Skip to main content
Log in

Fast solution of electromagnetic scattering problems using Xeon Phi coprocessors

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Electromagnetic scattering problems can be solved by discretizing and transforming integral equations into matrix equations using the method of moments. In large-scale problems, the problem cannot be solved directly and needs to be solved using iterative methods, which use matrix vector products (MVP) to perform the iterative convergence to the solution. An efficient parallel implementation of MVP over Intel Xeon Phi coprocessor is proposed in this paper to speed up the solution of the scattering over a generalized minimal residual method. Using these manycore integrated processors, we can solve an electromagnetic scattering three-dimensional problem improving runtime on a coprocessor system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Harrington RF (1993) Field computation by moment method. IEEE Press, New York

    Book  Google Scholar 

  2. Hao F, Nehl CL, Hafner JH, Nordlander P (2007) Plasmon resonances of a gold nanostar. Nano Lett 7:729732

    Article  Google Scholar 

  3. Jin J (2002) The finite element method in electromagnetics. Wiley, Hoboken

    MATH  Google Scholar 

  4. Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Statist Comput 7:856869

    Article  MathSciNet  MATH  Google Scholar 

  5. Kelley CT (1995) Iterative methods for linear and nonlinear equations. Soc Ind Appl Math

  6. Coifrnan R, Rokhlin V, Wanzura S (1993) The fast multipole method for the wave equation: a pedestrian prescription. IEEE Antennas Propag Mag 35(3):7–12

    Article  Google Scholar 

  7. Song JM, Chew WC (1995) Multilevel fast multipole algorithm for solving combined field integral equations of electromagnetic scattering. Microw Opt Technol Lett 10:14–19

    Article  Google Scholar 

  8. Song JM, Lu CC, Chew WC (1997) Multi level fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans Antennas Propag 45(10):1488–1493

    Article  Google Scholar 

  9. Wagner R, Song J, Chew WC (1997) Monte carlo simulation of electromagnetic scattering from two-dimensional random rough surfaces. IEEE Trans Antennas Propag 45(2):235–245

    Article  Google Scholar 

  10. Taboada JM, Landesa L et al (2009) High scalability FMM-FFT electromagnetic solver for supercomputer systems. IEEE Antennas Propag Mag 51(6):20–28

    Article  Google Scholar 

  11. López-Portugués M, López-Fernández JA, Díaz-Gracia N et al (2014) Aircraft noise scattering prediction using different accelerator architectures. J Supercomput 70(2):612–622

    Article  Google Scholar 

  12. López-Portugués M, López-Fernández JA, Ranilla J, Ayestarán RG, Las-Heras F (2017) Using heterogeneous computing for scattering prediction in scenarios with several source configurations. J Supercomput 73(1):57–74

    Article  Google Scholar 

  13. Lin Z, Chen Y, Zhao X, Garcia-Donoro D, Zhang Y, Zhang H (2017) Parallel higher-order method of moments with efficient out-of-GPU memory schemes for solving electromagnetic problems. ACES J 32(9):781–788

    Google Scholar 

  14. Poggio AJ, Miller EK (1973) Computer techniques for electromagnetics, Chap.4, R. Mittra (ed.). Pergamon Press, New York

  15. Yla-Oijala P, Taskinen M, Jarvenpaa S (2005) Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods. Radio Sci 40:6

    Article  Google Scholar 

  16. Rivero J, Taboada JM, Landesa L, Obelleiro F, Garcia-Tunon I (2010) Surface integral equation formulation for the analysis of left-handed metamaterials. Opt Express 18(15):15876–15886

    Article  Google Scholar 

  17. Poggio AJ, Miller EK (1973) Integral equation solutions of three-dimensional scattering problems. In: R. Mittra (ed.) Computer Techniques for Electromagnetics, Chap.4. Pergamon Press

  18. Rao S, Wilton D, Glisson A (1982) Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans Antennas Propag 30(3):409–418

    Article  Google Scholar 

  19. Intel Math Kernel Library Developer Reference (2015). https://software.intel.com/en-us/articles/mkl-reference-manual

Download references

Acknowledgements

This work was supported by the Spanish Government and European Regional Development Fund (ERDF) (Project TEC2017-85376-C2-1-R) and by Junta de Extremadura and European Regional Development Fund (ERDF) (Project GR18055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Landesa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campon, J.L., Landesa, L. Fast solution of electromagnetic scattering problems using Xeon Phi coprocessors. J Supercomput 75, 370–383 (2019). https://doi.org/10.1007/s11227-018-02731-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-018-02731-3

Keywords

Navigation