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Abstract

This paper focuses on the resolution of a large number of small symmetric linear
systems and its parallel implementation on single precision on GPUs. The com-
putations involved by each linear system are independent from the others and
the number of unknowns does not exceed 64. For this purpose, we present the
adaptation to our context of largely used methods that include: LDLt, House-
holder reduction to a tridiagonal matrix, parallel cyclic reduction that is not a
power of two and the divide and conquer algorithm for tridiagonal eigenprob-
lems. We not only detail the implementation and optimization of each method
but we also compare the sustainability of each solution and its performance
which include both parallel complexity and cache memory occupation. In the
context of solving a large number of small random linear systems on GPU with
no information about their conditioning, we show that the best strategy seems
to be the use of Householder tridiagonalization + PCR followed if necessary by
a divide & conquer diagonalization.

Keywords: GPU, LDLt, Householder reduction, parallel cyclic reduction,
divide and conquer for tridiagonal eigenproblems.

1. Introdution

A quite few number of problems in physics can be divided into subproblems,
solved locally and process communication steps to recover the global solution.
This is also the case for simulations in mathematical finance, in particular for the
challenging problem of Credit Valuation Adjustment (CVA). When American
contracts are involved, the CVA can be simulated thanks to a nested Monte
Carlo (NMC) that performs a Dynamic Programming Algorithm (DPA) on the
inner trajectories. This procedure constitutes a straight extension of the square
Monte Carlo presented in [1] as a benchmark method for CVA on European
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contracts. Basically, the main ingredient of this extension relies on the resolution
of a large number of small random symmetric linear systems.

The CVA simulation is rather the origin and not the purpose of this paper. In
this contribution, we are really focused on the computational effort of adapting
to our context some well known algorithms. Indeed, we are not aware of any
work that deals with the resolution on GPUs of a large number of symmetric
small linear systems whose size n = (number of knowns) does not exceed 64.
The lack of research done in this direction could be due to the fact that large
linear systems are more difficult to parallelize than smaller ones. Nevertheless,
a good parallelization for small linear systems cannot be considered as straight
simplifications of the work done for large systems.

Actually, when targeting performance, we have to be aware that the paradigm
of the parallel implementation changes according to the size. When n ≥ 8, we
should be also aware that a SIMD parallelization in our context is far from op-
timality. Indeed, because of the size of the cached memory available per block
of threads, associating one thread per linear system reduces significantly the
number of threads that can be launched in parallel. Consequently, the paral-
lelization that we propose is neither SIMD nor straight simplification of known
libraries developed for large linear systems like MAGMA [29].

The solution that we propose is really adapted for the specific problem of
solving large number of small symmetric linear systems. It is based on the
dependence classification of threads: The class of threads that are independent
because involved in different linear systems, noted TI, and the class of those
that communicate because involved in the same linear system, noted TC. The
biggest part of this paper is dedicated to the organization of communicating
threads TC and their use of CUDA shared memory. Regarding the independent
groups of threads TI, their number will be chosen in order to saturate the use
of the shared memory size available per block or at least to have a sufficient
work per a streaming multiprocessors (SMs).

Our contribution can be summarized in the following points:

• We give the CUDA source code [30] associated to the adaptation of to each
algorithm: LDLt, Householder reduction, parallel cyclic reduction that is
not necessary a power of two and divide and conquer for eigenproblem.
As one could expect, the adaptation of the divide and conquer was the
trickiest since it requires some technicality due to: Choosing the right
indices for the division part, implementing the right algorithm for the
solution of the secular equation, tuning the deflation parameters to get
sufficiently accurate results.

• We provide an in-depth description of each implementation.

• We compare the execution time of the different methods mentioned above.

• We propose an original method to further optimize the adaptation of LDLt
to our context.
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• We provide an original parallel cyclic reduction that can be used for any
vector size and not only a power of two that requires a zero padding.

Although we are interested by small linear systems with n ∼ 32, it is not
reasonable to use LDLt for all situations. In fact, in Section 2.2, we show that
even when n = 30 some random linear systems turn out to be ill-conditioned
for single floating-point precision as the one used on our Geforce GPU. For this
reason, we found ourselves obliged to develop both the Householder tridiagonal
reduction as well as the divide & conquer diagonalization of tridiagonal matri-
ces. Subsequently, one could ask the following legitimate question:

Must we systematically use Householder tridiagonalization with divide & con-
quer when we suspect the random linear systems to be ill-conditioned?

Our answer is: Perform Householder tridiagonalization and solve the linear sys-
tems cheaply using parallel cyclic reduction then take a decision according to
the value of the residue error. If the residue error is small then we already have
good solutions. Otherwise, we must perform divide & conquer diagonalizations
and discard the smallest eigenvalues. The next time we solve this same kind of
linear systems: If they used to be well-conditioned then we just process LDLt,
otherwise we execute directly the combination of Householder tridiagonalization
and divide & conquer diagonalization.

The answer above justifies the work detailed in this paper that is arranged as
follows. In Section 2, we give a brief description of NMC for CVA and we show
a realistic example where the linear systems are ill-conditioned. Afterwards,
the presentation of each resolution algorithm is explained in a separate section:
Section 3 for LDLt, Section 4 for Householder and parallel cyclic reductions
and Section 5 for divide & conquer diagonalization. All sections 2, 3, 4 and 5
start with a subsection that describes the headlines of each problem and some
references related to it. Section 6 concludes this paper with global remarks and
the future work that is in preparation.

2. Brief description of NMC for CVA

2.1. Presentation of CVA and the references

The 2007 economic crisis raises the fear of systemic stability when the default
of one financial institution could be the origin of a cascade of other defaults. To
reduce this risk, several measures were established that include the calculation
of the CVA as an important part of the Basel III prudential rules. Since the
paper [6], the CVA can be viewed as an insurance contract that compensates
for the no-recovered sum by the counterparty when it defaults.

For a comprehensive financial presentation of CVA, we refer to [5]. Regarding
the mathematical aspects, the reference [9] can be viewed as the most recent and
complete summary on the subject. However, little research has been dedicated
to the development of numerical procedures that can be used to perform the
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computations. Book [7] is one of the first references that presents the industry
practices in computing CVA. Among research papers, maybe the most devoted
to computing CVA are [1], [14] and [21].

Due to both mathematical and computational complexity, none of the previ-
ous references provide a benchmark procedure to deal with CVA when American
options are involved. This is despite the fact that American contracts are widely
exchanged, especially in some markets. As it will be shown, simulating CVA on
American options can be overcome thanks to an efficient way of parallelizing the
resolution of a large number of small symmetric systems on GPUs. This latter
point is really the heart of this work. Before detailing the background NMC
algorithm in the next subsection, we introduce below the simplest formulation
of the CVA

CVA0,T = (1 −R)E
(
P+
τ 1t<τ≤T

)
, (1)

where R is the recovery made by the counterparty when it defaults, E denotes
the expectation operator, Pt is the process of the value exposure to the coun-
terparty, τ is the random default time of the counterparty, T is the protection
time horizon and the positive part function is denoted by +.

As already explained in [1], one of the most important challenges of the CVA
comes from the fact that the exposure Pt is generally the price of a basket of
different contracts that are written with our counterparty. If these contracts
can be priced by closed expressions, the CVA can be calculated thanks to a one-
stage simulation using either the discretization of a partial differential equation
or Monte Carlo method as in [10]. However, when the underlying contracts
must be simulated, it is natural from expression (1) to perform a two-stage
simulation: The inner stage to compute Pt and the outer stage for the CVA.
This two-stage simulation leads to the square Monte Carlo simulation used in
[1] as a benchmark algorithm.

The square Monte Carlo proposed in [1] is developed for an exposure Pt of
European contracts which is a category of derivatives that can be exercised only
at maturity (< T ). Unlike the European case, the American derivatives allow an
early exercise (< T ) of the contract which can be solved using DPA. The most
used implementation of this DPA is the Longstaff-Schwartz algorithm proposed
in [23] and theoretically studied in [8]. For CVA simulation, this algorithm is
implemented thanks to regressions performed on the inner trajectories providing
a new NMC algorithm that extends the square Monte Carlo of [1].

2.2. Description of the matrices involved by our new NMC algorithm

As usual, expression (1) is discretized using a fixed number of time steps N
that introduces the sequel 0 = t0 < t1 < ... < tN = T and the estimation

CVA0,T =

N−1∑

k=0

E
(
P+
tk+1

1τ∈(tk,tk+1]

)
. (2)

In order to approximate the expectation E in (2), we simulate M0 outer stage
trajectories of the underlying asset S = (S1, ..., Sd) on which the contracts are
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Figure 1: An example of a two-stage simulation with M0 = 2, M6 = 8 and M8 = 4.

established. In order to compute the exposition P in (2) at each time tk of the
outer trajectories, we simulate Mk inner stage trajectories of the same underly-
ing asset S. In these outer and inner simulations, the vector S is a given Markov
process whose realisations could be drawn thanks to a given random number
generator like those presented in [3]. An illustration of this NMC algorithm is
given in Figure 1.

When the exposure P includes American contracts, we perform the Longstaff-
Schwartz algorithm on the inner trajectories. This requires N−k−1 regressions
at each time step k ∈ {1, ..., N−1} and for each outer trajectory l ∈ {1, ...,M0}.
For a fixed couple (k, l), the regression is performed using a projection on the
space generated by ψl(Stk) = (ψl

1(Stk), ..., ψ
l
n(Stk)). The choice of the latter

family should obviously depend on the considered problem, but generally prac-
titioners use some family of polynomials.

The regression matrix is the Monte Carlo approximation Âk,l of Ak,l =
E(ψl(Stk)ψ

l(Stk)
t) given by

Âk,l =
1

Mk

Mk∑

j=1

ψl(S
(j)
tk

)ψl(S
(j)
tk

)t (3)

where (j) is the inner trajectory index and t is the transpose operator.
By definition, the correlation matrices Ak,l are symmetric. Moreover, the

family ψ(S) is always chosen to make all {Ak,l}1≤k≤N−1, 1≤l≤M0
positive definite

i.e. ∀ A ∈ {Ak,l, 1 ≤ k ≤ N − 1, 1 ≤ l ≤M0}

XtAX > 0, for every X ∈ R
n − {(0, ..., 0)}. (4)

However, the Monte Carlo approximations Âk,l, that are symmetric, do not
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Figure 2: Condition numbers for linear regression associated to Black & Scholes model: σ =
0.1, µ = 0.1, S0 = (1, ...,1), tk = 0.1, n = 30, Mk = 300 and l ∈ {1, ...,1000}.

necessary fulfill condition (4) since they depend on the convergence parameter
Mk. Indeed, although the values taken by Mk can be sufficient to have a good
overall convergence of NMC, some of the small values produce either numerical
indefiniteness or even negativity.

As already introduced in [16] and adapted to CVA in [2], Mk should be of
the order of

√
M0. In Figure 2, we give some condition values for the bench-

mark model of Black & Scholes (d = 29) with independent coordinates. The
parameters of this model are its volatility σ, interest rate µ and spot value
S0. The regression performed in this figure are linear and includes the constant
ψ(S) = (1, S1, ..., S29) which makes n = 30.

Although the value n = 30 could be considered high by some practitioners,
it is possible to use it especially for sufficiently large expositions to the coun-
terparty, for instance the exposition of a bank to another bank. Figure 2 shows
then an example of matrices that can corrupt the DPA when implemented in a
single precision. In fact, the number of trusted decimals is not sufficient to make
a decision on the early exercise strategy computed by the DPA. When this kind
of situation is confronted, one has to discard some smallest eigenvalues before
resolving any linear system.

3. LDLt decomposition

3.1. Presentation of the algorithm and the references

The resolution of the linear system AX = Y with A symmetric is divided
into two steps: The factorization of the matrix A that leads to A = LDLt and
the resolution of LZ = Y as well as DLtX = Z where Lt is the transpose of
L. The matrix D is diagonal and the matrix L is lower triangular with 1 on its
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diagonal. The factorization is performed thanks to the following expressions

A = LDLt, Dj,j = Aj,j −
j−1∑

k=1

L2
j,kDk,k,

Li,j =
1

Dj,j

(
Ai,j −

j−1∑

k=1

Li,kLj,kDk,k

)
if i > j.

(5)

Because it prevents the computation of square roots, LDLt is generally con-
sidered as a better alternative to the Cholesky decomposition. Both methods
share the same important stability for symmetric positive definite matrices A
characterized by (4). Furthermore, when the positive definiteness is numerically
questioned, one should avoid the use of either LDLt or Cholesky decomposition.
Also, these two methods share the same complexity order and the same mem-
ory space occupation. Due to all these similarities and the fact that Cholesky’s
literature is larger than LDLt’s, we will not distinguish between the references
of each method.

To our knowledge, [26] is the first reference that implements Cholesky de-
composition on GPUs. Paper [4] comes after and it theorizes the minimization
of the communication cost involved in Cholesky factorization. Even though both
papers are very interesting, the extent of the work developed their is adapted to
large matrices n ≥ 64. The same can be said on the Cholesky’s code of MAGMA
[29]. Indeed, MAGMA library is even dedicated to heterogeneous CPU/GPU
implementations that are generally justified for sufficiently large sizes.

As said previously, the stability property of LDLt and Cholesky is quite
important. In fact, when the correlation matrix is not numerically singular,
these two methods are so stable that they do not need any pivoting like those
performed for LU decomposition [25]. Escaping the pivoting phases makes a
great advantage for the GPU implementation since it reduces communications
between threads. Besides, LDLt and Cholesky are the most efficient methods
of factorization with a complexity given by O(n3/6) where n × n is the size of
the matrix. They are also the ones that use the least the memory space as they
involve only n(n+ 1)/2 values.

Once the LDLt factorization performed, the resolution of LZ = Y then of
DLtX = Z are quite straightforward. These resolutions are even quadratic in
complexity with respect to n.

3.2. Adaptation and optimization

We present three different versions of the LDLt factorization:

1. An SIMD version that requires only threads of TI, one for each linear
system.

2. A collaborative version that involves n threads of TC for each linear system
with n unknowns.

3. An optimal hybrid solution that involves n∗ (n∗ < n) threads of TC for
each linear system with n unknowns.
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Figure 3: Standard LDLt parallel strategy.

The number of the TI-independent groups of threads is chosen in order to
saturate the shared memory or at least to have a sufficient work per an SMs.

The SIMD version is straightforward and used only to convince the reader
of its inefficiency. Regarding the collaborative and the hybrid versions, they
are both based on a column after column processing. In fact, as shown on
Figure 3, for a fixed value of j, the different coefficients {Li,j}j+1≤i≤n can be
computed by at most n − j independent threads. Thus, {Li,1}2≤i≤n involves
the largest number of possible independent threads equal to n − 1. In the
collaborative version, we use the maximum n− 1 threads +1 additional thread
that is involved in the copy from global to shared and in the solution of the
linear system after factorization. This makes n threads for the collaborative
version and one of these threads is also involved in the computation Dj,j which
needs a synchronization before calculating Li,j . For j > n/2 in the collaborative
version, more than the half number of threads are in a wait state. This is not a
problem when n is large enough, because the shared memory is sufficiently filled
which limits the possibility of launching independent threads TI on other linear
systems. Nevertheless, when n is small, the communicating threads TC in a wait
state prevent the schedular from the execution of independent threads TI even
though there is a sufficient shared memory space for other linear systems. This
situation motivates the use of an hybrid solution that either employs about the
half number n∗(n) ≃ n/2 of maximum number of communicating threads or all
of it n∗(n) ≃ n. As we will see in Figure 4 for some n, this hybrid solution is
significantly better than the simple collaborative one.

Finally, we precise that we use n(n + 1)/2 memory space for the LDLt
factorization +n for the resolution. In order to keep a coalesced access to
the shared memory and reduce the bank conflicts, the matrices are also stored
column after column and not row after row as it is generally done.

3.3. Comparison of the different versions

First, let us introduce the set of matrices used for the tests. The matrices
introduced in sections 4.3 and 5.3 are related to the one presented here which
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Figure 4: The speedup of the collaborative and the hybrid versions when compared to the
SIMD implementation.

are positive definite. It is straightforward to show that matrices Ξρ given by

Ξρ =




1 ρ · · · ρ ρ

ρ 1 ρ
...

ρ
. . .

. . .
. . . ρ

... ρ 1 ρ
ρ ρ · · · ρ 1




with 0 < ρ < 1 (6)

are positive definite. Because these matrices are strongly structured, we prefer
to use a randomized version given by A = QΞρ

RQ′
Ξρ
, where R is a diagonally

dominant tridiagonal symmetric random matrix and QΞρ
is the orthogonal ma-

trix that results from the Householder tridiagonalization of Ξρ. The components
of R are set using uniform random variables and the multiplication of the diag-
onal elements by the appropriate factor to make R diagonally dominant.

We point out that all the results are obtained from an implementation on
an NVIDIA Geforce 970.

From Figure 4, we notice that the hybrid solution outperforms the collabo-
rative one when n < 40. Moreover, the SIMD version is clearly unsatisfactory
for all sizes even when n = 4. The speedup obtained when using communicating
threads gets relatively high according to the size n and it exceeds the speedup
of 14 per linear system when n = 64.

The optimal number of communicating threads in the hybrid version depends
on the GPU used. In Figure 5, we give the experimental values obtained for
different sizes n when the implementation is performed on the Geforce 970. We
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distinguish two regimes,

n∗(n) ≃
{
n/2 if n < 40,
n otherwise.

(7)

Using the LDLt hybrid implementation, we establish Figure 6 that shows
the number of linear systems that can be solved per second. The curve obtained
is almost proportional to n−3 which coincides with the theoretical result.

4. Householder and parallel cyclic reductions

4.1. Presentation of the algorithms and the references

Householder tridiagonalization

Similar to the method based on LDLt, we propose here to solve the linear
system AX = Y , with A symmetric, through two steps:

• The tridiagonal Householder decomposition A = QUQt where Q is or-
thogonal and U is symmetric tridiagonal.

• The Parallel Cyclic Reduction (PCR) associated to the problem UZ =
QtY that allows to recover X thanks to X = QZ.

When the linear system is symmetric, the Householder tridiagonalization
is generally used as the first step of a diagonalization algorithm which could
employ: QR factorization, bisection method, multiple relatively robust repre-
sentations or divide & conquer. We refer to [13] for a sequential comparison
between these four algorithms according to speed and accuracy.

As advised in the introduction, we would like to use the Householder tridi-
agonalization with PCR and check the residue error before looking for a diag-
onalization of the system. This procedure is justified by the fact that PCR is
less complex than any of the four algorithms cited above with a theoretical ratio
equal at least to n/ log2(n) in favour of PCR. Moreover, as already shown in
[28], PCR is quite stable for symmetric and positive definite matrices and is
suited to parallel architectures like GPUs.

Without going through details that can be found for instance in [12, 25],
let us present the main points of the Householder tridiagonalization. The basic
ingredient is the Householder matrix H whose expression, for some vector u
different from the zero vector, is given by

H = I − uut/b, b = utu/2. (8)

The idea then is to choose the right vectors un,..., u3 associated to Hn,..., H3.
The product of these matrices yields to the orthogonal matrixQ = HnHn−1...H3

and their successive applications on A provide: U = QtAQ = Ht
3...H

t
nAHn...H3.

In [27], the authors use a Level 3 BLAS that involves a reduction to intermedi-
ate banded and subsequent tridiagonal form.
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Parallel Cyclic Reduction

Let us also give the highlights of PCR and refer to [20, 28] for more details
on the subject. At this stage, we are interested by the resolution of the linear
system UZ = QtY where the value of V = QtY = (v1, ..., vn) is known and U
is tridiagonal and symmetric i.e.

U =




d1 c1

c1 d2 c2 0

c2 d3
. . .

. . .
. . .

. . .

0
. . .

. . . cn−1

cn−1 dn




. (9)

PCR comes from a simple modification of Cyclic Reduction (CR) which is
schematized in Figure 7 where the linear equations e1,...,e8 constitute the equal-
ity UZ = V when n = 8. Applied to this symmetric linear system of equations
(e1,...,e8), the first step of CR reduces the number of 8 equations to 4 equations
defined by





e2’: d′2z2 + c′2z4 = v′2

e4’:c′2z2 + d′4z4 + c′4z6 = v′4

e6’:c′4z4 + d′6z6 + c′6z8 = v′8

e8’: c′6z6 + d′8z8 = v′8

with





d′i = di −
c2i−1

di−1
− c2i
di+1

c′i = −cici+1/di+1

v′i = di −
ci−1vi−1

di−1
− civi+1

di+1

. (10)

On this new system, we perform another similar reduction that yields to
a system of two equations that only involve z4 and z8. The resolution of the
latter system makes possible the backward stage of resolving (10) and finally
the original system of 8 equations.

CR is specified by a forward reduction phase then a backward phase to
recover the solution. CR suitability to GPU and its implementation was already
studied in both [15, 28]. The authors of [15] propose a method to overcome
shared memory bank conflicts during CR, but it uses 50% more on-chip storage.
Because of this extra-storage, this trick must not be used in our case since it
reduces the number of independent groups of threads involved on different linear
systems.

Unlike CR, PCR requires only forward reductions. In Figure 7 for instance,
the PCR version would apply two simultaneous reductions in Step 1: A reduc-
tion to obtain a new system involving (z2, z4, z6, z8) and another reduction that
provides a new system involving (z1, z3, z5, z7). Generally speaking, for a system
of size n, PCR reduces the system of n equations to 2 systems of n/2 equations,
then to 4 systems of n/4 equations and so on until reaching n/2 systems of 2
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e'6e'2 z4 z8
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Figure 7: Cyclic Reduction for n = 8 unknowns: Communication pattern showing the dataflow
between equations. Letters e’ and e” stand for updated equation.

equations that can be simply solved. This process makes PCR more suited to
parallel architecture and prevent the bank conflicts of shared memory. Never-
theless, PCR can be improved for large systems n > 64 by a combination with
CR as detailed in [28].

4.2. Adaptation and optimization

Householder tridiagonalization

We present two different versions of the Householder tridiagonal factoriza-
tion.

1. An SIMD version that requires only threads of TI, one for each linear
system.

2. A collaborative version that involves n threads of TC for each linear system
with n unknowns.

The number of the TI-independent groups of threads is taken to be the one that
saturates the shared memory or that executes sufficient work per SMs.

The SIMD version is a single-threaded CUDA adaptation of the procedure
proposed in [25]. The collaborative version is also based on [25], but it provides
a multi-threaded implementation of independent tasks which makes it much
more efficient than the SIMD version. We begin by explaining the algorithmic
steps of the common procedure. The first stage is to compute the tridiagonal
form U through successive zeroing of the columns of matrix A = (Ai,j)i,j=1,...,n.
This stage is processed at each step i = n, ..., 3 beginning by the vector

uti =
(
Ai,1, ..., Ai,i−1 ±

√
σ, 0, ..., 0

)
, σ =

√
A2

i,1 + ...+A2
i,i−1, (11)

then calculating the intermediary variables

bi =
utiui
2
, , pi =

Ui+1ui
bi

, Bi =
utipi
2bi

, qi = pi −Biui (12)
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Step 1: Reduced to 2 systems 

of 4 unknowns

Step 2: Reduced to 4 systems 

of 2 unknowns

Step 3: Solve 
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Figure 8: Modified Parallel Cyclic Reduction for n = 8: Communication pattern showing the
dataflow and permutation of equations. Letters e’ and e” stand for updated equation.

which allow us to set

U = U3 with Ui = Ui+1 − qiu
t
i − uiq

t
i and Un+1 = A. (13)

Now that we have the tridiagonal form U , the second stage is to compute the
orthogonal matrix Q defined by Q = HnHn−1...H3. Besides, we remind that
a Householder matrix Hi is completely defined thanks to ui. Consequently,
during the first stage, the nonzero components of ui are stored in the ith row
of the shared memory space allocated for A and ui/bi in the ith column. Thus,
the computation of Q is performed in the second stage using Q = Qn and the
induction

Qi = HiQi−1 for i = 4, ..., n with Q3 = H3. (14)

By definition, Qi is an identity matrix in the last i rows and columns and only
its elements up to row and column i − 1 need to be computed. These then
overwrite ui and ui/bi stored in A in the first stage.

As far as the first stage is concerned, in addition to the n×n shared memory
space allocated for A we need 2n + 1 extra shared memory space. The latter
space is used to store the diagonal and the off-diagonal plus 1 value needed for
the synchronization between phases where only one thread can be used and the
other phases. Also, since pi is of size i its components can be stored temporarily
in the place of undetermined elements of the off-diagonal. Regarding qi, it
overwrites pi in the off-diagonal.

Let us now take a look at the multi-threaded parts of the collaborative
version. For the second stage, we can use i − 1 threads of type TC that need
synchronization only when the calculation of Qi is finished. As for the first
stage, the computations of pi and qi in (12) and the induction performed in
(13) are all parallelized using i − 1 threads. The other parts of this stage are
executed using only one thread.
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Parallel Cyclic Reduction

It is important to point out that CR and PCR implementations proposed in
[15, 28] cannot be used directly for any system size. Indeed, the first reference
requires a size that is equal to a power of two plus one and the versions of the
second paper are done for a size equal to a power of two. The simplest way
to use both implementations for any size would be to perform a zero padding.
In our case, using this latter technique is not a good option since we fill a part
of the shared memory with zeros instead of using it for the resolution of other
systems. This fact motivates our version of the PCR presented bellow.

We propose to implement the PCR with permutations of equations in the
way illustrated in Figure 8. The idea is to gather the equations involved in the
same system and to separate those that are independent. Indeed, using this
simple idea one can deal with any size. Let us take the example n = 7, the
changes that occur on the matrix of the system are the following




d1 c1
c1 d2 c2

c2 d3 c3
c3 d4 c4

c4 d5 c5
c5 d6 c6

c6 d7




(R)
−→




d′1 0 c′2
0 d′2 0 c′3
c′2 0 d′3 0 c′4

c′3 0 d′4 0 c′5
c′4 0 d′5 0 c′6

c′5 0 d′6 0
c′6 0 d′7




(P )
−→




d′1 c′2
c′2 d′3 c′4

c′4 d′5 c′6
c′6 d′7 0

0 d′2 c′3
c′3 d′4 c′5

c′5 d′6




(R)
−→




d′′1 0 c′′2
0 d′′3 0 c′′4
c′′2 0 d′′5 0

c′4 0 d′7 0
0 d′′2 0 c′′3

0 d′′4 0
c′′3 0 d′′6




(P )
−→




d′′1 c′′2
c′′2 d′′5 0

0 d′′3 c′′4
c′′4 d′7 0

0 d′′2 c′′3
c′′3 d′′6 0

0 d′′4



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Figure 9: Number of PCRs + two matrix/vector multiplications that can be performed per
second.

where (R) and (P) mean respectively Reductions and Permutations and the
empty parts of the matrices represent the null part. Obviously, one should also
set the same kind of reductions and permutations on the vector of unknowns Z
as well as on the vector of values V . To reorder the final solution, we use an
array of size n in addition to the usual 3n memory space needed for PCR.

4.3. Comparison of versions and comparison with LDLt

In this section, we reuse the matrices A = QΞρ
RQ′

Ξρ
introduced in Section

3.3. Unlike LDLt and PCR, the Householder factorization does not require A
to be definite positive and thus one can even take R to be only tridiagonal
symmetric random matrix and not diagonally dominant.

As stated before, we ought to tridiagonalize A: A = QUQt then use the
PCR as well as two matrix/vector multiplications UZ = QtY , X = QZ to
recover the solution. The PCR and the multiplications are much faster than
the tridiagonal factorization and, like for resolutions LZ = Y and DLtX = Z
in LDLt, can be neglected when compared to the overall execution time.

To make the previous affirmation more quantitative, Figure 9 shows a huge
numbers of PCRs and matrix/vector multiplications that can be computed per
second. These numbers generally exceeds the number of systems solved using
LDLt shown in Figure 6 of the previous section. However, they coincide for
very small systems as we do much less computations on the shared memory
compared to the time spent in the access to the GPU global memory.

Regarding the benefits of using the collaborative solution instead of the
SIMD version of Householder tridiagonalization, the continuous line in Figure
10 shows a quite significant speedup that increases with respect to the size n.
Besides, the dashed line in Figure 10 shows the execution time superiority of
the LDLt hybrid solution when compared to the collaborative version of the
Householder tridigonalization + PCR. Basically, the LDLt hybrid solution is
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Figure 10: The execution time ratio of: SIMD/Collaborative and (tridiagonal + PCR)/LDLt

about 5 times faster than the collaborative Householder tridigonalization +
PCR on our Geforce 970. Moreover, we already have a hybrid Householder
factorization in our source code [30], but it does not perform better than the
standard collaborative one.

5. Divide and conquer algorithm for tridiagonal eigenproblems

5.1. Presentation of the algorithm and the references

We reuse here the Householder tridiagonalization of Section 4 as a first stage
for the resolution of AX = Y with A symmetric. This new resolution procedure
is implemented through the following steps:

• We perform the tridiagonal Householder decomposition A = QUQt where
Q is orthogonal and U is symmetric tridiagonal.

• We use the divide & conquer algorithm for symmetric tridiagonal eigen-
problems to establish the eigenvalues and eigenvectors of U = ODOt

where O is orthogonal and D is diagonal. Consequently, we have A =
NDN t where the orthogonal matrix N = QO.

• In the way that is usually done to solve a linear system with numerical
singularities [25], we discard the smallest eigenvalues of D that provide a
condition number larger than 105.

Because the first step was already studied and the third step is quite stan-
dard, we are only interested by the divide & conquer part. This latter method
goes back to the reference [11] and it became numerically sustainable since the
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work presented in [18, 19]. In [12], one can find a quite detailed presentation of
divide & conquer algorithm for eigenproblems. As far as we are concerned, we
study the important points that should be explored in our adaptation, which
are:

1. Divide the diagonalization problem in two diagonalization subproblems
with known diagonal factorization.

2. Solve the secular equation.

3. Use Löwner’s Theorem [24, 12] for the stability of the overall procedure.

4. Perform a matrix multiplication to conquer the diagonalization problem
from the diagonalized subproblems.

Let a matrix U given by (9), the first point would be to make the following
division

U =




d1 c1

c1
. . .

. . .

. . .
. . . cm−1

cm−1 dm − cm 0
0 dm+1 − cm cm+1

cm+1
. . .

. . .

. . .
. . . cn−1

cn−1 dn




+cm1m,m+11
t
m,m+1

(15)

=

(
U1 0
0 U2

)
+ cm1m,m+11

t
m,m+1

where 1m,m+1 = (0, ..., 0, 1, 1, 0, ..., 0) with only the (m)th and (m + 1)th coor-
dinates equal to 1, all the other coordinates are null. As assumed, U1 and U2

have a known diagonal factorization i.e. there exists diagonal matrices D1, D2

and orthogonal matrices O1, O2 such that U1 = O1D1O
t
1 and U2 = O2D2O

t
2.

Consequently, one can rewrite U as

U =

(
O1 0
0 O2

)((
D1 0
0 D2

)
+ cmuu

t

)(
Ot

1 0
0 Ot

2

)

where

u =

(
Ot

1 0
0 Ot

2

)
1m,m+1 =

(
last column of Ot

1

first column of Ot
2

)
.

Denote now Λ = {λ1, ..., λn} the ordered family of eigenvalues of

(
D1 0
0 D2

)
.

One can show that if cm 6= 0 and the eigenvalue λ of U satisfies λ /∈ Λ, then its
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value is obtained as a solution of the secular equation

n∑

i=1

u2i
λi − λ

+
1

cm
= 0. (16)

The reference [22] provides a good summary on the different methods used for
the solution of (16). It also proposes an hybrid procedure whose performances
compete even with Gragg’s scheme [17] that has a cubic convergence. The major
advantage of the hybrid scheme comes from the fact that it prevents additional
computations due to the second order differentiation of the left term of equality
(16).

Once we fix an eigenvalue λ which is a solution of (16), the eigenvector Vλ

of

(
D1 0
0 D2

)
+ cmuu

t can be computed by

Vλ =

((
D1 0
0 D2

)
− λI

)−1

ũ (17)

where the vector ũ is defined in [18, 19] thanks to Löwner’s Theorem. Replacing
u by ũ is quite important in order to ensure stability and sustainability of the
algorithm, especially when some eigenvalues are almost equal.

Let us assume now that all eigenvectors W = (Vλ)λ eigenvalue of U are known
which brings us to the final point. To conquer, we need to compute the eigen-

vectors of U using the product

(
Q1 0
0 Q2

)
W . This last step is the heaviest

numerically in the whole algorithm.
Finally, we voluntarily did not present the deflation that appears when ui

or λi −λi+1 vanish numerically. This is due to the fact that deflation is already
well presented in the references cited above and to the fact that deflation is not
quite important when matrices are small.

5.2. Adaptation and optimization

Let us study how the steps 1.→4. should be and are implemented in our
source code [30]. Because 4. is the heaviest part, we start with it then we go
decreasingly until the first step.

From step 3., we have at our disposal on the shared memory: the eigenvalues

of U , the transpose matrix W t as well as

(
Q1 0
0 Q2

)
. Consequently, the

computation of

(
Q1 0
0 Q2

)
W , at step 4., is done usingW t

(
Qt

1 0
0 Qt

2

)
then

processing a transpose operation. Nevertheless, we do not need to transpose(
Q1 0
0 Q2

)
sinceW t

(
Qt

1 0
0 Qt

2

)
involves the dot product of the rows ofW t

with the rows of

(
Q1 0
0 Q2

)
. Associating one thread for each row of the latter

matrix, the memory acccess is coalescent during the successive multiplications.
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The result of the dot product performed by each thread is stored in the register
memory then it is copied, after a synchronization, to the shared memory space
of each row of W t. The complexity of step 4. is then O(n3) and we use 2n2 of
the shared memory to perform the matrix multiplication. Because of the zeros

in

(
Q1 0
0 Q2

)
, one can decrease further the memory occupation but to the

detriment of the readability of the code.

From step 2., we have the eigenvalues of U and

(
Q1 0
0 Q2

)
at our disposal

on the shared memory. We would like to use one thread for the computation of

each eigenvector of

(
D1 0
0 D2

)
+cmuu

t to be stored in the column ofW . This

is performed thanks to expression (17) and each resulted eigenvector is saved
in a row-form to keep the coalescent access of each thread. Subsequently, we
obtain W t instead of W . The complexity of this step is O(n2) and it needs 3n
shared memory space: n for the eigenvalues and 2n for both ũ and the diagonal
(D1, D2) involved in (17).

From step 1., we have the diagonal (D1, D2), u and

(
Q1 0
0 Q2

)
at our

disposal on the shared memory. Before starting the resolution of (16), we need
to sort (D1, D2) and build the ordered set Λ = {λ1, ..., λ2}. Although multi-
threaded, this sorting does not need to be optimized because its complexity is
at most O(n2). Moreover, the sorting result is stored in a new shared memory
space of size n plus some variables stored temporarily in the memory space of
W t (Not used yet). Afterwards, we solve (16) using Gragg’s scheme [17] that
has the advantage of a cubic and monotonous convergence. The fact that this
scheme requires a second order differentiation, of the left term of equality (16),
is not an important drawback when the size n is small. Also, because n is small,
the complexity of the iterative Gragg’s scheme is rather O(n3) instead of O(n2),
considered for big values of n.

Finally, we arrive to step 1. that represents the heart of the algorithm as it
sets the division. One has then to choose a constant m and perform (15) such
that U1 and U2 are already diagonalized. Otherwise, we have to reiterate the
division (15) for U1 and U2 separately and so on till reaching a division that has
a diagonal factorization. Assume now that for all m ∈ {2, ..., n− 2}, we do not
know yet the diagonal factorization of U1 and the diagonal factorization of U2.
What is then the best choice to do on the value of m?

There are two answers to the previous question depending on whether there
exists m0 such that cm0

= 0 or not:

• If yes, then set m = m0. Moreover, we re-apply directly (15) on the
sub-matrices.

• If no, then set m = ⌊n/2⌋.

The yes case is obvious since the larger linear system can be decomposed, with-
out conquering, in two independent systems. Regarding the no case, the choice
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Figure 11: The division scheme.

is set in such a way that the computations induced by each subproblem is com-
parable to the other. To make this latter fact possible, the best way is to impose
the same size (±1) for both problems.

In order to simplify the comparison between the Householder tridiagonal-
ization and the divide and conquer algorithm, we consider only matrices with
cm 6= 0 for all m ∈ {1, ..., n − 1}. Our division is then performed using the
scheme given in Figure 11 till reaching matrices of dimension 1× 1 or 2× 2 for
which the diagonal form can be obtained easily. This division scheme requires
an extra shared memory storage of size 21+⌊log2(n−1)⌋, but it provides a pure
divide and conquer algorithm (Not a combination of divide and conquer with
another method like QR). In particular, this pure divide and conquer prevents
to have eigenvalues of multiplicity bigger than two at each conquering step.

Thanks to what is explained above, it is not difficult to conclude that the
overall shared memory occupation is given by 2n(n + 2) + 21+⌊log2(n−1)⌋. In
addition, the complexity t of the proposed implementation can be computed
thanks to the induction

t(m) = 2t(m/2) + α(m)m3, m ∈ {2, ..., n} (18)

with t(1) = 1 and α(m) is a decreasing sequence that is bigger than 2 for the

sizes considered in this paper. Using (18), we check that t(n) ≤ α(n)4

3
n3.

5.3. Comparison with Householder tridiagonalization

The complexity of the divide and conquer algorithm is generally consid-
ered as similar to the one of Householder tridiagonalization for large matrices
(see [12]). This is not the case in our examples because we deal with small ones
(dimension of at most 64).

Moreover, the divide and conquer algorithm suffers from divergence problems
when implemented on GPU. Indeed, the need for deflation in some cases can
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Figure 12: The execution time of the divide and conquer when compared to the Householder
tridiagonalization.

lead numerous threads to wait. The necessary use of more synchronization in
this algorithm also reduces the performance. For instance, the resolution of the
secular equation is iterative and so makes some threads wait for the others.

All the facts related above justify the results obtained in Figure 12. In
particular, we see that for the largest matrices, 48 ≤ n ≤ 64, the divide and
conquer takes at most three × the execution time of a Householder factorization.

6. Conclusion and future work

In this work, we presented the adaptation of well-known methods to the
resolution of large number of small symmetric linear systems on single precision
GPUs. We also provided original ideas for further optimization using LDLt and
PCR. Our goal was to know if the use of Householder tridiagonalization with
divide & conquer is the best solution when we suspect the linear systems to be
ill-conditioned.

We have shown that it is better to first check the residual using Householder
tridiagonalization + PCR. If the really fast PCR is not sufficient, performing a
divide & conquer diagonalizations and discard the smallest eigenvalues becomes
mandatory.

If we are sure that the system is well-conditioned then we just process an
LDLt decomposition. If we are sure of the converse, we execute directly a combi-
nation of Householder tridiagonalization and divide & conquer diagonalization.

The conclusion is definitely related to the context of the CVA computation.
As we have to solve a large number of small random linear system, it is difficult to
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assert that all the systems will be well-conditioned. As a consequence, it would
be naive to implement directly a simple LDLt or Cholesky decomposition.

As a future work, we plan to explore the accuracy of each method by study-
ing the rounding errors and error propagation. For that, we aim to present a
sufficiently consistent study of the residue errors as well as compare the results
of CADNA [31] software obtained from the various solutions.
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