Skip to main content
Log in

Delay-bounded resource allocation for femtocells exploiting the statistical multiplexing gain

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Femtocell is an efficient solution for mobile operators to expand indoor coverage and increase network capacity. In this paper, we study the downlink resource allocation problem of two-tier macrocell–femtocell networks. We first formulate the problem as a Mixed Integer Non-Linear Program (MINLP) which aims to maximize the capacity of clustered femtocell networks subject to hard delay constraints of flows with different priorities. Next, we build \((\rho (\theta ),\sigma (\theta ))\) arrival model for the traffics and apply Stochastic Network Calculus (SNC) to transforming the delay constraints into alternative minimum transmission rate requirements, then we propose a resource allocation algorithm called S-SAPCS to solve the MINLP. Simulation results show that the proposed algorithm has near-optimal performance. We also design a scheme based on deterministic network calculus to show that S-SAPCS is able to exploit the statistical multiplexing gain among multiple flows, which improves the throughput significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdelnasser A, Hossain E (2013) Subchannel and power allocation schemes for clustered femtocells in two-tier OFDMA hetnets. In: Communications Workshops (ICC), 2013 IEEE international conference on, pp 1129–1133. doi:10.1109/ICCW.2013.6649406

  2. Ali N, Taha A, Hassanein H (2013) Quality of service in 3GPP r12 LTE Adv 51(8):103–109. doi:10.1109/MCOM.2013.6576346. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6576346

  3. Anderson E, Phillips C, Sicker D, Grunwald D (2014) Optimization decomposition for scheduling and system configuration in wireless networks 22(1):271–284. doi:10.1109/TNET.2013.2289980. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6684595

  4. Arslan M, Yoon J, Sundaresan K, Krishnamurthy S, Banerjee S (2013) A resource management system for interference mitigation in enterprise OFDMA femtocells. IEEE/ACM Trans Netw 21(5):1447–1460. doi:10.1109/TNET.2012.2226245

    Article  Google Scholar 

  5. Azodolmolky S, Wieder P, Yahyapour R (2013) Performance evaluation of a scalable software-defined networking deployment. In: Software defined networks (EWSDN), 2013 Second European Workshop on, IEEE pp 68–74

  6. Capozzi F, Piro G, Grieco LA, Boggia G, Camarda P (2012) A system-level simulation framework for lte femtocells. In: Proceedings of the 5th international ICST conference on simulation tools and techniques, pp 211–213. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering). http://dl.acm.org/citation.cfm?id=2263049

  7. Ciucu F, Burchard A, Liebeherr J (2005) A network service curve approach for the stochastic analysis of networks. In: Proceedings of the 2005 ACM SIGMETRICS international conference on measurement and modeling of computer systems, SIGMETRICS ’05, pp 279–290. ACM, New York, NY, USA. doi:10.1145/1064212.1064251

  8. Doumi TL, Dolan MF, Tatesh S, Casati A, Tsirtsis G, Anchan K, Flore D (2013) Lte for public safety networks. IEEE Commun Mag 51(2):106–112

    Article  Google Scholar 

  9. Egilmez H, Civanlar S, Tekalp A (2013) An optimization framework for QoS-enabled adaptive video streaming over openflow networks 15(3):710–715. doi:10.1109/TMM.2012.2232645. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6376227

  10. Fan L, Wang Y, Cheng X, Li J, Jin S (2015) Privacy theft malware multi-process collaboration analysis. Secur Commun Netw 8(1):51–67

    Article  Google Scholar 

  11. Fan L, Wang Y, Jin X, Li J, Cheng X, Jin S (2013) Comprehensive quantitative analysis on privacy leak behavior. PLoS One 8(9):e73,410. doi:10.1371/journal.pone.0073410

    Article  Google Scholar 

  12. Fidler M (2006) An end-to-end probabilistic network calculus with moment generating functions. In: Quality of service, 2006. IWQoS 2006. 14th IEEE international Workshop on, pp 261–270

  13. Gharehshiran O, Attar A, Krishnamurthy V (2013) Collaborative sub-channel allocation in cognitive LTE femto-cells: a cooperative game-theoretic approach. IEEE Trans Commun 61(1):325–334. doi:10.1109/TCOMM.2012.100312.110480

    Article  Google Scholar 

  14. Hosseinimotlagh S, Khunjush F, Samadzadeh R (2015) Seats: smart energy-aware task scheduling in real-time cloud computing. J Supercomput 71(1):45–66

    Article  Google Scholar 

  15. Ji W, Chen B, Chen Y, Kung S (2015) Profit improvement in wireless video broadcasting system: a marginal principle approach 14(8):1659–1671. doi:10.1109/TMC.2014.2362919. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6935007

  16. Jiang Y (2006) A basic stochastic network calculus. In: Proceedings of ACM SIGCOMM Conference, October 2006, pp 123–134. doi:10.1145/1159913.1159929. http://dl.acm.org/citation.cfm?

  17. Jiang Y (2010) A Note on Applying Stochastic Network Calculus[C]. In: Proceedings of SIGCOMM’10, Pisa, Italy, pp 16–20

  18. Li C, Burchard A, Liebeherr J (2007) A network calculus with effective bandwidth. IEEE/ACM Trans Netw (TON) 15(6):1442–1453

    Article  Google Scholar 

  19. Lien SY, Lin YY, Chen KC (2011) Cognitive and game-theoretical radio resource management for autonomous femtocells with QoS guarantees 10(7):2196–2206. doi:10.1109/TWC.2011.060711.100737. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5898374

  20. Lin C, Liu Y, Tao M (2013) Cross-layer optimization of two-way relaying for statistical qos guarantees. IEEE J Sel Areas Commun 31(8):1583–1596

    Article  Google Scholar 

  21. Liu H, Popovski P, de Carvalho E, Zhao Y (2013) Sum-rate optimization in a two-way relay network with buffering 17(1):95–98. doi:10.1109/LCOMM.2012.112012.122101. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6362133

  22. Lopez-Perez D, Chu X, Vasilakos A, Claussen H (2014) Power minimization based resource allocation for interference mitigation in OFDMA femtocell networks 32(2):333–344. doi:10.1109/JSAC.2014.141213. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6514950

  23. Lu Z, Sun Y, Wen X, Su T, Ling D (2012) An energy-efficient power control algorithm in femtocell networks. In: Computer science and education (ICCSE), 2012 7th international conference on, pp 395–400

  24. Mhiri F, Sethom K, Bouallegue R (2013) A survey on interference management techniques in femtocell self-organizing networks. J Netw Comput Appl 36(1):58–65

    Article  Google Scholar 

  25. Morita M, Matsunaga Y, Hamabe K (2010) Adaptive power level setting of femtocell base stations for mitigating interference with macrocells. In: Vehicular technology conference fall (VTC 2010-Fall), 2010 IEEE 72nd, pp 1–5. doi:10.1109/VETECF.2010.5594572. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5594572

  26. Ngo DT, Khakurel S, Le-Ngoc T (2014) Joint subchannel assignment and power allocation for OFDMA femtocell networks 13(1):342–355. doi:10.1109/TWC.2013.111313.130645

  27. Olariu C, Fitzpatrick J, Perry P, Murphy L (2012) A QoS based call admission control and resource allocation mechanism for LTE femtocell deployment. In: Consumer Communications and networking conference (CCNC), 2012 IEEE, pp 884–888. doi:10.1109/CCNC.2012.6181184. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6181184

  28. Rosensweig EJ, Kurose J (2013) A network calculus for cache networks. In: INFOCOM, 2013 proceedings IEEE, pp 85–89

  29. Taleb T, Ksentini A (2012) QoS/qoe predictions-based admission control for femto communications. In: Communications (ICC), 2012 IEEE international conference on, pp 5146–5150. doi:10.1109/ICC.2012.6364289. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6364289

  30. Valls JJ, Ros A, Sahuquillo J, Gomez ME (2015) Ps-cache: an energy-efficient cache design for chip multiprocessors. J Supercomput 71(1):67–86

    Article  Google Scholar 

  31. Wang W, Yu G, Huang A (2013) Cognitive radio enhanced interference coordination for femtocell networks 51(6):37–43. doi:10.1109/MCOM.2013.6525593. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6525593

  32. Wang Y (2013) On deriving stable backlog bounds by stochastic network calculus. In: Teletraffic Congress (ITC), 2013 25th International, IEEE pp 1–8

  33. Xiang J, Zhang Y, Skeie T, Xie L (2010) Downlink spectrum sharing for cognitive radio femtocell networks. Syst J IEEE 4(4):524–534

    Article  Google Scholar 

  34. Zhang S, Ji W, Chen BW, Chen Y (2014) Research on cooperative video transmission over heterogeneous devices based on game theory. In: Game theory for networks (GAMENETS), 2014 5th international conference on, pp 1–5. doi:10.1109/GAMENETS.2014.7043731. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7043731

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Chen.

Additional information

This work is supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61370065, the National Science and Technology Pillar Program (2015BAK12B00), and the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality (IDHT20130519).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Si, Y. & Xiang, X. Delay-bounded resource allocation for femtocells exploiting the statistical multiplexing gain. J Supercomput 71, 3217–3236 (2015). https://doi.org/10.1007/s11227-015-1494-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-015-1494-9

Keywords

Navigation