
Noname manuscript No.
(will be inserted by the editor)

Function Portability of Molecular Dynamics on
Heterogeneous Parallel Architectures with OpenCL

Rene Halver, Wilhelm Homberg and
Godehard Sutmann∗

the date of receipt and acceptance should be inserted later

Abstract Classical molecular dynamics simulation for atomistic systems is
implemented in OpenCL and benchmarked on a variety of different hardware
platforms. Modifying the number of particles and system size in the study pro-
vides insight into characteristics of parallel compute platforms, where latency,
data transfer, memory access characteristics and compute intense work can
be identified as fingerprints in benchmark runs. Data layouts are compared,
for which the access of structure-of-arrays shows best performance in most
cases. It is demonstrated that function portability can be achieved straightfor-
wardly with OpenCL, while performance portability lacks behind as various
architectures strongly depend on specific vectorisation optimisation.

Keywords Molecular Dynamics, OpenCL, shared memory parallelisation,
many-core architectures

1 Introduction

Molecular Dynamics (MD) is widely used in various scientific domains, e.g.
materials science, soft matter or biophysics, where the evolution of specific
systems can be described by point-like or extended particles, obeying the

Rene Halver
Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS),
Forschungszentrum Jülich (JSC), D-52425 Jülich, Germany, E-mail: r.halver@fz-juelich.de

Wilhelm Homberg
Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS),
Forschungszentrum Jülich (JSC), D-52425 Jülich, Germany, E-mail: w.homberg@fz-
juelich.de

Godehard Sutmann
Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS),
Forschungszentrum Jülich (JSC), D-52425 Jülich, Germany, E-mail: g.sutmann@fz-
juelich.de
ICAMS, Ruhr-University Bochum, D-44801 Bochum, Germany

2 Rene Halver, Wilhelm Homberg and Godehard Sutmann∗

classical equations of motion [2]. Parametrised potentials describe pair-wise
interactions between particles that may have either short-ranged (e.g. ex-
cluded volume interactions [2]) or long-ranged (e.g. electrostatics [4]) influ-
ences. Short range interactions, in combination with pair lists are considered
in the present article (Fig. 1) and can be reduced to a linear complexity,

Rc

periodic correction

Fig. 1: Schematic of a parti-
cle system in 2D with periodic
boundary conditions. The cir-
cle indicates the interaction
range of a tagged particle, re-
stricted to region with cutoff-
radius Rc (with cell length
lc = Rc).

O(N), as interactions decay sufficiently fast
to be omitted beyond the cutoff radius Rc.
A shared-memory parallelisation of neigh-
bour lists is prone to race conditions if
no special care is taken. Collisions between
reading and writing of data in a thread-
parallel implementation, where particles are
divided between threads, is very likely to
occur [3]. To avoid possible race-conditions
there exist basically three options: (i) ex-
plicit synchronisation; (ii) list copies; or
(iii) atomic memory access implemented via
compare-and-swap (CAS) operations.
For a function portable benchmark OpenCL
is one possible choice among others (e.g. In-
tel TBB or OpenACC) as it supports code
execution on CPUs, GPUs, FPGAs as well
as Intels Xeon Phi architecture [5]. For the
present work, OpenCL was chosen, as it is
supported on all shared memory architec-
tures, available at Jülich Supercomputing
Centre (JSC). The set of features of OpenCL
that can be used for a platform-overarching
benchmark is limited by the lowest com-

monly supported OpenCL standard as well as by the set of extensions com-
monly available on these platforms. While the standard level defines the syntax
and general features that can be used, some functionality is kept in extensions,
e.g. the use of double-precision calculations or compare-and-swap (CAS) func-
tionality. To execute the same program version on all considered architectures,
OpenCL 1.2 had to be chosen, which was found as common standard level on
all machines.

2 Benchmark

In the present article we focus on short range interacting particle systems,
where the range of influence is defined by the cutoff radius RC . When introduc-
ing the concept of linked-cell lists, the computational complexity is O(NM),
with N being the number of particles in the system and M the maximum num-
ber of particles in a cell [8, 10]. The benchmark system consists of particles in
a cuboid 3-dimensional box of lengths Lα (α = x, y, z) with periodic boundary

Function Portability of Molecular Dynamics with OpenCL 3

conditions, interacting via the repelling part of a Lennard-Jones potential [2],
which is a typical representative for a short range potential

U(r ≤ r∗) = 4ε

[(σ
r

)12

−
(σ
r

)6

+
1

4

]
(1)

with cut-off radius r∗ = 21/6σ and U(r > r∗) = 0 from where forces F =
−∇U(r) onto particles are computed; r is the distance between two particles,
ε the depth of the potential well and σ the characteristic size of a particle. To
propagate particles continuously in space the classical equations of motion are
integrated via the standard Verlet algorithm [2].

The average number of particles per cell 〈M〉, is kept constant, giving a
total number of particles N = nxnynz〈M〉, with nx, ny, nz being the number
of cells in each cartesian direction. The relation of cell size lc to the cutoff
radius Rc is simply given by Rc = lc = 21/6σ or σ = lc/2

1/6 and therefore the
boxsize is Lα = nαRc. In the next section different techniques are described,
which improve the performance of the simulation before presenting the results
of the benchmarks in the final section.

3 Implementation of the Algorithm and Data Structures

3.1 Algorithmic Implementation Details

While a multi-node parallelisation of MD simulations, e.g. based on a domain
decomposition [9], is standard, a shared-memory parallelisation of neighbor cell
construction with each domain is not trivial. If particles are distributed onto
different threads on domains, concurrent memory access is likely, if more than
one thread attempts to sort particles into the same cell. As the memory access
is not synchronized by default, race conditions can occur due to simultaneous
write operations into single memory locations, leading to erroneous accounting
of particles and list constructions.
Three different approaches will be described to avoid such race conditions: (i)
list copies, (ii) explicit synchronisation and (iii) atomic memory access. Each
of these approaches has its specific advantages and disadvantages.

Of the three different approaches the synchronisation-based approach is the
one that requires the fewest changes to the sequential implementation. In Alg. 1
a problem might occur if two threads try to simultaneously update the cell
information. If these threads execute the first step, i.e. updating list[pidx],
before any of them completes the second step, i.e. updating entry[cidx], it
follows that their particles are pointing in list to the same former entry parti-
cle, entry[cidx]. After updating entry[cidx] in the second step, entry[cidx]
will contain only one of those particle indices, the linked list is broken and
excludes the other particle from being accessible through the list. In princi-
ple, the two statements need to be combined into one ’atomic’ statement for
which either critical sections or locks could be used. However, as OpenCL is
intrinsically based on asynchronous execution, all solutions for race-condition

4 Rene Halver, Wilhelm Homberg and Godehard Sutmann∗

Algorithm 1: Sequential implementation of neighbor cell sorting
for all particles P do

calculate cell index idx ;
update list element L[P] to current cell entry E [idx];
update cell entry E [idx] to P ;

end

prevention, relying on global synchronisation of work groups are excluded by
definition.
In contrast to the synchronisation-based approaches the copy-based approach
utilizes thread-local partial copies of the final result in order to avoid race-
conditions. Each thread independently works on its local copy into which all
of its particles are sorted. After completion, local copies are merged. While
this variant can be very efficient for a small number of threads, it becomes
inefficient once the number of threads reaches a threshold value, which de-
pends on memory size and bandwidth [3]. This is due to the increased number
of copies, which have to be filled simultaneously, leading to random access to
(main) memory. For massively parallel systems, this approach is not feasible
since the memory size requirements grow linearly with the number of threads,
particularly on GPUs or Intel MICs, where hundreds and thousands of threads
work concurrently. As a consequence, this approach has been discarded for the
present benchmark. An approach is required which ensures the correctness of
a parallel list construction without exacerbating the memory demand. Atomic
memory access is a possible solution utilizing the compare and swap (CAS)
operation. This hardware operation compares the value stored at a memory
address to a test value before updating the memory address. Listing 1 shows
as an example for the parallel list construction implemented with a CAS op-
eration in OpenCL:
First, the cell index cidx is calculated for the local particle pidx. Within a
loop the first entry of the particle list of this cell entry[cidx] is stored in a
temporary value old. Then, the particle list at index pidx is updated to the
value of old. This operation can be performed safely, since no other work item

Listing 1: Creation of a neighbor list using CAS operations in OpenCL

1: int old , cmp;
2: // arrays of particle positions (x,y,z), NC = no. of cells per dim
3: int cidx = (int)(x[pidx]/l_c) +
4: (int)(y[pidx]/l_c) * NC +
5: (int)(z[pidx]/l_c) * NC * NC;
6: // application of CAS operation to update list/entry
7: do
8: {
9: // store old entry particle index

10: old = entry[cidx];
11: // update next particle in list for particle pidx
12: list[pidx] = old;
13: // try to update entry particle of target cell cidx
14: cmp = atomic_cmpxchg(entry+idx ,old ,gid);
15: }
16: // if update failed , repeat the process
17: while(old != cmp);

Function Portability of Molecular Dynamics with OpenCL 5

processes particle pidx. Next, the CAS operation is used to attempt an update
of entry[cidx]. Now two different outcomes might occur: (i) entry[cidx]

was changed in the mean time by another work item. In this case the value of
old is not equal to the current value of entry[cidx], the update is omitted
and the loop is repeated. (ii) the value of entry[cidx] was not changed and
its value is identical to that of old. In this case entry[cidx] is updated.
The CAS operation returns the current value of entry[cidx], for (i) a value
different from old, for (ii) the same value as old. In order to check the success
of the update, the return value of the CAS operation is stored to cmp and
compared with old at the end of the loop.
Compared to an update of a memory location by an assignment, hardware
supported CAS operations slightly increase the runtime due to the performed

Listing 2: Calculation of the prefix sum of contained particles in OpenCL

1: // check if global index of work item is smaller than number of cells
2: int gid = get_global_id (0);
3: if (gid >= n) return;
4: int lid = get_local_id (0); // get index of work item in work group
5: int grid = get_group_id (0); // get index of work group
6: int gsize = get_local_size (0); // get size of work group
7:
8: // if not the first pass of the kernel , i.e prefix sum calculation on
9: // cell with cells that are not neighboring

10: if (pass > 0)
11: {
12: // calculate the shift for the partial prefix sum calculation ;
13: // the shift equals 2**(pass -1)
14: int shift = 1<<(pass -1);
15: // check if the local cell index is larger than the shift to avoid
16: // accessing out of bound memory
17: if (gid > shift)
18: {
19: // calculate the partial prefix sum of the local cell together
20: // with the shifted cell
21: out[gid] = in[gid] + in[gid - shift];
22: }
23: // if the shift is larger than the local cell index , the partial
24: // prefix sum is unchanged
25: else
26: out[gid] = in[gid];
27: }
28: else // the first call of the kernel
29: {
30: // count the number of particles in the local cell
31: int loc_count = 0; int gidx = heads[gid];
32: while(gidx != -1)
33: {
34: loc_count ++;
35: gidx = list[gidx];
36: }
37: // if the cell is the last cell , set the partial prefix sum for
38: // the first cell to zero
39: if (gid == n-1)
40: out [0] = 0;
41: // in all other cases set the prefix sum for the cell with the next
42: // higher index to the number of particles in the local cell
43: else
44: out[gid+1] = loc_count;
45: }

6 Rene Halver, Wilhelm Homberg and Godehard Sutmann∗

compare operation. The essential advantage of the CAS operation is that it
can be applied to work items of different work groups in an OpenCL imple-
mentation. Therefore the implementation using the CAS operation was the
method of choice for this benchmark.
Another feature that was implemented in the benchmark was a resorting al-
gorithm restructuring the particle array in such a way, that particles within
a single cell are located in a continous chunk of memory. Particles contained
in cells with neighboring indices are stored analogously in the particle array.
This resorting algorithm consists of several steps.
In a first step, a prefix sum counting the number of particles in the cells is
calculated. Due to the restrictions of OpenCL concerning global operation, the
prefix sum has to be calculated in multiple steps. These steps calculate the
prefix sum in a tree-based calculation. In the first step the number of particles
in each cell is is counted and the partial prefix sum for each cell is set to the
number of particles in the previous cell. For the first cell the prefix sum is set
to zero. In the subsequent steps a shift s = 2ns−1, where ns is the step num-
ber, is computed. Each partial result is now added to the partial result of the
cell that has a distance of s within the cell array. This procedure is repeated
for max (dlog2 (ncells)e, 1) times, due to the tree-based computation. For the
implementation of the prefix sum calculation in OpenCL refer to listing 2.
The result of the prefix sum calculation is then used to resort the particles
within the particle array. Using the prefix sum the required space for each
cell within the particle array is determined. In order to simplify the resorting
procudure two arrays are used. The first array contains the particles in their
unsorted state. With the use of the prefix sum the particles are transfered to
the new array, while sorting them so that they are located according to the

Listing 3: Correction of the particles list in cell during resort on the device

1: // heads: array of ints , containing the entry particles
2: // for each cell
3: // list: linked list of the particle lists for the cells
4: // offset: array of integers , containing the prefix sum
5: // get global index of work item
6: int gid = get_global_id (0);
7: // check if work item index is larger then number of cells
8: if (gid >= nc_total) return;
9: // check if the cell is not empty

10: if (heads[gid] == -1) return;
11: // initialise the start index of the local cell
12: int i = offset[gid];
13: // the last index in a cell is either the particle index
14: // preceeding the start of the next cell or for the last
15: // cell the highest particle index in the system.
16: int endpoint = (gid != nc_total -1)?(offset[gid +1] -1):(np -1);
17: // fill the particle list with intermediate indices
18: while(i < endpoint)
19: {
20: list[i] = i+1;
21: i++;
22: }
23: // terminate the particle list of the cell with an invalid index (-1)
24: list[i] = -1;

Function Portability of Molecular Dynamics with OpenCL 7

cell they are sorted into. Figure 2 illustrates this resorting procedure. After
the particles are resorted, the particle list for each cell needs to be updated.
To find the correct start and end indices of the particles within each cell, the
prefix sum is required again. Since the cell contents are stored in a consequence
order within the new particle array, each start particle for the list is given by
the prefix sum and each end particle is the particle before the prefix sum of
the next cell (cmp. Listing 3).

3.2 Organisation and Distribution of Data Structures

An important aspect concerns data locality, i.e. both the important difference
between sorted and unsorted particle data and their access as well as the layout
of the data structures containing this data. To this end,

2 1 3 1 2 3 3 2

1 1 2 2 2 3 3 3

Fig. 2: Resorting of particles from un-
sorted input particle array to sorted
output particle array.

two different memory layouts were
implemented for the arrays used to
store the particle data. The first
is an array of structures (AoS),
where each structure contains the
data of a single particle, the sec-
ond is a structure of arrays (SoA),
where a single structure contains
a collection of arrays, each repre-
senting a parameter of a particle.
In a SoA the data of a single par-
ticle has the same index in each of the arrays. For both implementations (AoS
and SoA) a sorting algorithm was implemented, that sorts the particle data
array with regard to the neighbor list, i.e. particles in the same neighbor cell
are grouped together in the particle data array to have higher data locality.
In the result section differences between these four possible implementations
will be shown.
In order to compare a reprensentative set of multi- and many-core architec-
tures, the benchmark was implemented in OpenCL. This allowed to run the
benchmark on all test platforms without the need to change the benchmark
source code. The OpenCL kernels were implemented in such a way, that the
data is either distributed to each cell either on particle or cell basis. This de-
pends on the specific task of each kernel, as e.g. the integration of particles
requires only data from a single particle, while e.g. the calculation of interac-
tions requires all particles from a local cell, as well as surrounding cells.
The number of work items per work group are kept constant for all kernels. To
calculate the number of work groups nwg required to run a given system size,
the number of required work items nwi is divided by the number of work items
per work group nwig: nwg = nwi

nwig
. Depending on the type of kernel, the num-

ber of required work items depends on the number of particles or the number
of cells in the system. The number of work items per work group is dependent
on the given architecture and has an upper limit, which is the reason why

8 Rene Halver, Wilhelm Homberg and Godehard Sutmann∗

for larger system sizes it is not possible to synchronize on a work group level
alone, since more than one work group is required to execute the code.

4 Architectures

Architecture Relevant Components Peak Performance
GPU (K20) NVIDIA K20X 3.95 TF (sp), 1.31 TF (dp)
GPU (K80) NVIDIA K80 5.6 TF (sp), 1.87 TF (dp)

GPU (S10000) AMD S10000 5.91 TF (sp), 1.48 TF (dp)
Xeon Phi (5110P) Intel Xeon Phi 5110P 1.011 TF (sp)

CPU (SandyBridge) Intel Xeon E5 2650 128 GF

Table 1: Specifications of the systems used for
the different architectures: (sp) single precision
(dp) double precision

The benchmarks were con-
ducted on three different
machines: JURECA [6],
JUROPA3 [7]
(two of the supercomputer
systems at JSC) as well
as on a testing system for
GPUs. Table 1 shows the
specifications for the dif-
ferent architectures used for benchmarking. JUROPA3 has different partitions,
that employ the same CPUs (Intel E5 2650), but contain different accelera-
tors. For the scope of this paper the benchmarks were run on the GPU and
the Intel Xeon Phi partitions. Due to the availability of the Intel OpenCL
driver on the Intel Xeon Phi partition, the CPU comparison was conducted on
JUROPA3 instead of running them on the faster E5-2680 Haswell processors
on JURECA, where no OpenCL support is available for the CPU. Since the
AMD GPU has less memory available than its NVIDIA counterparts, larger
benchmarks could not be performed on the card. For all the tests the code
was compiled with the GNU compiler version 4.9.3., with operating system
CentOS 7.

5 Results

To compare the performance on the different architectures, several benchmark
runs were conducted. The most basic one was the comparison of the normalised
runtime of the interaction kernel on each architecture (see Figs. 3a - 3f). Here,
normalisation is defined as the measured runtime divided by the number of
particles and the number of timesteps. No data transfer times were included,
since the data is kept resident in the device memory for the complete bench-
mark and no additional data transfer is required. For the case of resorting
the time required to resort the data is included into the presented times, i.e.
the runtime is the sum of the time spent in the interaction kernel and the
time spent to resort the data. All results were obtained with single precision
calculations. For the AMD GPU (Fig. 3c) the AoS variant of the benchmark
failed to execute for unknown reasons and therefore only the SoA results are
presented. When comparing the benchmark results, it can be seen that the
different architectures show a specific behavior; since the K20X (Fig. 3a) and
the K80 GPUs (Fig. 3b) are different versions of the same production line,
their results look fairly similar. With the exception of the Xeon E5-2650 CPU

Function Portability of Molecular Dynamics with OpenCL 9

104 105 106 107
10−8

10−7

10−6

random memory accesses

work per particle

≈ 1.4x

≈ 4xlatency

number of particles

n
or

m
al

iz
ed

ru
n
ti

m
e

AoS no resort
AoS resort

SoA no resort
SoA resort

(a) NVIDIA K20

104 105 106 107
10−8

10−7

10−6

number of particles
n
o
rm

al
iz

ed
ru

n
ti

m
e

AoS no resort
AoS resort

SoA no resort
SoA resort

(b) NVIDIA K80

104 105 106 107
10−8

10−7

10−6

number of particles

n
or

m
al

iz
ed

ru
n
ti

m
e

SoA no resort
SoA resort

(c) AMD S10000

104 105 106 107
10−7

10−6

10−5

number of particles

n
or

m
al

iz
ed

ru
n
ti

m
e

AoS no resort
AoS resort

SoA no resort
SoA resort

(d) Intel Xeon Phi 5110P

104 105 106 107
10−8

10−7

10−6

number of particles

n
or

m
al

iz
ed

ru
n
ti

m
e

AoS no resort
AoS resort

SoA no resort
SoA resort

(e) Intel Xeon E5-2650

104 105 106 107
10−8

10−7

10−6

10−5

number of particles

n
or

m
al

iz
ed

ru
n
ti

m
e

K20
K80

AMD
MIC
CPU

(f) SoA single precision, all architectures

Fig. 3: Runtime comparison on all architectures, using single-precision calcu-
lations. Note the shift in scale in (d) and (f) in order to show the full range.

10 Rene Halver, Wilhelm Homberg and Godehard Sutmann∗

(Fig. 3e) all benchmarks suggest an architecture-dependent minimum problem
size that must be reached before a stable performance is achieved. I.e. for small
system sizes the specific runtime is exceedingly large compared with large sys-
tem sizes. Exemplary this is shown in Fig. 3a and is due to the latency of high
frequency accesses to small chunks of memory. Since transfer times are ex-
cluded in the results, an additional contribution to this behaviour is expected
to result from a device-dependent overhead induced by the scheduling of the
work-groups on the device. On the CPU this behaviour can only be observed to
a smaller extent than on the other devices. For nearly all architectures, except
the Xeon Phi (Fig. 3d) it can be observed that in the case of non-sorted data
the runtime for larger problem sizes increases again. This can be understood
by the fact that non-sorted data are scattered over memory and will have
an unfavourable access pattern compared to the case of sorted data, where
all particles belonging to a single cell are stored consecutively in memory.

104 105 106 107
10−8

10−7

10−6

10−5

number of particles

n
or
m
al
iz
ed

ru
n
ti
m
e

K20
K80

AMD
MIC
CPU

Fig. 4: Performance comparison between
all architectures with sorted SoA data
structure in double precision arithmetics.

A possible explanation, why
this behaviour cannot be ob-
served on the Xeon Phi is
the much lower overall perfor-
mance of the Xeon Phi which
hides the data access time be-
hind a large computation time.
For all other architectures the
compute time is already so
small that data access time is
a crucial measure for the over-
all performance.
The choice of the data struc-
ture has a strong impact on
the GPU performance and to
a smaller extent also on the
Xeon and Xeon Phi architec-
tures. Since for the calculation
of the forces within the interaction kernel only parts of the particle data is
required (position and forces), it is very inefficient to store the whole set of
data (velocities, masses, indices) within a single structure. In this case all the
particle data within the complete structure would be loaded into the cache,
filling it with nonessential data, i.e. leading to unnecessary data transfer and
inefficient cache usage. However, if data is stored in individual arrays, data of
consecutive particles is loaded into cache, and can be reused more efficiently.
The difference between GPU and CPU performance comes into play when
considering the size of data loaded into the registers. CPUs have a smaller
capacity of data size loaded into registers, i.e. the load-operations need to be
performed with a higher frequency than on a GPU. Therefore, the ratio be-
tween performance and load-operations is less favourable on a CPU and data
layout patterns have less impact on the overall performance. On the other
hand a GPU can operate most efficiently on large streams of data which can

Function Portability of Molecular Dynamics with OpenCL 11

be consecutively processed. If the overall number of data loading operations
is increased due to nonessential items in the data structures, performance
degradation becomes more severe. This might explain the differences in the
performance between GPU architectures (NVIDIA GPUs in Figs. 3a, 3b) and
CPUs (Fig. 3e).
One peculiar detail that was observed on the AMD S10000 is the low single-
precision performance compared to the NVIDIA cards. From the specification
of the peak performance characteristics (cmp. Table 1), the AMD card should
perform on the same level as the K80. However, the memory bandwidth of the
S10000 is lower when compared to the NVIDIA GPUs leading to a reduced
overall performance of the single-precision benchmark. For the case of double
precision calculations, the frequency of load operations gets lower and there-
fore the effect of memory bandwidth limitations gets less pronounced (cmp.
Fig. 4). Therefore, measuring double-precision performance on the AMD GPU
shows comparable results to the NVIDIA K80, as could be expected.
Overall the benchmark shows a better performance for GPUs in comparison to
the Xeon E5-2650 when test systems have a sufficient size, i.e. beyond showing
memory latencies (Fig. 3f). Only for double-precision calculations it is observed
that the K20X is only as fast as the CPU (cmp. Fig. 4). We only note here
that the performance on the Xeon Phi is lacking behind all other architectures,
since it is roughly a magnitude slower than other machines (Fig. 3f). A main
reason for this behaviour is the missing vectorisation optimisation of the code,
which was out of focus for this paper. Furthermore, the OpenCL drivers might
lack best optimisation for the Intel Xeon Phi KNC, since the OpenCL support
for for KNC is deprecated [5].

6 Conclusion

One of the main goals of the present work was to investigate the performance
characteristics of a function portable cell based MD program on a set of dif-
ferent architectures. OpenCL has been selected as a programming language
which allows for interoperability on different types of architectures, e.g. CPU
and GPU based systems. Without any changes of the code it was possible to
execute a benchmark on several multi- and many-core systems available at
Jülich Supercomputing Centre. As a downside of that approach the code was
not optimised specifically for any of the architectures and therefore did not
present an optimal performance. This especially accounts for the Xeon Phi
system, where vectorisation is an essential issue to outperform an implemen-
tation without specific optimisation. On the other side this approach offers
the possibility to have a comparison between basic features of the different ar-
chitectures, e.g. memory bandwidth, core speed and effects of data structure
layout. To account for different data access patterns, we included the com-
parison of arrays-of-structures (AoS) and structures-of-arrays (SoA), which is
an important issue for, e.g., GPU architectures. It was shown that the SoA
layout improves the performance on both the GPU and CPU for the case of

12 Rene Halver, Wilhelm Homberg and Godehard Sutmann∗

non-sorted data and does not degrade performance in the case of sorted data.
In this respect it can be concluded that further optimisation targeted to GPU
architectures will lead most probable also to a significant performance gain
on CPUs. Unfortunately, the future of OpenCL cannot be foreseen at present.
E.g., the support of OpenCL for Intel Xeon Phi is already deprecated and so it
remains to be seen, if OpenCL will remain to be a valid option supporting fu-
ture architectures. Nevertheless, at present the choice of OpenCL provides the
option to design MD simulation packages that can run on a variety of different
architectures without the need to provide specialised kernels or programs for
each individual machine. In the present article we focused the work on func-
tion portability. A most desirable feature would be performance portability,
which we excluded from the present investigation, but which is of high impor-
tance in view of the developments towards more complex and heterogeneous
architectures. International consortia are considering this aspect and it has to
be awaited whether this leads to simplified porting and improved accessibility
of future architectures (for a collection of contributions, see e.g. [1]).

References

1. DOE (2017) Performance Portability WS DOE. URL https://

asc.llnl.gov/DOE-COE-Mtg-2016/
2. Frenkel D, Smit B (2002) Understanding molecular simulation. From al-

gorithms to applications. Academic Press, San Diego
3. Halver R, Sutmann G (2015) Multi-Threaded Construction of Neighbour

Lists for Particle Systems in OpenMP. In: Parallel Processing and Applied
Mathematics / Wyrzykowski, Roman (Editor), 11th International Confer-
ence on Parallel Processing and Applied Mathematics, Krakow (Poland),
6 Sep 2015 - 9 Sep 2015, DOI 10.1007/978-3-319-32152-3 15

4. Hockney RW, Eastwood JW (1981) Computer simulation using particles.
McGraw-Hill, New York

5. Intel (2017) Intel OpenCL SDK. URL https://software.intel.com/en-
us/articles/opencl-drivers

6. JSC (2017) JURECA. URL http://www.fz-juelich.de/ias/jsc/
jureca

7. JSC (2017) JUROPA3. URL http://www.fz-juelich.de/ias/jsc/
EN/Research/HPCTechnology/ClusterComputing/JUROPA-3/JUROPA-

3 node.html
8. Rapaport D (2001) The Art of Molecular Dynamics Simulation. Cam-

bridge University Press, Cambridge
9. Sutmann G (2002) Classical molecular dynamics. In: Grotendorst J, Marx

D, Muramatsu A (eds) Quantum simulations of many-body systems: from
theory to algorithms, NIC, Jülich, vol 10, pp 211–254

10. Sutmann G, Stegailov V (2006) Optimization of neighbor list techniques
in liquid matter simulations. J Mol Liq 125:197–203

