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Abstract With the emergence of heterogeneous architectures, developing par-
allel software has become an increasingly complex task. The ability of using
multiple devices in a single application, such as CPUs, accelerators or co-
processors, has turned the implementation and optimization tasks into a chal-
lenging process, which comes along with a variety of difficulties. The inherent
complexities of the parallel algorithm, its multiple implementations, and the
mapping possibilities onto one of the available processors are just examples of
how intricate these tasks can become. To alleviate these issues, this paper pro-
poses a hybrid static-dynamic selector to better exploit resources provided by
heterogeneous systems. Specifically, this framework generates at compile-time
a decision-tree based on historical information for selecting the implementa-
tion that performs best at run-time. To evaluate the benefits of this approach,
we analyze the performance with two use cases: the general matrix-matrix
multiplication and an image processing medical application. The experimen-
tal results demonstrate that our proposed selector enhances performance and
minimizes efforts needed to tune applications. We proved that our solution im-
proves from 10 % to 24 % the overall application performance in comparison
with other similar approach.

Keywords Implementation selector · Heterogeneous platforms · Auto-tuning

1 Introduction

Recent trends in processors development, energy efficiency, and programming
model design have manifested that heterogeneous computing is acquiring a
great performance value in many scientific and engineering domains [15]. This
is because heterogeneous systems comprise multiple processor architectures
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(such as multi-core CPUs, GPUs and FPGAs) which, effectively leveraged,
can improve both performance and energy efficiency of applications. Accord-
ing to the needs, application developers are able to benefit from the character-
istics provided by these distinct processors, e.g., SIMD capabilities of GPUs
or low power consumption of FPGAs. However, programming efficiently on
these environments is notoriously more difficult, since different programming
frameworks and libraries have to be used for each processor. This has led to a
progressive development of multiple architecture-specific algorithm implemen-
tations with the lack of an unified framework or API [1].

Focusing on this fact, a challenge is to select the most appropriate pair of
processor and kernel implementation for solving a given algorithm. While a
naive approach is to manually map tasks onto the underlying parallel proces-
sors, runtime schedulers have demonstrated to be a better solution in these
scenarios. Indeed, recent schedulers assist in improving performance, since
they incrementally learn from past executions. This mechanism allows them
to self-tune applications by means of selecting the most appropriate kernel
version and processor [6]. Although less common, static approaches reduce
the run-time related overheads by shifting the decision-making task directly
at compile time. Several proposals in this line and based on analytic mod-
els, machine learning, and adaptive optimization methods can be found in the
literature [4]. Given the foregoing, this paper broadens the current literature
with the following contributions:

– We present a hybrid static-dynamic implementation selector that leverages
an interface based on C++ attributes and generates source-code decision
trees with the best combinations of processor-implementation.

– We propose an ad-hoc profile-guided optimization technique, allowing to
generate decision trees in the source codes based on historical information
and end-user requirements.

– We evaluate the performance of the selector by analyzing its convergence
time and the time-to-solution of two use cases: the general matrix-matrix
multiplication and a real medical application that computes a spherical
deconvolution algorithm of human brain diffusion MRI data.

– We compare the proposed framework with respect to a runtime approach
from the state-of-the-art and assess their performance and self-tuning ca-
pabilities.

In general, this paper extends the results presented in [13] with i) an im-
proved implementation selector supporting a hybrid-based approach, ii) a real
medical application as a use case, and iii) a comparative study with a state-
of-the-art runtime scheduler from the OmpSs programming framework [6].

The rest of this document is organized as follows. Section 2 reviews re-
lated works in the area. Section 3 describes the hybrid static-dynamic selector
framework along with the custom attributes. In Section 4, we evaluate our
approach using a dense linear algebra kernel and a real medical application.
Finally, Section 5 closes this paper with some concluding remarks and future
works.
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2 Related work

Since heterogeneous platforms have spread across the scientific community,
different implementations of the same algorithm targeted to specific proces-
sor architectures have been developed. For example, several libraries com-
prising highly-tuned numeric kernels from BLAS and LAPACK, are available
for different processors, e.g., cuBLAS [11] for nVidia GPUs, Intel MKL [9]
for multi-/many-core processors, etc. This situation reveals as a new chal-
lenge the selection of the most suitable device and routine implementation to
solve a given problem. To tackle this issue, two different approaches have been
traditionally taken: i) runtime schedulers that are able to map kernels from
multiple libraries on processors available in a heterogeneous platform, and ii)
static tools that select at compile time the most appropriate implementation
according to past knowledge.

Some research works using static approaches can be found in the literature.
For instance, the work presented by Jun et al. [16] proposes an automatic sys-
tem based on source code analysis, which maps user calls to optimized kernels.
Additionally, Jie Shen et al. [14] propose an analytic system for determining
which hybrid programming configuration is optimal for a given problem. Like-
wise, the work by Zhong et al. [17] proposes a solution that uses functional
performance models (FPMs) of processing elements and FPM-based data par-
titioning algorithms to obtain ideal data partitions among the processing units
in a heterogeneous platform. Our approach, however, differs from the latter by
the fact that it bypasses data partitioning techniques, but selects the kernel
implementation that performs best on any of the processing units.

On the other hand, dynamic approaches are also greatly extended in the
community. Particularly, the OmpSs [6] programming framework leverages an
extended set of OpenMP-like pragmas to support asynchronous parallelism
and exploit task-parallelism of applications via data-dependencies. Concretely,
among the available pragmas, the target directive allows developers to select
the target device in an heterogeneous platform. Together with this directive,
the implements clause lets users to specify that the annotated code is an al-
ternate implementation of a given function. This feature allows its versioning
runtime scheduler to freely map the same task onto different devices. Other
works in this line, like the extension for the SkePu framework presented in [5],
take advantage of machine learning techniques to automatically select the most
appropriate implementation of a given function. These models basically carry
out a tuning phase for estimating the ranges in which different implementa-
tions perform better than others. Following a similar approach, the framework
presented in this paper gets hints from the user-code C++ attributes in order
to select among implementations and processors available in the heterogeneous
platform. Using the dynamic mode, applications compiled with our framework
are able to select the most appropriate implementation at run-time based on a
decision tree that is generated at compile time. For that purpose, our approach
requires a previous training phase in order to find out which implementation
performs best for a given problem size.
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3 The hybrid static-dynamic selector framework

This section describes the proposed hybrid static-dynamic implementation
selection framework. This framework provides an interface based on C++
attributes with the objective of generating source-code decision trees with
the most suitable combinations of processor-implementation. Particularly, this
framework has been designed as a feedback system, i.e., data collected during
an execution influences the next ones. The main goal of the framework is to
improve the selection task in each compilation. Depending on the constraints
used in the attribute-annotated user codes, the selector can work using a full-
static or a hybrid static-dynamic approach. On the one hand, the full-static
mode replaces the annotated interfaces by a single implementation at com-
pile time. This mode is useful when the user already knows the problem size.
On the other hand, the hybrid static-dynamic mode of the selector generates
if-else decision trees at compile time, which are processed by the user ap-
plication at run-time. In the following sections we introduce the mathematical
foundations of the selection algorithm and describe in more detail the modules
of the selection framework.

3.1 Formal definition of the selection algorithm

In order to proceed further with our rationale for selecting implementation
that delivers the best performance, we formally describe the theoretical basics
of the selection algorithm used in our framework. Consider V a set of available
versions of a same routine, s the problem size, and ti(s) the execution time of
the version i using the problem size s. With this, the formula

Bestpoint(V, s) = A ⇔ A ∈ V ∧ ∀i ∈ V : tA(s) ≤ ti(s) (1)

determines that the implementation A has an execution time lower than any
other version in V for a certain problem size s. Similarly, the formula

Bestrange(V, [sb, se]) = A ⇔ ∀i ∈ V :

∫ se

sb

tA(x) dx ≤
∫ se

sb

ti(x) dx (2)

states that the version A has the smallest area under its function tA(x) in the
range of sizes [sb, se]. Therefore, being the one providing the lowest run time
when it is executed multiple times on different problem sizes within the range.

With the above-described formulas, it is possible to obtain the best imple-
mentation in V for a fixed size and a range of sizes only if the execution times
for any problem size are known in advance. In other words, if the functions
ti(x) are defined accurately in all its domain. However, in a real scenario this
is not the case. To deal with this issue, we approximate the domain of ti(x) as
the union of problem sizes intervals in the set E, i.e.,

E =
{

[s0, s1), [s1, s2), ..., [sn−1, sn)
}
⇔ Domain(ti(x)) =

⋃
I∈E

I.
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Note that the intervals in E are defined by the problem sizes whose execution
time is known in a given point in time, e.g., if the values of ti(sa) and ti(sb) are
known, the interval [sa, sb) would be part of E. Furthermore, we approximate
the function ti(x) with the set of functions

{τ Ii (x) = mx+ c : ∀I ∈ E} (3)

being τ Ii (x) a linear function between the endpoints of the interval I in E.
With these definitions, we redeclare the function Bestpoint in Eq. 1 as

Best′point(V, s) = A ⇔ ∀i ∈ V, ∃I ∈ E : s ∈ I ∧ τ IA(s) ≤ τ Ii (s) (4)

for determining approximately which version provides the best performance
with the current knowledge. In this case, A is the version whose function τ IA(s),
defined in the interval I where s belongs, has the lowest value than any other
version in V. Likewise, we also define an estimation of Bestrange in Eq. 2 as

Best′range(V, [sb, se]) = A⇔ ∀i ∈ V : area(A, [sb, se]) ≤ area(i, [sb, se]) (5)

where the area under its function tA(x) is calculated approximately with

area(A, [sb, se]) =

∫ IB
e

sb

τ I
B

A (x) dx+
∑
r∈R

∫ re

rb

τ rA(x) dx+

∫ se

IE
b

τ I
E

A (x) dx

: ∃sb ∈ IB ∈ E ∧ ∃se ∈ IE ∈ E ∧ ∃R ∈ E ⇔ ∀r ∈ R, r ∈ (sb, se).

Basically, this formula estimates the area of the version A in the interval [sb, se]
by adding the areas under their τ IA(x) defined for each interval I contained
in the range. Note that the areas of the intervals containing the endpoints of
[sb, se] are only partially included.

3.2 Description of the framework

In this section we describe in detail the steps taken by the selection framework
(see Fig. 1). First, the hardware information module extracts the platform in-
formation and stores it into a file (HPP.json). In the next step, the users
should provide the annotated header files with the different implementations
available for each interface. In the same way, the user annotates application
function calls, candidates to be analyzed and replaced by our framework. With
this information, the selector analyzes the function calls annotated in the user
source code and replaces them by the most suitable implementation in the
header files. Furthermore, the framework instruments these function calls to
measure their execution time. Finally, after the application run, the frame-
work stores the performance profiles of the instrumented functions into a file
(PERF.json). Basically, this file contains, for each implementation and prob-
lem size, the average run time and the total number of samples collected. This
allows to recalculate the averages run times in an incremental way, i.e., each
time a new sample arrives. This file is later used to make selections using a
profile-guided optimization approach.

Next, we describe the attributes of the framework used for annotating
function calls and declarations.
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Fig. 1: The hybrid static-dynamic implementation workflow.

Header attributes. As mentioned, our selection framework requires the user
intervention to declare a set of constraints for each interface and routine im-
plementation. These restrictions specify which implementations are associated
to each different function interface and target device. These requirements, in
form of attributes under the rpr namespace, are the following:

– rpr::implements: This attribute specifies that the code under the at-
tribute is an alternate implementation of a given interface. Basically, it
receives, as the sole parameter, the function name to let the selector know
which implementations are available for that interface. Consider, for in-
stance, the general matrix-matrix multiplication (dgemm). In this case, the
attribute contains the generic function name of the dgemm, although the
routines actually implementing this algorithm might have different names.
Note, as well, that all the implementation alternatives for an interface
should specify the same name in rpr::implements.

– rpr::device: This attribute bounds a given implementation to a specific
target device. Supported parameter values for this attribute are: CPU, GPU,
PHI (for the Intel Xeon Phi co-processor), etc. [12].

Function call attributes. In this stage, the user is responsible for annotating
function calls candidate to be analyzed by the selector in the user application
code. This set of C++ attributes is the following:

– rpr::interface: This attribute indicates that the annotated function call
is an interface, and should be replaced by the framework with an actual
implementation during the selection process.

– rpr::target: It defines the preferred target device to execute the anno-
tated function call, e.g., rpr::target(CPU). Valid arguments for this at-
tribute are those that are accepted by the rpr::device attribute.

In order to specify static problem constraints and to enable the hybrid
static-dynamic mode in an annotated function call, the user should employ
one of these options:
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– rpr::size: This attribute is used when the user already knows the problem
size during the function call. This attribute receives the problem size as
a single parameter. This attribute makes the selector to work using the
full-static approach, as stated before.

– rpr::minsize and rpr::maxsize: Alternatively, when the user is not able
to specify the problem size, rpr::minsize and rpr::maxsize can be used
to establish both lower and upper bounds of the problem size. Similar to
the rpr::size attribute, these attributes enable the full-static selection
approach.

– rpr::dynamic: If this attribute is set, the selector replaces the function
interface by a decision tree in the source code, implemented using if-else

statements. Therefore, the application will be able to select, at run-time,
the most suitable implementation. The conditions in the if-else state-
ments are evaluated using the problem size, obtained at run-time, and the
intersection values where an implementation delivers better performance
than other. Additionally, this attribute receives an expression producing
an integer which obtains the problem size in the application context.

It is important to remark that function calls annotated by the user should
match those provided in the corresponding header files.

3.3 The profile-guided selection algorithm

This section describes the internal workings of the selector, as the core module
of the framework. Basically this module analyzes function calls annotated with
the rpr::interface attribute. Then, it starts a selection process that replaces
interfaces by actual implementations (using the full-static mode) or by deci-
sion trees (using the hybrid mode) complying with the restrictions stated by
the user according to available implementations and processors. For that, the
selector leverages a profile-guided optimization approach that takes advantage
of the information gathered in the file PERF.json (introduced in Section 3).
Note that the entire selector has been implemented using the Clang 3.8.0 com-
piler API that is used to analyze C++ attributes [10]. Specifically, the selector
module performs the following steps:

1. First, the selector analyzes the annotated header files and the implemen-
tations provided by each function interface used in the application code.

2. Next, it checks for annotated functions in the application user code using
the attribute rpr::interface. Simultaneously, it examines whether the
user has marked the interfaces with the attribute rpr::target or not,
i.e., to use a preferred target processor. In this case, the selector considers
only the implementations for such interface that can be executed on the
processor specified by the user. Other implementations are automatically
discarded. If there are no implementations than can run on the preferred
processor, regarding the knowledge about the platform in HPP.json, the
implementation delivering the best performance on any available processor
is taken instead.
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3. Finally, if the function interface has been annotated either with the rpr::size
or rpr::minsize-rpr::maxsize, the selector performs a static decision to
determine which implementation, among the candidate ones, offers the best
performance. Otherwise, if the rpr::dynamic attribute has been used, the
module will calculate the intersection values where an implementation de-
livers better performance than other. Next, it will generate an if-else

decision tree, which is processed by the user application at run-time in or-
der to decide which implementation should be executed. All decisions are
made according to the information stored in the PERF.json file.

The full-static selection mode. The full-static selection mode implemented is
entirely based on the problem size and boundaries specified by the user. De-
pending on the attributes used, the algorithm proceeds as follows.

– If the attribute size is set, the selector takes the implementation offering
the minimum execution time according to the function Best′point in Eq. 4.
For this purpose, the selector performs a linear interpolation for the re-
quested problem size for all implementations available in such a function
interface, in case it is not present in the performance file. (Note that to
smooth extreme performance values stored in PERF.json, the selector only
considers average execution times entries that have been computed with,
at least, three samples.) Otherwise, if multiple implementations deliver
the same minimum performance, the selector randomly picks one of them.
However, this random policy can be eventually replaced by another that
takes into account the lower maximum performance in order to avoid ex-
treme behaviors. Consider the scenario in Fig. 2a that shows the behavior
of a given function interface offering three different implementations. For
instance, if the user sets the size attribute to 35, the selector will consider
func2, while if the problem size is fixed to 80, the framework will randomly
select func1 or func2.

– On the contrary, if the developer has used both minsize and maxsize

attributes to indicate a range of possible problem sizes, the selector com-
putes the area under the performance curve (or integral) for the available
implementations using the function Best′range in Eq. 5. With it, the frame-
work selects the implementation that has the smallest area in the range.
As shown in Fig. 2b, if the user selects a range between 25 and 50 as for the
minimum and maximum problem sizes, the selector module will compute
the integrals for the three implementations available. Afterwards, it will
compare the areas below the curves and take that having the smallest one,
i.e., func2. Note that if there are no performance values in the boundaries
of the range, the values that intersect the boundaries are computed via
linear interpolation. As in the previous option using the size attribute,
if there are two or more implementations whose area value is equal, the
selector will pick one randomly. Also, only average execution times entries
with, at least, three samples are considered.
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The hybrid selection mode. This mode generates, at compile time, a decision
tree that is based on the performance data collected from previous executions.
This tree is generated when the dynamic attribute is set with the following
algorithm.

First, the selector calculates the intersection points among all the functions
estimating the execution time, as defined in Eq. 3, for the available implemen-
tations. Following the aforementioned scenario, Fig. 2c shows the problem size
intervals and the intersection points highlighted with circles. Next, for each
two consecutive intersections, the best version for this interval is obtained us-
ing the function Best′range in Eq. 5. Fig. 2d shows the different intersection
intervals with their minimum areas denoting the fastest implementation in the
range. (Note that the intervals 2 and 3 are merged together in the end, as the
best implementation for both is the same.) With this, the selector is able to
generate a tree whose decision nodes correspond with the boundaries of all the
obtained intervals and the leafs represent the implementations. Therefore, the
function responsible for computing the problem size in the application context
allows to walk the tree until reaching a leaf node.

It is important to highlight that, at present, the current version of the
selector only considers the problem size to select the fastest implementation.
In the future, we plan to extend the set of user C++ attributes to allow
users to specify other kinds of restrictions, such as memory usage or energy
consumption.
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(d) Using the dynamic attribute (step 2).

Fig. 2: Example of the behavior of an hypothetical function interface func

offering three different implementations (func1, func2 and func3). Note the
cutoffs for problem sizes 30 and 80 between the implementations 1–2 and 2–3,
respectively.
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3.4 Working example

In this section, we illustrate the workings of the framework. Listing 1 shows
a header file with the attributes set by the users for the function interface
func. In the same way, Listing 2 contains an example of user code with differ-
ent attribute-annotated functions matching the interface func defined in the
previous header file. As can be seen in the header file, three different implemen-
tations are interfacing function func. In their attributes, the user has defined
some restrictions. For example, implementation 3 requires a GPU. Looking at
the application code, the user has invoked four times this function using dif-
ferent attribute parameters. Finally, the selector processes and replaces these
function calls with the implementations selected for each case. Listing 3 shows
the code generated by the framework.

As observed, the first call has been replaced by ns2::func2 as it is the
most suitable implementation for the attribute parameters given by the user.
To make this decision, the selector computes the area for the range given and
picked that having the smallest value. Next, the second call is replaced by
ns1::func1 because it has the smallest minimum size for problem size 20.
The third call has been substituted by func3, as the user specified, via tar-

get, the GPU as the preferred device, and any other implementation targeted
to CPUs has been discarded. Finally, the fourth call has been replaced by the
corresponding decision tree, as it was annotated with the dynamic attribute.
Thus, depending on the expression density func(...) provided by the user
through the dynamic attribute and evaluated at run time, different implemen-
tations are executed.

Listing 1: Annotated header file.

namespace ns1 { // Implementation 1
[[rpr:: implements("func"), rpr:: device(CPU)]]
void func1 (...);

}
namespace ns2 { // Implementation 2

[[rpr:: implements("func"), rpr:: device(CPU)]]
void func2 (...);

}
// Implementation 3
[[rpr:: implements("func"), rpr:: device(GPU)]]
void func3 (...);

Listing 2: Annotated user code.

#include <header.hpp >
int main(){

// function call 1
[[rpr::interface ,rpr:: minsize (25),rpr:: maxsize (50)]]
func (...);
// function call 2
[[rpr::interface ,rpr::size (20)]]
func (...);
// function call 3
[[rpr::interface ,rpr::size (50),rpr:: target(GPU)]]
func (...);
// function call 4
[[rpr::interface ,rpr:: dynamic(density_func (...))]]
func (...);
return 0;

}

Listing 3: Processed user code.

#include <header.h>
int main(){

// function call 1
ns2::func2 (...);
// function call 2
ns1::func1 (...);
// function call 3
func3 (...);
// function call 4
auto rpr_dens = density_func (...);
if ( rpr_dens < 30 ) func3 (...);
else if ( rpr_dens >= 30 && rpr_dens < 80 )

ns2::func2 (...);
else ns1::func1 (...);
return 0;

}
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4 Experimental evaluation

We evaluate the presented framework along with its selector using two use
cases: the general matrix-matrix multiplication (Gemm) and a real medical
application that computes a spherical deconvolution algorithm of diffusion
MRI data (Hardi) of human brains [8,7]. First, we perform an evaluation
of the accuracy and convergence of the selector algorithm of the framework
using the Gemm case. Next, we demonstrate how a real use case (Hardi)
can benefit from our framework. Finally, we compare our framework with the
runtime-based versioning scheduler from the OmpSs programming model.

We evaluate the Gemm and Hardi use cases using the Arch1 and Arch2
machines, respectively. These heterogeneous platforms are described as follows:

– Arch1 consists of two multi-core Intel Xeon E5-2695 processor with a
total of 24 physical cores running at 2.40 GHz, equipped with 128 GB of
RAM. This machine is also equipped with two AMD Radeon GPUs, R9
290X (Amd1) and R9 285 series (Amd2), and an Intel Xeon Phi 3120
co-processor (Mic).

– Arch2 is comprised of two multi-core Intel Xeon E5-2630 v3 processor with
a total of 8 physical cores running at 2.40 GHz, equipped with 128 GB of
RAM. This machine also has with a NVidia Tesla K40 and a GTX 680
under CUDA version 7.5.

In both platforms, the OS used is Linux Ubuntu 14.04 x64 and the compiler
employed is GCC 5.1 with the flag -O3 set. The results presented in the next
sections are the average of 5 consecutive executions.

4.1 Analysis with the Gemm use case

In this section, we analyze the dgemm kernel performance and the selector ac-
curacy using the implementations from the clBLAS [3] and GSL libraries on
the Arch1 machine. Fig. 3 plots the execution times using square matrix sizes
ranging from 4 to 4,096 and double-precision numbers. As can be observed,
depending on the problem size, a kernel implementation delivers better perfor-
mance than others. For instance, using the size range 4–504, the GSL version
is the preferred option, while for the ranges 504–1,990 and 1,990–4,096, the
clBLAS implementation running respectively on Xeon and Amd1 are the op-
timal alternatives. Thus, it becomes essential to select the best implementation
depending on the matrix input size, in our case using the automatic approach
presented in this paper.

Additionally, we evaluate the selector accuracy and the dgemm kernel per-
formance rates by increasing the number of training iterations, using the at-
tribute size, minsize-maxsize, and dynamic, indistinguishably. Note that
the performance rates were obtained dividing the execution time of the fastest
between the selected implementation. For each of these iterations, we train
the system running an instance of the dgemm kernel using matrices of random
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Fig. 3: Execution time of the dgemm kernel for different square matrix sizes
and implementations.

size. Afterwards, we evaluate the knowledge gained by the selector performing
100 runs of the same kernel also with random sizes. In Fig. 4a, we show the
accuracy progress when using the static, i.e. using fixed and range of sizes at-
tributes, and the dynamic modes. As can be seen, these percentages increase
in a smooth curve until reaching, after 300 training iterations, roughly 97 % of
the total accuracy. This behavior is mainly because the selector has already
gained enough knowledge about the performance delivered by the different
implementations. Looking at the performance in Fig 4b, using both static and
dynamic-related attributes, the performance rates after 300 iterations reach
almost 100 %. Therefore, all selections made from that point on will provide
a good performance. An interesting remark is that the drops on the accuracy
appearing during the first training iterations are not proportionally reflected
in the performance progress. This is because a wrong selection has different
consequences on the performance, and thus, depending on the implementa-
tion chosen and problem size, it might cause a lower or a higher decrease on
the performance rate. In general, we find out that both static and dynamic
modes provide similar performance gain. Nevertheless, there are differences
between these modes: using the static approach the applications have to be
recompiled whenever the problem size changes, while in the dynamic mode
the applications are able to adapt themselves without recompiling them.

4.2 Analysis with the Hardi use case

We leverage the Hardi use case, responsible for executing the Robust and Un-
biased Model-Based Spherical Deconvolution (Rumba-SD) method, to demon-
strate the benefits of our framework. This algorithm is, up to date, one of the
most advanced algorithms for detecting crossing fibers in white matter [2]. For
our experiments, we use the parallel Rumba-SD method part of Hardi. We
execute this parallel algorithm using different linear algebra implementations
on the multi-core CPU (via Intel MKL) and the GPUs (via ArrayFire) of
Arch2 with single-precision floating-point numbers.
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Fig. 4: Progress of the accuracy of the selector and dgemm performance through
training iterations.

Regarding the Hardi input data, we use a real diffusion MRI dataset
acquired from healthy subject. Specifically, the whole-brain HARDI data was
acquired in a 3T Philips Achieva scanner with a 8-channel head coil along
100 different gradient directions on the sphere in q-space with constant b =
2000 s/mm

2
. Additionally, 1b = 0 volume was acquired with in-plane resolution

of 2.0× 2.0 mm2 and slice thickness of 2 mm. The acquisition was carried out
without undersampling in the k-space (i.e., R = 1). The final dimension of
this dataset is 128 × 128 × 60 × 100 voxels, being 60 the number of slices of
128× 128 voxels, each of them comprising 100 directions.
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Fig. 5: Progress of the accuracy using a range of sizes.

Fig. 5 depicts the execution time and the number of useful voxels for each
slice of the dataset, using lines and bars, respectively. As observed, using the
MKL library, the execution times are fairly correlated with the number of
useful voxels. On the contrary, the ArrayFire versions, using the GPUs (K40
and GTX 780) obtain a flatter curve. In this case, the use of ArrayFire for
GPUs is only compensated for slices containing a high number of useful voxels,
as the data transfers pay off the computational load. Focusing on our hybrid
implementation selector (HIS), the selector takes the MKL and the ArrayFire
implementations for slices comprising low and high number of useful voxels,
respectively. Specifically, we configured the selector using the dynamic mode,
so that, the decisions are made at run-time. We observe some negligible over-
heads (2 %) using our approach mainly caused by the density function run
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time. Note that this density function, responsible for calculating the number
of useful voxels in each slice, is used each time by the decision tree in order
to select the most suitable implementation. Finally, to evaluate the benefits
of our approach, we computed the total execution time of Hardi using the
aforementioned implementations (including HIS) in order to obtain speedup
figures. We find out that using our approach with respect to MKL reduces the
execution time by 24 %, while compared with ArrayFire, HIS decreases the
execution about 10 %. Therefore, our approach in this case helps improving
the overall performance of applications.

4.3 Comparison with alternative approaches

In this section, we validate the performance benefits of our hybrid static-
dynamic implementation selector (HIS) and compare it with an existing run-
time scheduler. Concretely, we compare our approach with the versioning run-
time scheduler counterpart from the OmpSs programming model [6], as it offers
a similar implementation selector to our static solution.

To compare our solution with OmpSs, we developed a microbenchmark
composed of two consecutive 30-iteration loops computing the matrix-matrix
product (dgemm kernel) using square matrices of size 256 × 256 and random
sizes, respectively, in each iteration of the loops. For HIS, we annotate the
dgemm kernel calls using the attribute size for the first loop and with dy-

namic for the second one. In contrast, for OmpSs we define different tasks
for the available implementations that are annotated with the implements

and target directives. Take into account that the multiplication is performed
using the same dgemm implementations as in the previous experiments.
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Fig. 6: Execution progress of two 30-iteration loops computing the dgemm kernel
using HIS and OmpSs.

Fig. 6 depicts the execution progress of this microbenchmark. As can be
seen, HIS starts from the first loop iteration selecting the implementations
that perform best for the different matrix sizes. It is important to note that
HIS was previously trained performing 100 executions of the dgemm kernel with
random matrix sizes and the measured profiling overhead was not higher than
1 %. On the contrary, OmpSs cannot be trained offline, so it makes a few trial
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runs of the different implementations until it finds, at runtime, the fastest one.
In these cases, the training phase of HIS pays off the OmpSs trial runs and
the runtime scheduler overhead. Specifically, the OmpSs measured overhead
ranges between 2 % and 40 % for the large and small matrix sizes, respectively.
However, when the matrix size varies among iterations, OmpSs is not able to
self-adapt and continues selecting an implementation that is not the optimal.
In contrast, HIS relies on the problem size to select in each iteration the
most suitable implementation, and thus, improving the overall performance.
On the other hand, we have calculated the number of application executions
that our approach requires (assuming that there is no previous performance
data in the PERF.json file) in order to improve the execution time of OmpSs.
We found out that, using our approach, 40 executions of the user application
are necessary to compensate the training phase overheads and overtake the
performance of the OmpSs versioning scheduler. In general, HIS offers a
hybrid implementation selector that is adaptive and learns among executions,
while OmpSs is a runtime alternative that has non-negligible overheads but
does not require a training phase.

5 Conclusions

In this paper we have presented a hybrid static-dynamic implementation se-
lector that uses an interface based on C++ attributes and is able to select the
best combinations of processor-implementation. Its profile-guided optimiza-
tion technique allows the framework to statically select implementations, i.e.
by the replacing the annotated interfaces, or dynamically, i.e. by generating
decision trees that are evaluated at run-time.

Through the experimental results, we demonstrated that the proposed
framework is able to select the fastest implementation using fixed and variable
problem sizes, and the hybrid approach. For the Gemm use case, we observed
that the framework requires only 100 iterations to have an acceptable ac-
curacy and performance gains. On the other hand, using a medical imaging
use case, we proved that our approach improves from 10 % to 24 % the over-
all application performance. Finally, we also compared our framework with
the OmpSs runtime versioning scheduler and confirmed that a hybrid com-
pile time-runtime selection neglects the traditional scheduler overheads at the
expense of a training phase.

As future work, we plan to extend the set of C++ attributes in order to
allow users to specify other kinds of restrictions, such as memory usage or
energy consumption. Furthermore, we also aim to incorporate a static par-
titioning module for supporting multiple devices in shared and distributed
memory platforms.
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