Skip to main content
Log in

Distributed optimization Grid resource discovery

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Grid computing is a framework for large-scale resource sharing and indexing that evolves with the goal of resource provisioning. In this paper, we develop a distributed learning automata (DLA) based on multi-swarm discrete particle swarm optimization (PSO) approach for Grid resource discovery, called distributed optimization grid (DOG) resource discovery algorithm. This algorithm makes use of swarms of particles for different computational resource metrics while a group of DLA is the control unit of each swarm of particles. The algorithm takes advantage of the PSO solution diversity to optimize the quality of delivered resource. Moreover, the recommended algorithm uses DLA as a fully distributed model for imitating the Grid infrastructure topology. Our experimental results show that DOG is fast as well as efficient and accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Czajkowski K, Fitzgerald S, Foster I, Kesselman C (2001) Grid information services for distributed resource sharing. In: Proceedings of the 10th IEEE international symposium on high performance distributed computing, pp 181–194

  2. Keung HNLC, Dyson JRD, Jarvis SA, Nudd GR (2003) Performance evaluation of a grid resource monitoring and discovery service. Softw IEE Proc 150(4):243–251

    Article  Google Scholar 

  3. Aloisio G, Cafaro M, Epicoco I, Fiore S, Lezzi D, Mirto M, Mocavero S (2005) iGrid, a novel grid information service. In: Advances in grid computing-EGC. Springer, Berlin, pp 506–515

  4. Mirto M, Cafaro M, Aloisio G (2013) Peer-to-peer data discovery in health centers. In: 2013 IEEE 26th international symposium on computer-based medical systems (CBMS), pp 343–348

  5. Foster I, Kesselman C (1997) Globus: a metacomputing infrastructure toolkit. Int J High Perform Comput Appl 11(2):115–128

    Article  Google Scholar 

  6. Li C, Li L (2012) A resource selection scheme for QoS satisfaction and load balancing in ad hoc grid. J Supercomput 59(1):499–525

    Article  Google Scholar 

  7. Ranjan R, Harwood A, Buyya R (2012) Coordinated load management in Peer-to-Peer coupled federated grid systems. J Supercomput 61(2):292–316

    Article  Google Scholar 

  8. Chung W-C, Hsu C-J, Lai K-C, Li K-C, Chung Y-C (2013) Direction-aware resource discovery in large-scale distributed computing environments. J Supercomput 66(1):229–248

    Article  Google Scholar 

  9. Ergu D, Kou G, Peng Y, Shi Y, Shi Y (2013) The analytic hierarchy process: task scheduling and resource allocation in cloud computing environment. J Supercomput 64(3):835–848

    Article  Google Scholar 

  10. Adabi S, Movaghar A, Rahmani AM, Beigy H (2013) Negotiation strategies considering market, time and behavior functions for resource allocation in computational grid. J Supercomput 66(3):1350–1389

    Article  Google Scholar 

  11. Narendra KS, Thathachar M (1974) Learning Automata?: a survey. IEEE Trans Syst Man Cybern SMC (4):323–334

  12. Beigy H, Meybodi MR (2006) Utilizing distributed learning automata to solve stochastic shortest path problems. Int J Uncertain FUZZINESS Knowl BASED Syst 14(5):591

    Article  MathSciNet  MATH  Google Scholar 

  13. Kennedy J (2010) Particle swarm optimization. In: Encyclopedia of machine learning. Springer, Berlin, pp 760–766

  14. Mohamadi H, Ismail AS, Salleh S, Nodhei A (2013) Learning automata-based algorithms for finding cover sets in wireless sensor networks. J Supercomput 66(3):1533–1552

    Article  Google Scholar 

  15. Piwonska A, Seredynski F, Szaban M (2013) Learning cellular automata rules for binary classification problem. J Supercomput 63(3):800–815

    Article  Google Scholar 

  16. Misra S, Krishna PV, Bhiwal A, Chawla AS, Wolfinger BE, Lee C (2012) A learning automata-based fault-tolerant routing algorithm for mobile ad hoc networks. J Supercomput 62(1):4–23

    Article  Google Scholar 

  17. Mozafari M, Alizadeh R (2013) A cellular learning automata model of investment behavior in the stock market. Neurocomputing 122:470–479

    Article  Google Scholar 

  18. Hasanzadeh M, Meybodi MR (2013) Grid resource discovery based on distributed learning automata. Computing 96(9):909–922

  19. Ghanbari S, Meybodi MR (2005) On-line mapping algorithms in highly heterogeneous computational grids: a learning automata approach. In: International conference on information and knowledge technology (IKT’05), vol 67

  20. Pooranian Z, Shojafar M, Abawajy JH, Abraham A (2013) An efficient meta-heuristic algorithm for grid computing. J Comb Optim 1–22. doi:10.1007/s10878-013-9644-6

  21. Huang D, Yuan Y, Zhang L, Zhao K (2009) Research on tasks scheduling algorithms for dynamic and uncertain computing grid based on a+ bi connection number of SPA. J Softw 4(10):1102–1109

    Article  Google Scholar 

  22. Kashyap R, Vidyarthi DP (2013) Security driven scheduling model for computational grid using NSGA-II. J Grid Comput 11(4):721–734

  23. Jacob B, I. B. M. C. I. T. S. Organization, S. B. O. (Firme) (2005) Introduction to grid computing. IBM, International Technical Support Organization

  24. Trunfio P, Talia D, Papadakis H, Fragopoulou P, Mordacchini M, Pennanen M, Popov K, Vlassov V, Haridi S (2007) Peer-to-Peer resource discovery in Grids: models and systems. Future Gener Comput Syst 23(7):864–878

    Article  Google Scholar 

  25. Iamnitchi A, Foster I (2001) On fully decentralized resource discovery in grid environments. In: Lee C (ed) Grid computing—GRID 2001, vol 2242. Springer, Berlin, pp 51–62

    Chapter  Google Scholar 

  26. Iamnitchi A, Foster I, Nurmi DC (2003) A peer-to-peer approach to resource location in grid environments. In: International series in operations research and management science, pp 413–430

  27. Tangpongprasit S, Katagiri T, Kise K, Honda H, Yuba T (2005) A time-to-live based reservation algorithm on fully decentralized resource discovery in Grid computing. Parallel Comput 31(6):529–543

    Article  Google Scholar 

  28. Noghabi HB, Ismail AS, Ahmed AA, Khodaei M (2012) Optimized query forwarding for resource discovery in unstructured peer-to-peer grids. Cybern Syst 43(8):687–703

    Article  Google Scholar 

  29. Campos J, Esteva M, López-Sánchez M, Morales J, Salamó M (2011) Organisational adaptation of multi-agent systems in a peer-to-peer scenario. Computing 91(2):169–215

    Article  Google Scholar 

  30. Deng Y, Wang F, Ciura A (2009) Ant colony optimization inspired resource discovery in P2P Grid systems. J Supercomput 49(1):4–21

    Article  Google Scholar 

  31. Brocco A, Malatras A, Hirsbrunner B (2010) Enabling efficient information discovery in a self-structured grid. Future Gener Comput Syst 26(6):838–846

    Article  Google Scholar 

  32. Beverly Yang B, Garcia-Molina H (2003) Designing a super-peer network. In: Proceedings of the 19th international conference on data engineering, pp 49–60

  33. Mastroianni C, Talia D, Verta O (2008) Designing an information system for Grids: comparing hierarchical, decentralized P2P and super-peer models. Parallel Comput 34(10):593–611

    Article  Google Scholar 

  34. Hasanzadeh M, Meybodi MR, Ebadzadeh MM (2013) Adaptive cooperative particle swarm optimizer. Appl Intell 39(2):397–420

    Article  Google Scholar 

  35. Hashemi AB, Meybodi MR (2011) A note on the learning automata based algorithms for adaptive parameter selection in PSO. Appl Soft Comput 11(1):689–705

    Article  Google Scholar 

  36. Vafashoar R, Meybodi MR, Momeni Azandaryani AH (2011) CLA-DE: a hybrid model based on cellular learning automata for numerical optimization. Appl Intell 36(3):735–748

  37. Esnaashari M, Meybodi MR (2013) Deployment of a mobile wireless sensor network with k-coverage constraint: a cellular learning automata approach. Wirel Netw 19(5):945–968

  38. Shojafar M, Pooranian Z, Meybodi MR, Singhal M (2013) ALATO: an efficient intelligent algorithm for time optimization in an economic grid based on adaptive stochastic Petri net. J Intell Manuf 1–18. doi:10.1007/s10845-013-0824-0

  39. Thathachar M (1987) Learning automata with changing number of actions. IEEE Trans Syst Man Cybern 17(6):1095–1100

    Article  MathSciNet  Google Scholar 

  40. Akbari Torkestani J, Meybodi MR (2010) An intelligent backbone formation algorithm for wireless ad hoc networks based on distributed learning automata. Comput Netw 54(5):826–843

    Article  MATH  Google Scholar 

  41. Forsati R, Meybodi MR (2010) Effective page recommendation algorithms based on distributed learning automata and weighted association rules. Expert Syst Appl 37(2):1316–1330

    Article  Google Scholar 

  42. Sharma B, Thulasiram RK, Thulasiraman P (2013) Normalized particle swarm optimization for complex chooser option pricing on graphics processing unit. J Supercomput 66(1):170–192

    Article  Google Scholar 

  43. Toumi L, Moussaoui A, Ugur A (2014) Particle swarm optimization for bitmap join indexes selection problem in data warehouses. J Supercomput 68(2):672–708

  44. Garg R, Singh AK (2013) Multi-objective workflow grid scheduling using \(\varepsilon \)-fuzzy dominance sort based discrete particle swarm optimization. J Supercomput 68(2):709–732

  45. Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: 1997 IEEE International conference on systems, man, and cybernetics. Computational cybernetics and simulation, vol 5, pp 4104–4108

  46. Rastegar R, Meybodi MR, Badie K (2004) A new discrete binary particle swarm optimization based on learning automata. In: Proceedings of the 2004 international conference on machine learning and applications, pp 456–462

  47. Buyya R, Murshed M (2002) Gridsim: a toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing. Concurr Comput Pract Exp 14(13–15):1175–1220

    Article  MATH  Google Scholar 

  48. Jeanvoine E, Morin C (2008) RW-OGS: an optimized randomwalk protocol for resource discovery in large scale dynamic Grids. In: Proceedings of the 2008 9th IEEE/ACM international conference on grid computing, Washington, DC, USA, pp 168–175

  49. Dimakopoulos VV, Pitoura E (2006) On the performance of flooding-based resource discovery. IEEE Trans Parallel Distrib Syst 17(11):1242–1252

    Article  Google Scholar 

  50. Oommen BJ (2010) Recent advances in learning Automata systems. In: 2010 2nd international conference on computer engineering and technology (ICCET), vol 1. pp V1–724

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hasanzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanzadeh, M., Meybodi, M.R. Distributed optimization Grid resource discovery. J Supercomput 71, 87–120 (2015). https://doi.org/10.1007/s11227-014-1289-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-014-1289-4

Keywords

Navigation