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Abstract In the big data era, the speed of analytical processing is influenced by the

storage and retrieval capabilities to handle large amounts of data. While the distrib-

uted crunching applications themselves can yield useful information, the analysts face

difficult challenges: they need to predict how much data to process and where, such

that to get an optimum data crunching cost, while also respect deadlines and service

level agreements within a limited budget. In today’s data centers, data processing

on demand and data transfers requests coming from distributed applications are usu-

ally expressed as aperiodic tasks. In this paper, we challenge the problem of tasks
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scheduling with deadline constraints of aperiodic tasks within inter-Cloud environ-

ments. In massively multithreaded computing systems that deal with data-intensive

applications, Hadoop and BaTs tasks arrive periodically, which challenges traditional

scheduling approaches previously proposed for supercomputing. Here, we consider

the deadline as the main constraint, and propose a method to estimate the number of

resources needed to schedule a set of aperiodic tasks, considering both execution and

data transfers costs. Starting from classical scheduling techniques, and considering

asynchronous tasks handling, we analyze the possibility of decoupling task arriving

from task creation, scheduling and execution, sets of actions that can be put into a

peer-to-peer relation over a network or over a client–server architecture in the Cloud.

Based on a mathematical model, and using different simulation scenarios, we prove

the following statements: (1) multiple source of independent aperiodic tasks can be

considered similar to a single one; (2) with respect to the global deadline, the tasks

migration between different regional centers is the appropriate solution when the num-

ber of estimated resources exceed a data center capacity; and (3) in a heterogeneous

data center, we need a higher number of resources for the same request in order

to respect the deadline constraints. We believe such results will benefit researchers

and practitioners alike, who are interested in optimizing the resource management

in data centers according to novel challenges coming from next-generation big data

applications.

Keywords Deadline scheduling · Aperiodic tasks · Resource allocation and Cloud

environments · Big data

Mathematics Subject Classification 68M20 · 68M14 · 68U20

1 Introduction

Cloud Computing is a new paradigm where resources, hardware or software, are

offered to users remotely, in the form of services. Behind this vision, a Cloud mid-

dleware transparently provide support for reliability, scalability, security, and more.

Because the middleware needs to support the distributed execution of complex applica-

tions, it also needs to provide guarantees for their execution. For deadline constraints,

resource management and task scheduling become critical components in such sys-

tems. The problem is even more complicated for other types of real-time systems,

either dealing with periodic (time-driven) tasks and/or aperiodic (event-driven) tasks.

An example of such a real-time system can be a factory controller that periodically

F. Xhafa

Department of Language and Informatics Systems, Technical University of Catalonia Barcelona,

Barcelona, Spain

e-mail: fatos@lsi.upc.edu

L. Barolli

Department of Information and Communication Engineering, Faculty of Information Engineering,

Fukuoka Institute of Technology (FIT), Fukuoka, Japan

e-mail: barolli@fit.ac.jp

123



Deadline scheduling for aperiodic tasks

executes critical control loops, while being also responsible for treating aperiodic

user interaction [27] or batch production scheduling in the process industries [15].

Such real-time systems, dealing simultaneously with multiple constraints, are called

hybrid real-time systems. They can, in fact, support a wide range of applications deal-

ing with deadlines: meteorological prediction, genomic analysis, real-time complex

physics simulations, monitoring watershed parameters through software services [20],

and biological and environmental assistance. The execution in due time also affects

Internet searches, finance and business informatics, and many more.

Another example relates to vehicular ad hoc networks (VANETs)—such networks

are often used in conjunction with composite very-large-scale neighborhood search

algorithms, to solve the critical vehicle routing problem (see Agarwal et al. in [15]).

Massively multiplayer online games, consisting of huge worlds populated by thou-

sands of clients, far beyond the ability of a single server to maintain [19], are another

example of deadline-constraint systems. In this case, to provide players with the illu-

sion of a single large world, dedicated systems often divide their game world across

servers and synchronize all nearby activity between them. In a network that support

such type of applications an important challenge is selective contents broadcasting

depending on users’ preferences with node relay-based web cast. To meet deadlines,

waiting time is reduced by receiving contents from several nodes. In [8], the authors

propose a scheduling method considering reconnection on selective contents delivery

with node relay-based web cast that relay data among nodes.

Generally, scheduling in distributed systems deals with the problem of assign-

ing tasks, sometimes of different types, to a set of resources, sometimes with dif-

ferent characteristics [9]. The tasks can be resource-intensive, where a resource is

usually CPU, Memory, and I/O. It is known that the general scheduling problem is

NP-complete [2,13].

In Cloud, background scheduling is the simplest manner to handle the scheduling of

a mixed set of periodic and aperiodic tasks, and executing the aperiodic tasks when no

periodic task instance is ready to run. Aperiodic tasks can be scheduled and executed

on free time slots remaining after periodic tasks are executed. The disadvantage of this

approach is experienced in case of high periodic loads, when the resulting aperiodic

response time can be quite long. Nevertheless, background scheduling has a great

advantage in its simplicity having two queues: one for the periodic task set and the

other for the aperiodic tasks, with the periodic queue having a higher priority than the

aperiodic one. An algorithm for scheduling of aperiodic task systems with arbitrary

deadlines on identical multiprocessor platforms is presented in [10]. The algorithm is

based on the concept of semi-partitioned scheduling, in which most tasks are fixed to

specific processors, while a few tasks migrate across processors. The solution proposed

in [1] for scheduling of aperiodic tasks on multiprocessors uses the approximation

of the exact demand bound function on uni-processor as a criterion and introduce

a partitioned scheduling algorithm for a least-number processors and fixed-number

processors, respectively.

Moschakis (2012) studies the performance of a distributed Cloud Computing model,

based on the Amazon Elastic Compute Cloud (EC2) architecture that implements a

Gang Scheduling scheme (an efficient job scheduling algorithm for time sharing). In

this approach, virtual machines (VMs) act as the computational units of the system. The
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authors prove that Gang Scheduling can be effectively applied in a Cloud Computing

environments, both performance-wise and cost-wise [21]. Looking for performance,

the optimum performance from the distributed computing system is achieved by using

effective scheduling and load balancing strategy [24,29]. The authors propose a Mixed

Task Load Balancing for cluster of workstation systems. In this strategy pre-tasks are

assigned to each worker by the master to eliminate the worker’s idle time.

The paper is structured as follows: in Sect. 2 the classical approaches of aperi-

odic task scheduling are presented and analyzed. Section 3 introduces the problem

of aperiodic task scheduling with deadline constraints considering homogenous and

heterogeneous datacenters for inter-Clouds environments. Section 4 presents simula-

tion experiments and analyzes the migration behavior in order to meet deadlines. The

paper ends with analysis, conclusions and future work. This paper is based on [23].

2 Aperiodic scheduling: classical approaches

There are several approaches to the scheduling problem that were considered over

time. These approaches consider different scenarios that take into account the types

of applications, the execution platform, the execution platform type, the types of

algorithms used and the constraints that users may require. Oprescu et al. [22] present

a solution of scheduling bag of tasks. In this case users receive guidance, and are able

to choose the way the application is executed: with more money and faster or with less

money but slower. The other important element in this method of scheduling is the

phase of profiling. The basic scheduling is realized with a type of bounded knapsack

algorithm. Mao and Humphrey [18] present the idea of scheduling based on scaling up

and down the number of the machines in the Cloud system. The users can also choose

their own policies. This solution provides meeting the deadline with reducing the cost.

A scheduling solution based on genetic algorithms is given in [30]. Here the scheduling

is made on grid systems. They are not the same as the Cloud systems, but the principle

of assigning tasks to resources is the same. This solution of scheduling works with

application that can be modeled as DAGs. The idea for this solution is minimizing

the duration of the application execution while the budget is respected. This approach

also considers the heterogeneity of the system. The paper [17] presents a scheduling

model which takes in to consideration both budget and deadline constraints.

There are several classical approaches for the scheduling problem, considering

a central server [16]: polling server (PS), deferrable server (DS), priority exchange

server (PSE), sporadic server, slack stealing. The PS implies creating a periodic task—

a server, which will service aperiodic tasks. The server task is created in order to

introduce aperiodic task servicing from the background scheduling and therefore, to

improve the average response time [3]. The DS algorithm was introduced by Lehoczky,

Sha and Stosnider in [28]. The technique is derived from the PS, and manifests

improved response times for aperiodic tasks. The DS algorithm creates a periodic

task for servicing aperiodic requests and preserves server capacity if no requests are

pending. The PES considers that the server task usually has a high priority and differs

from the other server-based algorithms in the way that it preserves its capacity, by con-

verting it into execution time in a lower-priority periodic task [6]. The sporadic server
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(SS) algorithm was introduced by Sprunt [27] in order to enhance the average response

time of aperiodic tasks without degrading the utilization bound of the aperiodic task

set. A particular scheduling technique for aperiodic requests is the slack stealing (SSt)

algorithm, introduced by Lehoczky and Ramos-Thuel in [14]. This technique offers

great improvement in response time over the previously discussed service methods

(PES, DS, SS). The SSt algorithm does not create a periodic task to service the aperiodic

request, instead it creates a passive task, named slack stealer, that attempts to make time

for servicing aperiodic tasks by stealing all the processing time it can from the periodic

tasks without causing their deadlines to be missed. All algorithms used in presented

models behave the same manner when there are enough aperiodic tasks to execute.

3 Aperiodic task scheduling with deadline constraints

Cloud Computing is one of the fastest evolving paradigm in the domain of computer

science. Whether one wants to provide a simple file transfer service that consumes

an insignificant amount of resources and time, or a parallel and distributed algorithm

that defines a weather prediction model that requires high computing power or even

a very strict and secure banking service, its implementation by means of a service

has a great number of advantages. Tasks execution can address one Cloud or multiple

Clouds, depending on users’ requirements. So, hybrid Clouds will be considered and

inter-Cloud environments become the fundamental platform for tasks execution. For

concurrent access, we consider a queuing system for tasks submission. For such type of

systems, the number of task arrivals in a given interval of time is a random variable with

a Poisson distribution [5,12]. In this section, we describe the estimation method for the

necessary resources to schedule a set of aperiodic tasks in parallel with periodic tasks.

Let us consider a time interval with length t and a set of n tasks {Ti }1≤i≤n , each task

having known the arrival time ai and the deadline di in the considered time interval:

di − ai ≤ t,∀Ti . If we consider τ the time between two successive arrivals and T ≥ 0

a time threshold, we have [4]: Prob(τ ≤ T ) = 1 − e−λT so, if T is fixed a priori,

the probability has a constant value (similar approach with unitary processes [25,26]).

The Poisson distribution for the number of tasks arrivals from a source k in an arbitrary

time interval with length equal with t , for nk = 0, 1, . . . is:

Prob(Nk(t) = nk) = e−λk t (λk t)nk

nk !
.

where λk t is the shape parameter which indicates the average number of events

(tasks arrivals) in the given t time interval. For each tasks source (different users that

submit for execution a set of aperiodic tasks), we have a specific nk number of tasks

for an interval t , and a specific λk parameter for Poisson distribution. If n =
∑

k nk

is the total number of given tasks and N (t) =
∑

k Nk(t) is the total number of tasks

arrived in the t interval, we have:

Prob(N (t) = n) = Prob(N1(t) = n1, N2(t) = n2, . . .).
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We have the following result [23]. Lets consider m sources of aperiodic tasks

with specific parameters (λk, nk)1≤k≤m for Poisson distribution. For a scheduling

system the m inputs appear as a single one with (λ, n) specific parameters for Poisson

distribution, where λ =
∑m

k λk and n =
∑m

k nk . This result allows to consider a 

queuing system for scheduling with a local coordinator for a regional center. In each

regional center we have multiple task sources with different submission characteristics.

Deadline scheduling is NP-complete in a strong sense, proofed in [15] by a pseudo-

polynomial reduction from strongly NP-complete 3-Partition Problem: for a set of 3m

positive numbers A = (a1, a2, . . . , a3m) with
∑

ai = m B and B/4 < ai < B/2 for

each i , is there a partition of A into A1, . . . , Am such that
∑

a j ∈Ai
a j = B, for each

i . We can consider here a set of m map-reduce tasks (equal number of mappers and

reducers), each set Ai encoding the processing time (p) for map and reduce task and

add a “transition” task in order to satisfy the restriction of
∑

a j ∈Ai
a j = B translated

in pmap + preduce + ptransition = B, and B can be considered the total execution time

of a set (map, reduce).

Now, for each source we can consider the following model for deadline scheduling.

Each task is described as Ti = (ai , di , datai ), where ai is arrival time, di is deadline

and datai is the input data volume. We consider a soft real-time system and we

introduce for a request Q = {Ti |Ti = (ai , di , datai ), i = 1, 2, . . .} the global arrival

time A = mini {ai } and global deadline D = maxi {di }. Considering f the fraction of

input data that is given as output, we have outputi = f ∗datai . Now, lets introduce the

cexec the execution cost and ccom the communication cost (here, the cost is associated

with processing time for a data unit). A similar model, for Hadoop jobs is presented

in [11]. We consider for the beginning a homogeneous environments with the same

computation cost for all resources and the same communication cost for all links.

Then, the total cost for Q is:

T otalcost =
1

Nres

∑

i

(datai ∗ cexec + outputi ∗ cexec) +
∑

i

outputi ∗ ccom

where nres is the necessary number of resources in a regional center to support

execution of Q set. We have the following result [23], based on presented assumptions:

For a request Q and a homogeneous regional center with nres resources, considering

a schedule with deadline constraint, then:

Nres ≥
(1 + f )cexec

∑

i datai

D − A − f ccom

∑

i datai

.

This result allow to set the number of resources in a regional center as:

Nres =

[

(1 + f )cexec

∑

i datai

D − A − f ccom

∑

i datai

]

+ 1

and, if we need more resources we will consider migration between regional centers.

This assumption is based on the maximization of slacks approach, as follows. We define

the slack for task Ti considering the remaining computation time ci (t) at the moment
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t , as: slacki (t) = di − (t + ci (t)). The slacks are used in the scheduling process

especially for online scheduling, considering that whenever an aperiodic request is

issued, the server (for example, in the SSt scenario) steals all the available slack from

periodic tasks and uses it to service the aperiodic request as soon as possible. For a

system with deadline constraints, with a defined Service Level Agreement, we have

at any moment of time t : slacki (t) ≥ 0,∀Ti and ci (di ) ≤ 0.

A numerical example considers a request Q with 1,000 tasks, each task having 1KB

as input and 1KB as output, which means ∀i, datai = 1KB and f = 1. If D−A = 100s,

cr = 1s/KB and we have no communication, then nres = 10. So, the regional center

must have minimum 10 CPU (virtual resources).

In general, in a heterogeneous h-regional center we need a higher number of

resources for the same request Q in order to respect the deadline constraints. The

homogeneous o-regional centers are also always built with high processing capacity

machines and high-speed network. We have the following result:

N h
res ≥ N o

res

where the N h
res and N o

res represent the lower bound for number of necessary resources

to be used for a specific set of tasks to be created in a heterogeneous, respectively, in

a homogeneous environment.

4 Evaluation scenarios and results interpretation

The practical evaluation is presented in this section, and is represented by simulation

experiments that show the behavior of the migration phase applied when the total

number of estimated nodes exceeded the regional center capacity.

4.1 MONARC simulator

MONARC simulator is built based on a process-oriented approach for discrete event

simulation, which is well suited to describe concurrent running programs as well as

all the stochastic arrival patterns, specific for this type of simulation [7]. In order to

provide a realistic simulation, all the components of the system and their interactions

were abstracted. The chosen model is equivalent to the simulated system in all the

important aspects. The simulation model is based on regional interconnected centers.

4.2 Distributed task scheduling based on migration in MONARC simulator

In MONARC, each regional center can also incorporate a task scheduler component.

The scheduler is used to simulate the decision-making process regarding the allocation

of resources for the execution of tasks based on various internal algorithms. The basic

task scheduler implements a decision-making algorithm. As output, scheduler can

only make one of two decisions: either it assigns the task for execution on designated

processing resources or, if there are no available resources, it places the task in a

special waiting queue structure for migration or later resubmission. When there are
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more than one processing units that could handle the execution of a particular task, the

task scheduler will choose the one having the minimal load. This value is computed

based on the memory consumption and the number of tasks being already concurrently

processed on that particular unit.

MONARC also includes a distributed task scheduler class, responsible for imple-

menting a distributed scheduling decision algorithm. This means that in this case the

scheduling decision can result in submitting the task for execution in other regional

centers than the one they were originally submitted to by the user. The implemented

distributed algorithm considers that each local scheduler unit decides where it is better

to submit the task for execution.

The algorithm of the distributed task scheduler works as follows. If the load per-

centage of each CPU unit from the local regional center exceeds a certain value (given

by a constant having the default value of 70 %), the scheduler sends the task to another

regional center. Then the regional center having the minimum average load is chosen

to execute the task. If the regional center having the minimum load is a remote one,

the task is sent there. Else, it will be executed in the local regional center. When a

task is sent to another regional center, the task scheduler from that regional center is

responsible with the effective execution of the task (it won‘t try to send it to another

regional center, because this way the task could move from one center to another for

ever). This model can easily extent to include various new conditions, new resource

considerations or performance metrics, in order to test the behavior of new scheduling

models and algorithms.

4.3 Simulation setup

The simulation experiments evaluate the migration of the aperiodic task schedul-

ing between regional centers. We used 4 regional heterogeneous centers (UPB_01,

UPB_02, DERBY_01 and DERBY_02). In each center, we submit a number of tasks

with random time intervals between them, in order to simulate the aperiodic behavior.

The time intervals follow a normal distribution, and have different averages in differ-

ent periods of the day. We defined three periods (morning, midday and evening), and

the exact hours when they begin can be set from the configuration file. Each regional

center has its own activity as a model for tasks execution, and each activity has several

characteristics. The parameters are set from a configuration file (Table 1 shows the

actual values used for several of these parameters): gmtOffset—the time difference

Table 1 Simulation experiment characteristics for regional centers

Regional center numDays morningT lunchT eveningT t1 t2 t3

UPB_01 5 7 7 13 1,200 240 3,600

UPB_01 5 7 7 13 1,200 240 3,600

UPB_02 5 7 7 13 600 120 1,800

DERBY_01 5 7 11 17 1,200 240 3,600

DERBY_02 5 7 11 17 600 120 1,800
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between the regional center and GMT (n hours); numDays—the number of days the

simulation will last; morningTime, lunchTime, eveningTime—the hours that define

the 3 periods of the day; timeInt1,2,3—the average time interval between tasks in the

3 periods; numtasks1,2,3—the number of tasks submitted in the 3 periods.

All simulation results highlight the evolution for one regional center (UPB_01).

For the other three regional centers the evolution is very similar. Figure 1 shows the

evolution of submitted and finished jobs. One can observe that there is a periodicity in

tasks submission and a slow increasing at the end of the period. The migration process

starts here.

Figure 2 shows the evolution of running and waiting tasks. As seen, there are time

interval when the regional renters work at full capacity and there are several waiting

tasks. The tasks will stay in the waiting queue only if the deadline constraints will

be respected. Here, during the interval that regional centers work at full capacity,

the number of waiting task is higher than full capacity, so scheduler will activate the

migration function.

Figure 3 highlights the migration function. In the time period when regional centers

work at full capacity, if tasks remaining in the waiting queues continue to stay there, the

deadline constraints are not satisfied. Thus, all regional centers start the tasks migration

and several tasks become submitted in other regional centers. All the submitted tasks

in the initial phase or in the migration phase are aperiodic tasks.

The last measurements (see Fig. 4) get the CPU usage and memory usage during the

experiments. Once again, the figures confirm that regional centers are used at almost

full capacity, and the need for migration. The memory usage respects the limitation,

but follows the profile of CPU usage graphic.

5 Conclusions

This paper presents the classical approach for aperiodic task scheduling considering a

scheduling system with different queues for periodic and aperiodic tasks. We proved

that multiple source of independent aperiodic tasks can be considered like a single one.

As a support for deadline scheduling, the optimization of slacks was introduced and a

migration function was introduced for regional centers with limited capacity. The paper

presented a method to compute a lower bound for number of necessary resources to be

used for a specific set of tasks. When this number exceeded the number of resources

in a datacenter, we will migrate several tasks to other datacenters.

The deadline constraints were presented and we obtained a result, which prove that

in general, in a heterogeneous regional center we need a higher number of resources

for the same request in order to respect the deadline constraints. The homogeneous

regional centers are also always built with high processing capacity machines and high-

speed network. We establish in this paper a lower bound for dimension of a regional

center (number of resources) in order to respect the deadline constraints. This bound

depends on computation and communication costs, and also depends on applications

type.

The proved statements can be used as follows: Statement (1) multiple source of

independent aperiodic tasks can be considered similar to a single one. Applicability:
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is it possible to consider a queuing system with multi-queues for task submission but

a single queue for scheduling component? Statement (2) the tasks migration between

different regional centers is the appropriate solution when the number of estimated

resources exceed a data center capacity. Applicability: the resource management com-

ponent implements this technique to distribute the load between different data centers

in a inter-Clouds environment. Statement (3) in a heterogeneous data center, we need

a higher number of resources for the same request in order to respect the deadline

constraints. Applicability: if we have a pre-computed value for the number of nodes

necessary for a specific scheduling request (for a homogeneous cluster), we must

increase these values for a heterogeneous data center where it is more difficult to

estimate the costs used in proposed model.
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