Skip to main content

Advertisement

Log in

An optimal many-core model-based supercomputing for accelerating video-equipped fire detection

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Automatic fire detection has become more and more appealing because of the increasing use of video capabilities in surveillance systems used for early detection of fire. However, its high computational complexities limit its use in real-time applications. To meet the real-time processing of today’s fire detection techniques, this study proposes a single instruction, multiple data many-core model. To design an efficient many-core model for image processing applications such as fire detection, a key design parameter is the image data-per-processing-element (IDPE) variation of the many-core system, which is the amount of image data directly mapped to each processing element PE. This study quantitatively evaluates the impact of the IDPE variation on system performance and energy efficiency for the multi-stage fire detection approach that consists of movement-containing region detection, color segmentation, fire feature extraction of fires, and decision making if there is a fire or non-fire in a processing video frame. In this study, we use six IDPE ratios to determine an optimal many-core model that provides the most efficient operation for fire detection using architectural and workload simulation. Experimental results indicate that the most efficient many-core model is achieved at the 64 IDPE value in terms of the worst-case execution time and energy efficiency. In addition, this study compares the performance of the most efficient many-core configuration with that of a commercial graphics processing unit (Nvidia GeForce GTX 480) to show the improved performance of the proposed many-core model for the fire detection algorithm. This many-core configuration outperforms the commercial graphic processing unit in the worst-case execution time and energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Celik T, Demirel H (2009) Fire detection in video sequences using a generic color model. Fire Safety J 44(2):147–158

    Article  Google Scholar 

  2. Qiu T, Yan Y, Lu G (2012) An autoadaptive edge-detection algorithm for flame and fire image processing. IEEE Trans Instrum Meas 61(5):1486–1493

    Article  Google Scholar 

  3. Ko BC, Ham SJ, Nam JY (2011) Modeling and formalization of fuzzy finite automata for detection of irregular fire flames. IEEE Trans Circuits Syst Video Technol 21(12):1903–1912

    Article  Google Scholar 

  4. Li M, Xu W, Xu K, Fan J, Hou D (2013) Review of fire detection technologies based on video image. J Theo Appl Inf Technol 49(2):700–707

    Google Scholar 

  5. Ko BC, Cheong KH, Nam JY (2009) Fire detection based on vision sensor and support vector machines. Fire Safety J 44(3):322–329

    Article  Google Scholar 

  6. Jin H, Zhang RB (2009) A fire and flame detecting method based on video. In: Proceedings of 2009 International Conference on Machine Learning Cybernetics Baoding, pp 2347–2352

  7. Rinsurongkawong S, Ekpanyapong M, Dailey MN (2012) Fire detection for early fire alarm based on optical flow video processing. In: Proceedings of 2012 9th International Conference Electrical Engineering Electronics Computer Telecommunications and Information Technology, Phetchaburi, pp 1–4

  8. Dedeoglu Y, Toreyin BU, Gudukbay U, Cetin AE (2005) Real-time fire and flame detection in video. In: Proceedings of IEEE International Conference Acoustic Speech Signal Processing, Philadelphia, pp 669–672

  9. Wang H, Finn A, Erdinc O, Vincitore A (2013) Spatial-temporal structural and dynamics features for video fire detection. In: Proceedings 2013 IEEE Workshop on Applications of Computer Vision, Clearwater Beach, pp 513–519

  10. Chen J, He Y, Wang J (2010) Multi-feature fusion based fast video flame detection. Bldg Envir 45(5):1113–1122

    Article  MathSciNet  Google Scholar 

  11. Gunay O, Tasdemir K, Toreyin BU, Enis A (2010) Fire detection in video using LMS based active learning. Fire Technol 463:551–577

    Article  Google Scholar 

  12. Kolesov I, Karasev P, Tannenbaum A, Haber E (2010) Fire and smoke detection in video with optimal mass transport based optical flow and neural networks. In: Proceedings 2010 IEEE International Conference Image Processing, Hong Kong, pp 761–764

  13. Ko BC, Cheong K-H, Nam J-Y (2010) Early fire detection algorithm based on irregular patterns of flames and hierarchical Bayesian networks. Fire Safety J 45(4):262–270

    Article  Google Scholar 

  14. Borges PVK, Izquierdo E (2010) A probabilistic approach for vision-based fire detection in videos. IEEE Trans Circuits Syst Video Technol 20(5):721–731

    Article  Google Scholar 

  15. Hamme DV, Veelaert P, Philips W, Teelen K (2010) Fire detection in color images using Markov random fields. Lect Notes Comput Sci 6475:88–97

    Google Scholar 

  16. Celik T (2010) Fast and efficient method for fire detection using image processing. ETRI J 32(6):881–890

    Article  MathSciNet  Google Scholar 

  17. Truong TX, Kim J-M (2012) Fire flame detection in video sequences using multi-stage patten recognition techniques. Eng Appl AI 25(7):1365–1372

    Google Scholar 

  18. Morerio P, Marcenaro L, Regazzoni CS, Gera G (2012) Early fire and smoke detection based on colour features and motion analysis. In: Proceedings 2012 IEEE International Conferene Image Processing, Orlando, pp 1041–1044

  19. Santana P, Gomes P, Barata J (2012) A vision-based system for early fire detection. In: Proceedings 2012 IEEE International Conference Sytsems, Man and Cybernetics, Seoul, pp 739–744

  20. Kang M, Tung TX, Kim J-M (2013) Efficient video-equipped fire detection approach for automatic fire alarm systems. Opt Eng 52(1):1–9. doi:10.1117/1.OE.52.1.017002

    Article  Google Scholar 

  21. Lee B, Han D (2007) Real-time fire detection using camera sequence image in tunnel environment. Lect Notes Comput Sci 4681:1209–1220

    Google Scholar 

  22. Ha C, Hwang U, Jeon G, Cho J, Jeong J (2006) Vision-based fire detection algorithm using optical flow. In: Proceedings 2012 International Conference Comput Intell. Softw. Int. Syst., Palermo, pp 526–530

  23. Toreyin BU, Dedeoglu Y, Gudukbay UI, Cetin AE (2006) Computer vision based method for real-time fire and flame detection. Pattern Recogn. Lett. 27(1):49–58

  24. Celik T, Demirel H, Ozkaramanli H, Uyguroglu M (2007) Fire detection using statistical color model in video sequences. J Vis Commun Image Rep 18(2):176–185

    Article  Google Scholar 

  25. Wang Y, Wang D, Shi G, Zhong X (2011) GPR simulation for the fire detection in ground coal mine using FDTD Method. Commun Comput Inf Sci 159:310–314

    Google Scholar 

  26. Qi X, Ebert J (2009) A computer vision based method for fire detection in color videos. Int J Imaging 2(9):22–34

    Google Scholar 

  27. Marbach G, Loepfe M, Brupbacher T (2006) An Image processing technique for fire detection in video images. Fire Safety J 41(4):285–289

    Article  Google Scholar 

  28. Hablboglu YH, Gunay O, Cetin AE (2012) Covariance matrix-based fire and flame detection method in video. Mach Vis Appl 23(6):1103–1113

    Article  Google Scholar 

  29. Zhao J, Zhang Z, Han S, Qu C, Yuan Z, Zhang D (2011) SVM based forest fire detection using static and dynamic features. Comput Sci Inf Syst 8(3):821–841

    Article  Google Scholar 

  30. Wang H, Li D, Wang Y, Yang W (2010) Fire detecting technology of information fusion using support vector machines. In: Proc. 2010 Intl. Conf. AI Comput. Intell., Sanya, pp 194–198

  31. Nguyen T, Kim J (2013) Multistage optical smoke detection approach for smoke alarm systems. Opt Eng 52(5):1–12

    Article  Google Scholar 

  32. Wu X, Jhang JQ, Huang X, Liu DL (2012) GPU-accelerated real-time IR smoke screen simulation and assessment of its obscuration. IR Phys Technol 55:150–155

  33. Park IK, Singhal N, Lee MH, Cho S, Kim CW (2011) Design and performance evaluation of image processing algorithms on GPUs. IEEE Trans Parallel Distrib Syst 22(1):91–104

    Article  Google Scholar 

  34. Kim Y, Kang M, Kim J-M (2013) Exploration of optimal many-core models for efficient image segmentation. IEEE Trans Image Process 22(5):1767–1777

    Article  MathSciNet  Google Scholar 

  35. Choi J, Kang M, Kim Y, Kim C-H, Kim J-M (2013) Design space exploration in many-core processors for sound synthesis of plucked string instruments. J Parallel Distrib Syst 73(11):1506–1522

    Article  Google Scholar 

  36. Arabnia HR, Oliver MA (1989) A transputer network for fast operations on digitised images. Int J Eurogr Assoc 8(1):3–12

    Google Scholar 

  37. Arabnia HR (1990) A parallel algorithm for the arbitrary rotation of digitized images using process-and-data-decomposition approach. J Parallel Distrib Syst 10:188–192

    Article  Google Scholar 

  38. Bhandarkar SM, Arabnia HR (1995) The REFINE multiprocessor—theoretical properties and algorithms. Parallel Comput 21:1783–1805

    Article  Google Scholar 

  39. Arabnia HR, Smith JW (1993) A Reconfigurable interconnection network for imaging operations and its implementation using a multi-stage switching box. In: Proc. Calgary, June, New Horizons Supercomput. Symp., pp 349–357

  40. Hamzacebi H (2011) CUDA based implementation of flame detection algorithms in day and infrared camera videos. M.S. thesis, Dept. Elect. Electron. Engr., Bilkent Univ., Ankara, Turkey

  41. Xiao S, Feng W-C (2010) Inter-block GPU communication via fast barrier synchronization. In: Proc. 2010 IEEE Intl. Symp. Parallel Distrib. Process Atlanta 19–23:1–12

  42. Feng WC, Xiao S (2010) To GPU synchronize or not GPU synchronize? In: Proc. 2010 IEEE Intl. Symp. Circuits Systs., Paris, pp. 3801–3804

  43. Lee J, Sathisha V, Schulte M, Compton K, Kim NS (2011) Improving throughput of power-constrained GPUs using dynamic voltage/frequency and core scaling. In: Proc. 2011 Intl. Conf. Parallel Arch. Comp. Techn., Galveston, pp 111–120

  44. Gentile A, Sander S, Wills L, Wills S (2004) The impact of grain size on the efficiency of embedded SIMD image processing architectures. J Parallel Distrib Comput 64:1318–1327

    Article  MATH  Google Scholar 

  45. Patel P, Tiwari S (2012) Flame detection using image processing technique. Int J Comput Appl 58(18):13–16

    Google Scholar 

  46. Kurup AR (2012) Vision based fire flame detection system using optical flow features and artificial neural network. Int J Sci Res (article ID OCT14677) pp 2161–2168

  47. Millan-Garcia L, Sanchez-Perez G, Nakano M, Toscano-Medina K, Perez-Meana H, Rojas-Cardenas L (2012) An early fire detection algorithm using IP cameras. Sensors 12(15):5670–5686

    Article  Google Scholar 

  48. Toreyin BU et al (2006) Computer vision-based method for real-time fire and flame detection. Pattern Recog Lett 27(1):49–58

  49. Gamal AE, Eltoukhy H (2005) CMOS image sensors. IEEE Trans. Circuits Devices Mag 21(3):6–20

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST) (No. NRF-2013R1A2A2A05004566).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Myon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, J., Kang, M., Kim, C.H. et al. An optimal many-core model-based supercomputing for accelerating video-equipped fire detection. J Supercomput 71, 2275–2308 (2015). https://doi.org/10.1007/s11227-015-1382-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-015-1382-3

Keywords

Navigation