Skip to main content
Log in

Paired many-to-many two-disjoint path cover of balanced hypercubes with faulty edges

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

As a variant of the well-known hypercube, the balanced hypercube \(BH_n\) was proposed as a desired interconnection network topology for parallel computing. It is known that \(BH_n\) is bipartite. Assume that \(S=\{s_1,s_2\}\) and \(T=\{t_1,t_2\}\) are any two sets of vertices in different partite sets of \(BH_n\) (\(n\ge 1\)). It has been proved that there exist two vertex-disjoint \(s_1,t_1\)-path and \(s_2,t_2\)-path of \(BH_n\) covering all vertices of \(BH_n\). In this paper, we prove that there always exist two vertex-disjoint \(s_1,t_1\)-path and \(s_2,t_2\)-path covering all vertices of \(BH_n\) (\(n\ge 2\)) with at most \(2n-3\) faulty edges. The upper bound \(2n-3\) of edge faults can be tolerated is optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arabnia HR, Oliver MA (1986) Fast operations on raster images with SIMD machine architectures. Comput Graphic Forum 5:179–189

    Article  Google Scholar 

  2. Arabnia HR (1990) A parallel algorithm for the arbitrary rotation of digitized images using process-and-data-decomposition approach. J Parallel Distrib Comput 10:188–192

    Article  Google Scholar 

  3. Arabnia HR, Bhandarkar SM (1996) Parallel stereocorrelation on a reconfigurable multi-ring network. J Supercomput 10:243–269

    Article  MATH  Google Scholar 

  4. Arabnia HR, Taha TR (1998) A parallel numerical algorithm on a reconfigurable multi-ring network. Telecommun Syst 10:185–202

    Article  Google Scholar 

  5. Arabnia HR, Robinson MR (1990) Parallelizing using process-and-aata-decomposition (PADD) approach on a multi-ring transputer network-an example. In: Wagner AS (ed) Transputer research and applications (NATUG 3). IOS Press, Sunnyvale, pp 107–118

    Google Scholar 

  6. Arabnia HR (1993) A transputer-based reconfigurable parallel system. In: Atkins S, Wagner AS (eds) Transputer research and applications (NATUG 6). IOS Press, Vancouver, pp 153–169

    Google Scholar 

  7. Bhandarkar SM, Arabnia HR (1997) Parallel computer vision on a reconfigurable multiprocessor network. IEEE Trans Parallel Distrib Syst 8:292–310

    Article  Google Scholar 

  8. Bondy JA, Murty USR (2007) Graph theory. Springer, New York

    MATH  Google Scholar 

  9. Cai J (2015) An algorithm for Hamiltonian cycles under implicit degree conditions. Ars Comb 121:305–313

    MathSciNet  MATH  Google Scholar 

  10. Cai J, Li H (2016) Hamilton cycles in implicit 2-heavy graphs. Graphs Comb 32:1329–1337

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen X-B (2016) Paired 2-disjoint path covers of faulty \(k\)-ary \(n\)-cubes. Theor Comput Sci 609:494–499

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheng D, Hao R, Feng Y (2014) Two node-disjoint paths in balanced hypercubes. Appl Math Comput 242:127–142

    MathSciNet  MATH  Google Scholar 

  13. Dong Q, Zhou J, Fu Y, Gao H (2013) Hamiltonian connectivity of restricted hypercube-like networks under the conditional fault model. Theor Comput Sci 472:46–59

    Article  MathSciNet  MATH  Google Scholar 

  14. Dybizbański J, Szepietowski A (2017) Hamiltonian paths in hypercubes with local traps. Inf Sci 375:258–270

    Article  Google Scholar 

  15. Fan J, Lin X, Jia X (2007) Optimal path embeddings of paths with various lengths in twisted cubes. IEEE Trans Parallel Distrib Syst 18(4):511–521

    Article  Google Scholar 

  16. Gould RJ (2003) Advances on the Hamiltonian problem—a survey. Graphs Comb 19:7–52

    Article  MathSciNet  MATH  Google Scholar 

  17. Hao R-X, Ru Z, Feng Y-Q (2014) Hamiltonian cycle embedding for fault tolerance in balanced hypercubes. Appl Math Comput 244:447–456

    MathSciNet  MATH  Google Scholar 

  18. Huang K, Wu J (1997) Fault-tolerant resource placement in balanced hypercubes. Inf Sci 99:159–172

    Article  MathSciNet  Google Scholar 

  19. Jo S, Park J-H, Chwa K-Y (2013) Paired many-to-many disjoint path covers in faulty hypercubes. Theor Comput Sci 513:1–24

    Article  MathSciNet  MATH  Google Scholar 

  20. Kim S-Y, Park J-H (2013) Paired many-to-many disjoint path covers in recursive circulants \(G(2^m,4)\). IEEE Trans Comput 62(12):2468–2475

    Article  MathSciNet  MATH  Google Scholar 

  21. Leighton FT (1992) Introduction to parallel algorithms and architectures. Morgan Kaufmann Publishers, San Mateo

    MATH  Google Scholar 

  22. Li P, Xu M (2017) Edge-fault-tolerant edge-bipancyclicity of balanced hypercubes. Appl Math Comput 307:180–192

    MathSciNet  MATH  Google Scholar 

  23. Lü H, Li X, Zhang H (2012) Matching preclusion for balanced hypercubes. Theor Comput Sci 465:10–20

    Article  MathSciNet  MATH  Google Scholar 

  24. Lü H, Zhang H (2014) Hyper–Hamiltonian laceability of balanced hypercubes. J Supercomput 68:302–314

    Article  Google Scholar 

  25. Lü H (2017) On extra connectivity and extra edge-connectivity of balanced hypercubes. Int J Comput Math 94(4):813–820

    Article  MathSciNet  MATH  Google Scholar 

  26. Lü H, Gao X, Yang X (2016) Matching extendability of balanced hypercubes. Ars Comb 129:261–274

    MathSciNet  MATH  Google Scholar 

  27. Park J-H, Kim H-C, Lim H-S (2006) Many-to-many disjoint path covers in hypercube-like interconnection networks with faulty elements. IEEE Trans Parallel Distrib Syst 17(3):227–240

    Article  Google Scholar 

  28. Park J-H, Kim H-C, Lim H-S (2009) Many-to-many disjoint path covers in presence of faulty elements. IEEE Trans Comput 58(4):528–540

    Article  MathSciNet  MATH  Google Scholar 

  29. Tsai C-H (2004) Linear array and ring embeddings in conditional faulty hypercubes. Theor Comput Sci 314:431–443

    Article  MathSciNet  MATH  Google Scholar 

  30. Tsai C-H, Tan JJM, Chuang Y-C, Hsu L-H (2002) Hamiltonian properties of faulty recursive circulant graphs. J Int Netw 3:273–289

    Article  Google Scholar 

  31. Wang F, Zhang H (2018) Hamiltonian laceability in hypercubes with faulty edges. Discrete Appl Math 236:438–445

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang S, Zhang S, Yang Y (2014) Hamiltonian path embeddings in conditional faulty \(k\)-ary \(n\)-cubes. Inf Sci 268:463–488

    Article  MathSciNet  MATH  Google Scholar 

  33. Wani MA, Arabnia HR (2003) Parallel edge-region-based segmentation algorithm targeted at reconfigurable multi-ring network. J Supercomput 25:43–62

    Article  MATH  Google Scholar 

  34. Wu J, Huang K (1997) The balanced hypercube: a cube-based system for fault-tolerant applications. IEEE Trans Comput 46(4):484–490

    Article  MathSciNet  Google Scholar 

  35. Xu M, Hu H, Xu J (2007) Edge-pancyclicity and Hamiltonian laceability of the balanced hypercubes. Appl Math Comput 189:1393–1401

    MathSciNet  MATH  Google Scholar 

  36. Yan J, Zhang S, Cai J (2018) Fan-type condition on disjoint cycles in a graph. Discrete Math 341:1160–1165

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang M (2010) Bipanconnectivity of balanced hypercubes. Comput Math Appl 60:1859–1867

    Article  MathSciNet  MATH  Google Scholar 

  38. Yang M (2013) Conditional diagnosability of balanced hypercubes under the PMC model. Inf Sci 222:754–760

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang M (2012) Super connectivity of balanced hypercubes. Appl Math Comput 219:970–975

    MathSciNet  MATH  Google Scholar 

  40. Zhou Q, Chen D, Lü H (2015) Fault-tolerant Hamiltonian laceability of balanced hypercubes. Inf Sci 300:20–27

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhou J-X, Wu Z-L, Yang S-C, Yuan K-W (2015) Symmetric property and reliability of balanced hypercube. IEEE Trans Comput 64(3):871–876

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhou J-X, Kwak J, Feng Y-Q, Wu Z-L (2017) Automorphism group of the balanced hypercube. Ars Math Contemp 12:145–154

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Prof. Simon R. Blackburn for fruitful discussions during his visit to Royal Holloway, University of London. The author would also like to express his gratitude to the anonymous referees for their kind suggestions and comments that greatly improved the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huazhong Lü.

Additional information

This research was supported by the National Natural Science Foundation of China (No. 11801061) and the Fundamental Research Funds for the Central Universities (No. ZYGX2018J083).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, H. Paired many-to-many two-disjoint path cover of balanced hypercubes with faulty edges. J Supercomput 75, 400–424 (2019). https://doi.org/10.1007/s11227-018-02734-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-018-02734-0

Keywords

Navigation