Skip to main content
Log in

Distributed dynamic target tracking method by block diagonalization of topological matrix

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Today, movement recognition becomes a highlight in visual analysis. One problem in movement recognition is that existing characteristics of moving objects cannot be applied to recognize moving targets with similar color components and different color structures, which can be easily recognized by human vision. So, in this paper, a novel target tracking method is presented by both color topology and movement features. First, color topology of moving targets is extracted based on analysis of visual mechanism in human vision. In this way, the topology is processed as block diagonal matrix and divided to sub-topological matrices. Then, moving targets are recognized by both similarity of color topological matrices and movement features. Finally, a distributed dynamic tracking method is presented by the division of moving targets because of the huge computation of movement recognition and topological similarity. Experimental results show the high accuracy and real-time of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38(4):1–45

    Article  Google Scholar 

  2. Li M, Kwok J, Lu B (2010) Online multiple instance learning with no regret. In: IEEE international conference on computer vision and pattern recognition, pp 1395–1401

  3. Shan CF, Tan TN, Wei YC (2007) Real-time hand tracking using a mean shift embedded particle filter. Pattern Recogn 40(7):1958–1970

    Article  MATH  Google Scholar 

  4. Pan P, Schonfeld D (2011) Video tracking based on sequential particle filtering on graphs. IEEE Trans Image Process 20(6):1641–1651

    Article  MathSciNet  Google Scholar 

  5. Haritaoglu I, Flickner M (2001) Detection and tracking of shopping groups in stores. In: IEEE international conference on computer vision and pattern recognition, pp 431–438

  6. Babenko B, Yang MH, Belongie S (2011) Robust object tracking With online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632

    Article  Google Scholar 

  7. Karavasilis V, Nikou C, Likas A (2011) Visual tracking using the Earth Mover’s Distance between Gaussian mixtures and Kalman filtering. Image Vis Comput 29(5):295–305

    Article  Google Scholar 

  8. Kamijo S, Matsushita Y, Ikeuchi K et al. (2000) Occlusion robust tracking utilizing spatio-temporal Markov random field model. In: 15th international conference on pattern recognition, pp 140–144

  9. Yilmaz A, Xin L, Shah M (2004) Contour-based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Trans Pattern Anal Mach Intell 26(11):1531–1536

    Article  Google Scholar 

  10. Rosin P (1998) Thresholding for change detection. In: IEEE international conference on computer vision, pp 274–279

  11. Leichter I, Lindenbaum M, Rivlin E (2010) Mean shift tracking with multiple reference color histograms. Comput Vis Image Understand 11(4):400–408

    Article  Google Scholar 

  12. Cheng YZ (1995) Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal Mach Intell 17(8):790–799

    Article  Google Scholar 

  13. Wren CR, Azarbayejani A, Darrell T et al (1997) Pfinder: real-time tracking of the human body. IEEE Trans Pattern Anal Mach Intell 19(7):780–785

    Article  Google Scholar 

  14. Comaniciu D, Meer P (2002) Mean shift: a robust application toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  15. Nummiaro K, Koller-Meier E, Van Gool L (2003) An adaptive color-based particle filter. Image Vis Comput 21(1):99–110

    Article  MATH  Google Scholar 

  16. Collins RT, Liu Y, Leordeanu M (2005) Online selection of discriminative tracking features. IEEE Trans Pattern Anal Mach Intell 27(10):1631–1643

    Article  Google Scholar 

  17. Kwon J, Lee KM (2009) Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive basin hopping Monte Carlo sampling. In: IEEE international conference on computer vision and pattern recognition, pp 1208–1215

  18. Ross D, Lim J, Lin R, Yang M (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1–3):125–141

    Article  Google Scholar 

  19. Ross D, Tarlow D, Zemel R (2010) Learning articulated structure and motion. Int J Comput Vis 88(2):214–237

    Article  Google Scholar 

  20. Bai T, Li YF (2012) Robust visual tracking with structured sparse representation appearance model. Pattern Recogn 45(6):2390–2404

    Article  MATH  Google Scholar 

  21. Wang Q et al (2012) Transferring visual prior for online object tracking. IEEE Trans Image Process 21(7):3296–3350

    Article  MathSciNet  Google Scholar 

  22. Nigam S, Khare A (2012) Curvelet transform-based technique for tracking of moving objects. IET Comput Vis 6(3):231–251

    Article  MathSciNet  Google Scholar 

  23. Wang D, Lu H, Yang MH (2013) Least soft-threshold squares tracking. In: IEEE computer society conference on computer vision and pattern recognition, pp 2371–2378

  24. Zhang S, Yao H, Sun X et al (2013) Sparse coding based visual tracking: review and experimental comparison. Pattern Recogn 46(7):1772–1788

    Article  Google Scholar 

  25. Zhang K, Song H (2013) Real-time visual tracking via online weighted multiple instance learning. Pattern Recogn 46(1):397–411

    Article  MATH  Google Scholar 

  26. Zhang Lu, van der Maaten L (2013) Structure preserving object tracking. In: IEEE conference on computer vision and pattern recognition, pp 1838–1845

  27. Li LQ, Xie WX (2014) Intuitionistic fuzzy joint probabilistic data association filter and its application to multitarget tracking. Signal Process 96(3):433–444

    MathSciNet  Google Scholar 

  28. Nian C, Nannan Z, Wenting G (2014) Object tracking using mean shift for adaptive weighted-sum histograms. Circ Syst Signal Process 33(2):483–499

    Article  Google Scholar 

  29. Wu Y, Ma B (2014) Learning distance metric for object contour tracking. Pattern Anal Appl 17(2):265–277

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhuang B, Lu H, Xiao Z, Wang D (2014) Visual tracking via discriminative sparse similarity map. IEEE Trans Image Process 23(4):1872–1881

    Article  MathSciNet  Google Scholar 

  31. Deb K (2014) Multi-objective optimization. In: Search methodologies. Springer, US, pp 403–449

  32. Ghimire D (2014) Extreme learning machine ensemble using bagging for facial expression recognition. J Inf Process Syst 10(3):443–458

    Article  MathSciNet  Google Scholar 

  33. Lee SS, Shishibori M, Han CY (2013) An improvement video search method for VP-tree by using a trigonometric inequality. J Inf Process Syst 9(2):315–332

    Article  Google Scholar 

  34. Malkawi M, Murad O (2013) Artificial neuro fuzzy logic system for detecting human emotions. Hum-Cent Comput Inf Sci 3:3. doi:10.1186/2192-1962-3-3

    Article  Google Scholar 

  35. Bhattacharjee D (2014) Adaptive polar transform and fusion for human face image processing and evaluation. Hum-Cent Comput Inf Sci 4:4. doi:10.1186/s13673-014-0004-z

    Article  Google Scholar 

  36. Binh NT (2015) Image contour based on context aware in complex wavelet domain. Hum-Cent Comput Inf Sci 5:14. doi:10.1186/s13673-015-0033-2

    Article  Google Scholar 

  37. Kim TJ, Kim BG, Park CS et al (2014) Efficient block mode determination algorithm using adaptive search direction information for scalable video coding (SVC). J Converg 5(1):14–19

    Google Scholar 

  38. Liu S, Fu W, Zhao W et al (2013) A novel fusion method by static and moving facial capture. Math Prob Eng. doi:10.1155/2013/503924

    Google Scholar 

  39. Fu W, Zhou J, Liu S et al (2014) Differential trajectory tracking with automatic learning of background reconstruction. Multimed Tools Appl. doi:10.1007/s11042-014-2391-6

    Google Scholar 

  40. Fu W, Zhou J, Ma Y (2015) Moving tracking with approximate topological isomorphism. Multimed Tools Appl. doi:10.1007/s11042-015-2519-3

    Google Scholar 

  41. Kim HI, Kim YK, Chang JW (2013) A grid-based cloaking area creation scheme for continuous LBS queries in distributed systems. J Converg 4(1):23–30

    Google Scholar 

  42. Tsai JC, Yen NY (2013) Cloud-empowered multimedia service: an automatic video storytelling tool. J Converg 4(3):13–19

    Google Scholar 

  43. Sharma R, Nitin N (2014) Duplication with task assignment in mesh distributed system. J Inf Process Syst 10(2):193–214

    Article  Google Scholar 

  44. Vezzani R, Cucchiara R (2010) Video surveillance online repository (visor): an integrated framework. Multimed Tools Appl 50(2):359–380

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China [Nos. 61262082, 61461039], Key Project of Chinese Ministry of Education [No. 212025], Inner Mongolia Science Foundation for Distinguished Young Scholars [2012JQ03], Program of Higher-level talents of Inner Mongolia University [125130]. The authors would like to express their heartfelt gratitude to all the volunteers in the experiments and the anonymous reviewers, for their help on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiantao Zhou.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, W., Zhou, J. & An, C. Distributed dynamic target tracking method by block diagonalization of topological matrix. J Supercomput 72, 2502–2519 (2016). https://doi.org/10.1007/s11227-015-1499-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-015-1499-4

Keywords

Navigation