Skip to main content

Advertisement

Log in

ECB4CI: an enhanced cancelable biometric system for securing critical infrastructures

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Physical access control is an indispensable component of a critical infrastructure. Traditional password-based methods for access control used in the critical infrastructure security systems have limitations. With the advance of new biometric recognition technologies, security control for critical infrastructures can be improved by the use of biometrics. In this paper, we propose an enhanced cancelable biometric system, which contains two layers, a core layer and an expendable layer, to provide reliable access control for critical infrastructures. The core layer applies random projection-based non-invertible transformation to the fingerprint feature set, so as to provide template protection and revocability. The expendable layer is used to protect the transformation key, which is the main weakness contributing to attacks via record multiplicity. This improvement enhances the overall system security, and undoubtedly, this extra security is an advantage over the existing cancelable biometric systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rinaldi SM, Peerenboom JP, Kelly TK (2001) Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Syst 21(6):11–25

    Article  Google Scholar 

  2. Brown G, Carlyle M, Salmerón J, Wood K (2006) Defending critical infrastructure. Interfaces 36(6):530–544

    Article  Google Scholar 

  3. Yang W, Hu J, Yang J, Wang S, Shu L (2013) Biometrics for securing mobile payments: benefits, challenges and solutions. In: 2013 6th International Congress on Image and Signal Processing (CISP), 16–18 Dec 2013, pp 1699–1704. https://doi.org/10.1109/cisp.2013.6743950

  4. Prabhakar S, Pankanti S, Jain AK (2003) Biometric recognition: security and privacy concerns. IEEE Secur Priv 1(2):33–42. https://doi.org/10.1109/MSECP.2003.1193209

    Article  Google Scholar 

  5. Cao K, Jain AK (2015) Learning fingerprint reconstruction: from minutiae to image. IEEE Trans Inf Forensics Secur 10(1):104–117

    Article  Google Scholar 

  6. Scheirer WJ, Boult TE (2007) Cracking fuzzy vaults and biometric encryption. In: Biometrics Symposium, 2007. IEEE, pp 1–6

  7. Juels A, Wattenberg MA (1999) fuzzy commitment scheme. In: Proceedings of the 6th ACM Conference on Computer and Communications Security. ACM, pp 28–36

  8. Uludag U, Pankanti S, Jain AK (2005) Fuzzy vault for fingerprints. In: Audio-and Video-Based Biometric Person Authentication. Springer, pp 310–319

  9. Teoh ABJ, Kim J (2007) Secure biometric template protection in fuzzy commitment scheme. IEICE Electron Express 4(23):724–730

    Article  Google Scholar 

  10. Zhou X, Kuijper A, Veldhuis R, Busch C (2011) Quantifying privacy and security of biometric fuzzy commitment. In: 2011 International Joint Conference on Biometrics (IJCB). IEEE, pp 1–8

  11. Kelkboom EJC, Breebaart J, Kevenaar TAM, Buhan I, Veldhuis RNJ (2011) Preventing the decodability attack based cross-matching in a fuzzy commitment scheme. IEEE Trans Inf Forensics Secur 6(1):107–121

    Article  Google Scholar 

  12. Yang W, Hu J, Wang SA (2013) Delaunay triangle group based fuzzy vault with cancellability. In: 2013 6th International Congress on Image and Signal Processing (CISP), 16–18 Dec 2013, pp 1676–1681. https://doi.org/10.1109/cisp.2013.6743946

  13. Juels A, Sudan M (2006) A fuzzy vault scheme. Des Codes Cryptogr 38(2):237–257

    Article  MathSciNet  Google Scholar 

  14. Nagar A, Nandakumar K, Jain AK (2008) Securing fingerprint template: fuzzy vault with minutiae descriptors. In: 19th International Conference on Pattern Recognition. IEEE, pp 1–4

  15. Narayanan R, Karthikeyan S (2012) Double encryption based secure fuzzy vault construction using fingerprint biometric features. In: 2012 International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME). IEEE, pp 178–182

  16. Tams B, Merkle J, Rathgeb C, Wagner J, Korte U, Busch C (2015) Improved fuzzy vault scheme for alignment-free fingerprint features. In: 2015 International Conference of the Biometrics Special Interest Group (BIOSIG). IEEE, pp 1–12

  17. Tams B, Mihăilescu P, Munk A (2015) Security considerations in minutiae-based fuzzy vaults. IEEE Trans Inf Forensics Secur 10(5):985–998

    Article  Google Scholar 

  18. Li C, Hu J (2016) A security-enhanced alignment-free fuzzy vault-based fingerprint cryptosystem using pair-polar minutiae structures. IEEE Trans Inf Forensics Secur 11(3):543–555

    Article  Google Scholar 

  19. Neu M, Korte U, Ullmann M (2016) Improvement of fuzzy vault for multiple fingerprints with angles. In: 2016 International Conference of the Biometrics Special Interest Group (BIOSIG). IEEE, pp 1–8

  20. Ratha NK, Connell JH, Bolle RM (2001) Enhancing security and privacy in biometrics-based authentication systems. IBM Syst J 40(3):614–634

    Article  Google Scholar 

  21. Ratha NK, Chikkerur S, Connell JH, Bolle RM (2007) Generating cancelable fingerprint templates. IEEE Trans Pattern Anal Mach Intell 29(4):561–572

    Article  Google Scholar 

  22. Teoh ABJ, Kuan YW, Lee S (2008) Cancellable biometrics and annotations on biohash. Pattern Recogn 41(6):2034–2044

    Article  Google Scholar 

  23. Yang H, Jiang X, Kot AC (2009) Generating secure cancelable fingerprint templates using local and global features. In: 2nd IEEE International Conference on Computer Science and Information Technology, 2009. ICCSIT 2009. IEEE, pp 645–649

  24. Lee C, Kim J (2010) Cancelable fingerprint templates using minutiae-based bit-strings. J Netw Comput Appl 33(3):236–246

    Article  Google Scholar 

  25. Ahmad T, Hu J, Wang S (2011) Pair-polar coordinate-based cancelable fingerprint templates. Pattern Recogn 44(10):2555–2564

    Article  Google Scholar 

  26. Wang S, Hu J (2012) Alignment-free cancellable fingerprint template design: a densely infinite-to-one mapping (DITOM) approach. Pattern Recogn 45:4129–4137

    Article  Google Scholar 

  27. Wang S, Hu J (2014) Design of alignment-free cancelable fingerprint templates via curtailed circular convolution. Pattern Recogn 47(3):1321–1329

    Article  Google Scholar 

  28. Wang S, Deng G, Hu J (2017) A partial Hadamard transform approach to the design of cancelable fingerprint templates containing binary biometric representations. Pattern Recogn 61:447–458

    Article  Google Scholar 

  29. Wang S, Yang W, Hu J (2017) Design of alignment-free cancelable fingerprint templates with zoned minutia pairs. Pattern Recogn 66:295–301

    Article  Google Scholar 

  30. Quan F, Fei S, Anni C, Feifei Z (2008) Cracking cancelable fingerprint template of Ratha. In: International Symposium on Computer Science and Computational Technology, 2008. ISCSCT’08. IEEE, pp 572–575

  31. Li C, Hu J (2013) Attacks via record multiplicity on cancelable biometrics templates. Pract Exp Concurr Comput 26:1593–1605

    Article  Google Scholar 

  32. Yang W, Hu J, Wang S (2014) The effect of spurious and missing minutiae on Delaunay triangulation based on its application to fingerprint authentication. In: 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2014), China, Xiamen, p 4

  33. Kreyszig E (2010) Advanced engineering mathematics. Wiley, New York

    MATH  Google Scholar 

  34. Blanz V, Vetter T (2003) Face recognition based on fitting a 3D morphable model. IEEE Trans Pattern Anal Mach Intell 25(9):1063–1074

    Article  Google Scholar 

  35. Ding C, Tao D (2017) Trunk-branch ensemble convolutional neural networks for video-based face recognition. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2017.2700390

    Article  Google Scholar 

  36. Nazari S, Moin M-S, Kanan HR (2017) A discriminant binarization transform using genetic algorithm and error-corecting output code for face template protection. Int J Mach Learn Cybern. https://doi.org/10.1007/s13042-017-0723-3

    Article  Google Scholar 

  37. Yang M, Wang X, Liu W, Shen L (2017) Joint regularized nearest points for image set based face recognition. Image Vis Comput 58:47–60

    Article  Google Scholar 

  38. Pavešić ŠVN (2010) The complete gabor-fisher classifier for robust face recognition. EURASIP J Adv Signal Process 2010:26. https://doi.org/10.1155/2010/847680

    Article  MATH  Google Scholar 

  39. Riaz F, Silva FB, Ribeiro MD, Coimbra MT (2012) Invariant gabor texture descriptors for classification of gastroenterology images. IEEE Trans Biomed Eng 59(10):2893–2904

    Article  Google Scholar 

  40. Ali H, Sharif M, Yasmin M, Rehmani MH (2017) Computer-based classification of chromoendoscopy images using homogeneous texture descriptors. Comput Biol Med 88:84–92

    Article  Google Scholar 

  41. Jin ATB, Ling DNC, Goh A (2004) Biohashing: two factor authentication featuring fingerprint data and tokenised random number. Pattern Recogn 37(11):2245–2255

    Article  Google Scholar 

  42. Fingerprint Verification Competition (2002). http://bias.csr.unibo.it/fvc2002

  43. Fingerprint Verification Competition (2004). http://bias.csr.unibo.it/fvc2004

  44. Ortega-Garcia J, Fierrez J, Alonso-Fernandez F, Galbally J, Freire MR, Gonzalez-Rodriguez J, Garcia-Mateo C, Alba-Castro JL, Gonzalez-Agulla E, Otero-Muras E, Garcia-Salicetti S, Allano L, Ly-Van B, Dorizzi B, Kittler J, Bourlai T, Poh N, Deravi F, Ng MNR, Fairhurst M, Hennebert J, Humm A, Tistarelli M, Brodo L, Richiardi J, Drygajlo A, Ganster H, Sukno FM, Pavani SK, Frangi A, Akarun L, Savran A (2010) The multiscenario multienvironment biosecure multimodal database (BMDB). IEEE Trans Pattern Anal Mach Intell 32(6):1097–1111. https://doi.org/10.1109/TPAMI.2009.76

    Article  Google Scholar 

  45. Veri Finger SDK, Neuro Technology (2010). http://www.neurotechnology.com/verifinger.html

  46. Yang W, Hu J, Stojmenovic M (2012) NDTC: a novel topology-based fingerprint matching algorithm using N-layer Delaunay triangulation net check. In: 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, pp 866–870

  47. Tulyakov S, Farooq F, Mansukhani P, Govindaraju V (2007) Symmetric hash functions for secure fingerprint biometric systems. Pattern Recogn Lett 28(16):2427–2436

    Article  Google Scholar 

  48. Jin Z, Jin Teoh AB, Ong TS, Tee C (2011) Fingerprint template protection with minutiae-based bit-string for security and privacy preserving. Expert Syst Appl 39:6157–6167

    Article  Google Scholar 

  49. Das P, Karthik K, Chandra Garai B (2012) A robust alignment-free fingerprint hashing algorithm based on minimum distance graphs. Pattern Recogn 45(9):3373–3388. https://doi.org/10.1016/j.patcog.2012.02.022

    Article  Google Scholar 

  50. MacWilliams F, Sloane N (2006) The theory of error-correcting codes. North-Holland, Amsterdam

    MATH  Google Scholar 

  51. Chaudhry J, Qidwai UA, Rittenhouse RG, Lee M (2012) Vulnerabilities and verification of cryptographic protocols and their future in wireless body area networks. In: 2012 International Conference on Emerging Technologies (ICET). IEEE, pp 1–5

  52. Rittenhouse RG, Chaudry JA, Lee M (2013) Security in graphical authentication. Int J Secur Appl 7(3):347–356

    Google Scholar 

  53. Chaudhry J, Farmand S, Islam SM, Islam MR, Hannay P, Valli C (2017) Discovering trends for the development of novel authentication applications for dementia patients. In: International Conference on Applications and Techniques in Cyber Security and Intelligence. Springer, pp 220–237

Download references

Acknowledgements

This paper is supported by Early Career Grant Scheme of ECU of Australia through Project G1003411 and Defence Science and Technology Group (DST) of Australia through Project CERA 221.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanglou Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Wang, S., Zheng, G. et al. ECB4CI: an enhanced cancelable biometric system for securing critical infrastructures. J Supercomput 74, 4893–4909 (2018). https://doi.org/10.1007/s11227-018-2266-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-018-2266-0

Keywords

Navigation