Skip to main content
Log in

A web-based 3D ontology navigation system for spinal disease diagnosis

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

This paper presents a web-based three-dimensional (3D) navigation system for a spinal disease ontology using a 3D virtual human spine. The 3D navigation system consists of three main modules: a query module for finding spinal diseases and their causes and treatments from the spinal disease ontology via a web page, a 3D rendering module for rendering the virtual human spine on a web browser, and a visualization module to view the retrieved ontology information by connecting it with the virtual human spine. It was implemented using Virtuosos SPARQL, Java, JavaScript, Jena API, JDBC, AJAX, HTML5, WebGL, and SVG using a Virtuoso server on the Web via JSP web pages. Spine specialists can navigate and simulate spinal diseases using the 3D navigation system via virtual experiments based on the ontological interrelations, allowing them to make more accurate diagnoses of spinal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kim GH, Kang MJ, Jung CY, Jung JY, Jung SE, Kim JS, Jeong JS, Kim DH, Yoo KH, Seo DM, Lee SW, Lee SB, Lee SH, Kim SK (2013) Development of Ontology for the Diseases of Spine. In: Jeon HY, Obaidat MS, Yen NY, Park JJ (eds.) CSA 2014. LNEE, 279:1171–1178. Springer, Heidelberg

  2. Lee SB, Lee SH, Seo DM, Yoo K-H, Kim SK (2014) Development of ontology and 3D software for the diseases of spine. Adv Multimed 420848:1–4

    Google Scholar 

  3. Pfirrmann CWA, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26(17):1873–1878

    Article  Google Scholar 

  4. Modic MT, Ross JS (2007) Lumbar degenerative disk disease. Radiology 245(1):4361

    Article  Google Scholar 

  5. Weishaupt D, Zanetti M, Boos N, Hodler J (1999) MR imaging and CT in osteoarthritis of the lumbar facet joints. Skelet Radiol 28(4):215–219

    Article  Google Scholar 

  6. Koper R (2004) Use of the semantic web to solve some basic problems in education: increase flexible, distributed lifelong learning, decrease teachers workload. J Interact Media Educ 6:1–23 Special Issue on the Educational Semantic Web

    Google Scholar 

  7. Vaccaro AR, Koerner JD, Radcliff KE, Oner FC, Reinhold M, Schnake KJ, Kandziora F, Fehlings MG, Dvorak MF, Aarabi B, Rajasekaran S, Schroeder GD, Kepler CK, Vialle LR (2016) AOSpine subaxial cervical spine injury classification system. Eur Spine J 25(7):2173–2184

    Article  Google Scholar 

  8. Dean M, Schreiber G(2004) OWL Web Ontology Language Reference. Technical report, World Wide Web Consortium (W3C)

  9. SemanticWorks Semantic Web Tool, http://altova-semanticworks.soft112.com/, http://www.altova.com/documents/SemanticWorksdatasheet

  10. Protege, http://protege.stanford.edu/

  11. Neches R, Fikes R, Finin T, Gruber T, Patil R, Senator T, Swartout WR (1991) Enabling technology for knowledge sharing. AI Mag 12(3):36–56

    Google Scholar 

  12. Gruber TR (1993) Adaptive a translation approach to portable ontology specification. Knowl Acquis 5(2):199–220

    Article  Google Scholar 

  13. Genesereth MR, Nilsson NJ (1987) Logical foundation of artificial intelligence. Morgan Kaufmann, Los Altos

    MATH  Google Scholar 

  14. Kim M, Choi SY (2010) An Ontology-based Adaptive Learning System to Enhance Self-directed Learning. In: Kang, B.H., Richard, D. (eds.) PKAW2010. LNCS, 6232:91–102. Springer, Heidelberg

  15. Lee W, Leung Carson K-S, Lee JJ (2011) Mobile web navigation in digital ecosystems using rooted directed trees. IEEE Trans Ind Electron 58(6):2154–2162

    Article  Google Scholar 

  16. Song MH, Jeong JS, Kim M, Lee SH, Choi SS, Choi ES, Doung C, Yoo KH (2015) An ontology navigation system for 3D spinal model. ACM BigDAS 2015. New York, USA, pp 277–279

  17. SPARQL 1.1 Query Language. W3C Recommendation 21 March 2013, https://www.w3.org/TR/sparql11-query/

  18. Virtuoso, http://en.wikipedia.org/wiki/Virtuoso_Universal_Server

  19. VirtuosoUniversalServer, http://www.w3.org/wiki/VirtuosoUniversalServer

  20. Scable Vector Graphics, https://www.w3.org/Graphics/SVG/

  21. WebGL Specification, https://www.khronos.org/webgl/

  22. Three.JS, http://www.threejs.org/

  23. Stedmans Medical Dictionary, http://www.lww.com/stedmans

  24. KOSTOM (Korean Standard Terminology of Medicine), http://61.78.109.24/KOSTOM/

  25. FMA (Foundational Model of Anatomy Ontology), http://fme.biostr.washington.edu/FME/index.html

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2014R1A1A2055379) and by the MSIP(Ministry of Science, ICT and Future Planning), Korea, under the ITRC(Information Technology Research Center) support program (IITP-2016-H8501-16-1013) supervised by the IITP(Institute for Information & communication Technology Promotion).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwan-Hee Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, JS., Song, MH., Lee, SH. et al. A web-based 3D ontology navigation system for spinal disease diagnosis. J Supercomput 75, 4505–4518 (2019). https://doi.org/10.1007/s11227-017-1975-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-017-1975-0

Keywords

Navigation