more, there is no mechanism to differentiate nodes that we wish do the motion
and those we wish rest stable. This prevents us from knowing a correct move-
ment from an incorrect one. Suppose we seek an algorithm with two states,
knowing there are two types of motion possible. With two states the node
knows whether it is in a good position or not and will adjust itself accordingly
in the aforementioned left or NW around other nodes in correct positioning
as well (figure 8 (a)). However in the early rounds the nodes that form in
the diagonals of the square can move around nodes that converted themselves
to the correct state through moving in the direction NW (figure 8 (b)), thus
creating another chain. While a node may change its state if it has three good
neighbors, but if a node sits West of the diagonal node cannot move NW and
has only two neighbors it must change its state to good. There is no benchmark
to distinguish these situations unless adding a special state to nodes forming
the diagonal. The third state is essential to differentiate the node’s ability to
move around another having spe state if and only if it has no right neighbor
(figure 8 (c)).

6.2 Complexity of messages sent

The most interesting action for exchanging of messages in the algorithms is
one that is activated by predicates of state-changing. If a node changes its
state before it is sure of the appropriate state of other nodes that have moved
before it in the current layer, the process will completely go in the opposite

Title Suppressed Due to Excessive Length 17

a b c

Fig. 8 States of nodes, three states are required for each node.

direction of the desired objective. The predicate Statev(good) ensures without
changing messages that the node changes its state only if all nodes that have
moved before it have changed their state to good. The first node that begins
the construction of the new layer does not need to wait for the message from
the first node of the previous layer, since it has this information by simply
consulting (message) the state of its former neighbors. In other words, the
message was being sent before node knew the state of its sender. The node
will find the information of the state of its neighbors simply on a need-to-know
basis. This means we do not need to transmit information between two non-
neighboring nodes of different layers or between two neighboring nodes of the
same layer. This efficiency is explained by the fact that AUC and ASC make
the synchronization in state changing is not required for nodes that are in the
same layer. We note that ASC needs O(n) messages of the tree.

6.3 Generalization of the algorithms

We have presented two distributed algorithms that deal with the case where
the chain is oriented in a NW-SE direction. To show how to generalize the
algorithms in order to deal with any chain orientation we start by explain how
the initiator is selected in the general case. The other nodes can determine the
orientation of the initial chain by looking at the direction of their two initial
neighbors. The root is designated as the node with only one neighbor in the
direction SW, SE, or E. Whatever the orientation of the chain, only one node
corresponds to this condition (figure 9). Every node in the chain can deduce
the orientation of the chain (among the three cases represented in figure 9) by
analyzing the orientation of its neighbors. For example, if a node corresponds
to an extremity node (with one neighbor) where the direct neighbor is on the
E side, the node deduces that the straight line is oriented E-W. The same
thing is happened on the middle nodes, which use the orientation of their two
neighbors to determine the orientation of the formed chain.

After the detection of the chain orientation, noted D-D, every node runs
a variant of the ASC or AUC algorithm depending of the orientation D ∈
{W,NW,NE}. The variant of AUC or ASC algorithm, calledAUCD orASCD,
represents an adaptation of the the original AUC and ASC algorithms (cor-
responding to AUCNW and ASCNW) to the two other possible orientations
(W and NE). For instance if the initial chain is oriented NE-SW, the algo-
rithm ASCNE is called, and the square form is realized using moves of type

18 Hicham LAKHLEF et al.

moveAroundbadv(u1, Pw),moveAroundwellv(u1, Pw) andmoveAroundwellv(u1, Pnw).
The usage of these three predicates is described in figure 10.

RootRoot

Root

Fig. 9 The three possible cases of a straight chain.

u1

Root Root Root

u1 u1

moveAroundbad w(u1, P)v
moveAround (u1, P)

v
moveAround w(u1, P)

vnw

v
v

v

wellwell

Fig. 10 Moves adaptation in the case of NE-SW chain. Dark nodes represent the well-state
node.

6.4 Simulation and comparison

We have done the simulation with both the Meld [1] and Dprsim [46] tools.
Dprsim simulates real movement using magnet forces taking into the gravity.
Meld is a declarative language which, using Dprsim, simulates with the pred-
icates algorithms where the type of movement necessary can be completed
only around the physical neighbors like ASC. Figure 11 represents an in-
stance of execution of AUC and 12 represents an instance of execution of
ASC. In our simulations the radius of the node is 1 mm 1. We have used an
Intel(R) Core(Tm)i5, 2.53 Ghz laptop with 4 G of memory. The results of
these simulations come to agree with the result obtained previously, in partic-
ular regarding the number of movements and the own movements. The nodes
applied the procedure of nodes partitioning to levels and predicted with the

1 The time of one movement depends on the size (the diameter) of the microrobot, as
shown in section 4.

Title Suppressed Due to Excessive Length 19

Fig. 11 An instance of execution of AUC,nodes green colored are nodes having the state
bad and nodes red colored are nodes having the state well

Fig. 12 An instance of execution of ASC, nodes green colored are nodes having the state
bad and nodes red colored are nodes having the state well, the node pink colored is the
initiator

sequences the number of movements for each node, at the end of the algo-
rithm each node compares the results of prediction to the results calculated
by it. Figure 12 represents the number of movements by number of nodes,

with f(n) = (
⌈√

(n)
⌉ ⌈√

(n)
⌉
) −

⌈√
(n)
⌉
, g(n) = n −

√
(n), and h(n) = n.

The figure 13 represents the execution time in ticks by the number of nodes.

For the curves that represent the movements, we denote some value of the
network size as m. If m is a square root than the number of movements of
AUC is always less than that of ASC, but if m is not a square root then we
distinguish two cases: If m is not a square root then there is a number Ms
that is the minimum number superior to m with Ms as square root. There
is also a number Mi, the number maximum inferior to m with Mi as square
root. In this curve, until 50 nodes for some values of m we see the number of
movements of AUC are lower than that of ASC knowing that in these cases m
is closer to Ms. However if m is closer to Mi we see the number of movements
of ASC are lower than that of AUC for the values from m = 100. Note also

20 Hicham LAKHLEF et al.

 0

 50

 100

 150

 200

 0 50 100 150 200

H
ig

he
st

 n
um

m
be

r
of

 m
ov

em
en

ts

Nodes

f(n)
g(n)

h(n)=n
highest-nb-mvmnts-AUC
highest-nb-mvmnts-ASC

Fig. 13 Highest number of movements of AUC and ASC

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600 700 800 900 1000

T
ic

ks

Nodes

AUC
ASC
ASC’

Fig. 14 Execution time comparison between ASC and AUC

that if m is in the midst of Mi and Ms as the cases of 30 and 90 nodes the two
algorithms have the same number of movements. For the curves that represent
the execution time, without counting the time of construction of the tree for
ASC we see that if the number of nodes increases the difference between the
two algorithms increases with almost constant acceleration, but if we count
the time of the tree (O(m) time) the difference will be very high.

7 Conclusion

In this paper we have shown the self-reconfiguration possibility without a map
of the target shape. We proposed an energy and memory-efficient distributed

Title Suppressed Due to Excessive Length 21

self-reconfiguration for modular microrobots. We presented a new method to
complete the self-reconfiguration where the nodes do not know the fixed posi-
tions of the target form but only the aimed shape. We have studied two types
of movements where the node can receive help to create the motion and have
the exact positions desired.
Both proposed algorithms are characterized by a linear time complexity re-
garding the system size (number of microrobots) with constant memory needs.
Messages exchanges are limited to neighboring consultations. Consequently
system reconfiguration is fast.
However, some open problems remain. The derivation of a fault-tolerant algo-
rithm from the principle of this paper which guarantees the data items delivery
to non-faulty nodes needs to be investigated. We also study the conception of
an energy-efficient algorithm when the starting form may be any connected
shape. We predict the loss of these previous characteristics found in this paper,
in particular the number of states of each node and the message exchange. In
our algorithm with Safe Connectivity, the number of own movements is calcu-
lated (predicted) according to the network size. The question is then to know
if it is possible to calculate the own movements without knowing the network
size and if using messages would be required.

8 Acknowledgments

This work is supported by the Labex ACTION program (contract ANR-11-
LABX-01-01), ANR/RGC (contracts ANR-12-IS02-0004-01 and 3-ZG1F) and
ANR (contract ANR-2011-BS03-005). The authors wish to express their ap-
preciation to the anonymous reviewers for their constructive comments.

References

1. M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry, and P. Pillai, Meld: A
Declarative Approach to Programming Ensembles, In Proceedings of the IEEE Interna-
tional Conference on Intelligent Robots and Systems (IROS ’07), October, 2007.

2. M. P. Ashley-Rollman, P. Lee, S. C. Goldstein, Padmanabhan Pillai, and Jason D. Camp-
bell, A Language for Large Ensembles of Independently Executing Nodes,In Proceedings
of the International Conference on Logic Programming (ICLP ’09), July, 2009.

3. J. Bourgeois and S.C. Goldstein. Distributed Intelligent MEMS: Progresses and per-
spectives, 3-rd Int. Conf. ICT Innovations, volume of Advances in Intelligent and Soft
Computing, pages 15–25, Ohrid, Macedonia, September 2012.

4. H. Bojinov, A. Casal, T. Hogg, Emergent structures in modular self-reconfigurable
robots, Proceedings of the IEEE International Conference on Robotics and Automation,
vol. 2, pp. 1734-1741. IEEE Computer Society Press, Los Alamitos, 2000.

5. N. Bulusu, J. Heidemann, D. Estrin, GPS-less Low-Cost Outdoor Localization for Very
Small Devices, IEEE Personal Communications Magazine 2000;7:28-34.

6. Z. J. Butler, K. Kotay, D. Rus, K. Tomita,Generic decentralized control for lattice-based
self-reconfigurable robots, International Journal of Robotics Research 23(9):919-937, 2004

7. D. Dewey, S. S. Srinivasa, M. P. Ashley-Rollman, M. D. Rosa, P. Pillai, T. C. Mowry,
J. D. Campbell, and S. C. Goldstein, Generalizing Metamodules to Simplify Planning in
Modular Robotic Systems, In Proceedings of IEEE/RSJ 2008 International Conference on
Intelligent Robots and Systems IROS ’08, September, 2008

22 Hicham LAKHLEF et al.

8. S. Funiak, P. Pillai, M. P. Ashley-Rollman, J. D. Campbell, and S. C. Goldstein, Dis-
tributed Localization of Modular Robot Ensembles, In Proceedings of Robotics: Science
and Systems, June, 2008.

9. C. Jones, M. J. Mataric, From local to global behavior in intelligent self-assembly.In:
Proceedings of the 2003 IEEE International Conference on Robotics and Automation,
ICRAM 2003, vol. 1, pp. 721-726. IEEE Computer Society Press, Los Alamitos, 2003.

10. S. Jeon, C. Ji, Randomized Distributed Configuration Management of Wireless Net-
works: Multi-layer Markov Random Fields and Near-Optimality CoRR abs/0809.1916,
2008.

11. S. Hollar, A. Flynn, C. Bellew, and K.S.J. Pister, Solar powered 10mg silicon robot, In
MEMS, Kyoto, Japan, January 2003.

12. M. E. Karagozler, A. Thaker, S. C. Goldstein, D. S. Ricketts, Electrostatic Actuation
and Control of Micro Robots Using a Post-Processed High-Voltage SOI CMOS Chip,IEEE
International Symposium on Circuits and Systems (ISCAS), May 2011.

13. K. Kotay, D. Rus, M. Vona, and C. McGray, The Self-reconfiguring Robotic Molecule,
in Proceedings of the 1998 IEEE International Conference on Robotics and Automation,
Leuven, 1998.

14. F. Kribi, P. Minet, A. Laouiti, Redeploying mobile wireless sensor networks with virtual
forces, IFIP Wireless Days, Paris, France, December 2009.

15. H. Lakhlef, H. Mabed, J. Bourgeois, Distributed and Efficient Algorithm for Self-
reconfiguration of MEMS Microrobots, in the 28th ACM Symposium On Applied Com-
puting, Coimbra, Portugal, March 2013.

16. H. Lakhlef, H. Mabed, and J. Bourgeois, Distributed and Dynamic Map-less Self-
reconfiguration for Microrobot Networks. In In IEEE NCA 2013, 12th IEEE International
Symposium on Network Computing and Applications, Cambridge, MA, United States,
pages 55–60, August 2013

17. H. Lakhlef, H. Mabed, J. Bourgeois, Parallel Self-reconfiguration for MEMS Microrobot,
in the 7-th IEEE International conference on Computer as a Tool, Zagreb, Croatia, pages
283–290, July 2013

18. H. Lakhlef, H. Mabed, J. Bourgeois, Dynamicity to Save Energy in Microrobots Re-
configuration, in 10th IEEE International Conference on Ubiquitous Intelligence and
Computing (UIC-2013),Italy,pages 246–253, December 2013

19. Lakhlef H, et al. Optimization of the logical topology for mobile
MEMS networks, journal of Network and Computer Applications (2014),
shttp://dx.doi.org/10.1016/j.jnca.2014.02.014

20. Lu Liu, Nick Antonopoulos, Stephen Mackin Managing peer-to-peer networks with
human tactics in social interactions, The Journal of Supercomputing 44(3): 217-236,
2008

21. Lu Liu, Jie Xu, Duncan Russell, Nick Antonopoulos Self-organization of autonomous
peers with human strategies, Third International Conference on Internet and Web Appli-
cations and Services, pages 348-357 2008,

22. J. Mech. Design, Microrobot design using fiber reinforced composites, vol. 130, no. 5,
May. 2008.

23. M. Mamei, A. Roli, F. Zambonelli, Emergence and Control of Macro Spatial Struc-
tures in Perturbed Cellular Automata, and Implications for Pervasive Computing Sys-
tems, IEEE Transactions on Systems, Man, and Cybernetics, 36(5), May 2005.
Journal of Applied Artificial Intelligence, 8(9-10):903-919, Oct. 2004.

24. P. Minet, S. Mahfoudh, Energy, bandwidth and time efficiency in data gathering appli-
cations, IFIP Wireless Days, Paris, France, December 2009.

25. R. Moses, D. Krishnamurthy, R. Patterson. A Self-Localization Method for Wireless
Sensor Networks,Eurasip Journal on Applied Signal Processing 2003;4:348-358.

26. A. M. Petrina , Advances in robotics (Review), Automatic Documentation and Mathe-
matical Linguistics, Vol.45, Iss.2, pp.43, 2011.

27. R. Ravichandran, G. Gordon, and S. C. Goldstein: A Scalable Distributed Algorithm for
Shape Transformation in Multi-Robot Systems, In Proceedings of the IEEE International
Conference on Intelligent Robots and Systems IROS ’07, October, 2007.

28. E. Sahin. Swarm robotics: from sources of inspiration to domains of application,Swarm
Robotics, SAB 2004 International Workshop (Revised Selected Papers) E. Sahin and W.
M. Spear (Eds.), Lecture Notes in Computer Science 3342, Springer, 2005.

Title Suppressed Due to Excessive Length 23

29. M. D. Rosa, S. C. Goldstein, P. Lee, J. D. Campbell, and P. Pillai, Programming Mod-
ular Robots with Locally Distributed Predicates,In Proceedings of the IEEE International
Conference on Robotics and Automation ICRA ’08, 2008.

30. D. Rus, M. Vona, Crystalline robots: Self-reconfiguration with compressible unit mod-
ules,Autonomous Robots 10(1), 107-124, 2001.

31. R. Soua, L. Saidane, P. Minet, Sensors deployment enhancement by a mobile robot in
wireless sensor networks, IEEE ICN 2010, Les Menuires, France, April 2010.

32. K.Stoy, R.Nagpal, Self-reconfiguration using Directed Growth, 7th International Sym-
posium on Distributed Autonomous Robotic Systems (DARs), France, June23-25, 2004.

33. W. Spears, D. Spears, J. Hamann, and R. Heil, Distributed,Physics-Based Control of
Swarms of Vehicles,Autonomous Robots,Vol.17, No.2-3, pp.137-162, 2004.

34. K. Stoy, R. Nagpal, Self-Repair Through Scale Independent Self-Reconfiguration, Pro-
ceedings of 2004 IEEE/RSJ International Conference on Intelligent Robotsn and systems,
Sendai, japan, 2004.

35. W. Shen, P. Will and A. Galstyan, Hormone-inspired self-organization and distributed
control of robotic swarms. Autonomous Robots 17(1), 93-105, 2004.

36. K. Sty, Using cellular automata and gradients to control self-reconfiguration, Robotics
and Autonomous Systems 54(2), 135-141, 2006.

37. J. Walter, B. Tsai, and N. Amato, Algorithms for fast concurrent reconfiguration of
hexagonal metamorphic robots, IEEE Transactions on Robotics, vol. 21, no. 4,621-631,
2005.

38. J. Walter, J. Welch, and N. Amato, Distributed reconfiguration of metamorphic robot
chains, Springer Verlag Journal on Distributed Computing, vol. 17, pp. 171-189, 2004.

39. S. Wong and J. Walter, Deterministic Distributed Algorithm for Self-reconfiguration of
Modular Robots from Arbitrary to Straight Chain Configurations, the IEEE International
Conference on Robotics and Automation, ICRA 2013, May 2013

40. A. Ward, A. Jones, A. Hopper, A New Location Technique for the Active Office,IEEE
Personal Communications Magazine 4:42-7, 2002.

41. B. Warneke, M. Last, B. Leibowitz, and K.S.J Pister,K.S.J., 2001, Smart Dust: Com-
municating with a Cubic-Millimeter Computer,Computer Magazine, pp. 44-51, 2001.

42. P. White, V. Zykov, J. C. Bongard, H. Lipson, Three dimensional stochastic reconfig-
uration of modular robots In: Proceedings of Robotics Science and Systems, pp. 161-168.
MIT Press, Cambridge , 2005

43. F. Zambonelli, M.P. Gleizes, M. Mamei, R. Tolksdorf, Spray Computers: Explorations
in Self-Organization, Journal of Pervasive and Mobile Computing, Elsevier, Vol. 1, p.
1-20, 2005.

44. http : //www.standford.edu/class/mems/ee321
45. http://www.xs4all.nl/ganswijk/chipdir/m/sensor.htm
46. The physical rendering simulator (dprsim),” http://www.pittsburgh. intel-

research.net/dprweb.

