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Abstract

A parallel numerical simulation algorithm is presented for fractional-
order systems involving Caputo-type derivatives, based on the Adams-
Bashforth-Moulton (ABM) predictor-corrector scheme. The parallel
algorithm is implemented using several different approaches: a pure
MPI version, a combination of MPI with OpenMP optimization and
a memory saving speedup approach. All tests run on a BlueGene/P
cluster, and comparative improvement results for the running time
are provided. As an applied experiment, the solutions of a fractional-
order version of a system describing a forced series LCR circuit are
numerically computed, depicting cascades of period-doubling bifurca-
tions which lead to the onset of chaotic behavior.

Keywords: Fractional-order system, parallel numerical algorithm, HPC
processing

1 Introduction

Compared to their integer-order counterparts, over the past decades, fractional-
order dynamical systems have proved to provide more accurate and realistic
results in the modeling of real world processes arising from diverse applied
fields [5].

Although many qualitative properties of fractional-order systems can be
studied by analytical tools (such as local stability of equilibrium states),
theoretical characterization of chaos in fractional- order dynamical systems
is yet to be investigated. In order to assess chaotic behavior of fractional
order dynamical systems, accurate estimation of the solutions over large
time intervals is of utmost importance. However, an essential observation is
that the employed discretization should use a small step size, with the aim
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of providing an accurate estimation to the solution of the fractional-order
system under investigation.

Several numerical methods are used for fractional-order systems, such
as generalizations of predictor-corrector methods [7, 11, 15], p-fractional
linear multi-step methods [14, 18] or the Adomian decomposition method
[6, 12, 20]. These numerical schemes have a major drawback due to the
non-locality of the fractional differential operators which reflects the hered-
itary nature of the problem: in order to obtain a reliable estimation of the
solution, at every iteration step, all previous iterations have to be taken into
account. Therefore, this implies extreme computational costs whenever the
solution is computed over a large time interval, with a small step size. While
the numerical computation of a solution of an ordinary fractional differen-
tial equation on a fixed interval [0, T ], by one of the standard algorithms
described above, has an arithmetic complexity of O(h−2) (where h denotes
the step size), in the case of ordinary differential equations of first order, the
arithmetic complexity is only O(h−1) [2]. Several approaches have been used
to deal with these difficulties, such as the short memory principle [8, 9] or
the nested mesh scheme [13]. However, a loss of accuracy is inevitable for
both methods, mainly due to the fact that parts of the integration interval
are simply ignored.

Nevertheless, these difficulties may be overcome using parallel comput-
ing algorithms implemented in a conventional way or using available high
performance computing systems [1, 4].

In this paper, we will present an efficient parallel algorithm implemented
using Message Passing Interface (MPI) and running on a high performance
computing system BlueGene/P cluster that has 1024 processors and 4TB
of RAM memory. The numerical method considered here for implement-
ing the fractional-order system is the Adams-Bashforth-Moulton predictor-
corrector scheme [11]. The main challenge for implementing this method is
to parallelize the computation of the solution because, the computation of
an iteration step requires to take into account all previous iterations.

2 Preliminaries

Consider an ordinary fractional differential equation of the form:

{

Dα
∗ y(t) = f(t, y(t)), t ∈ [0, T ]

y(k)(0) = yk0 , k ∈ {0, . . . , ⌈α⌉ − 1},
(1)

where α > 0 and ⌈·⌉ denotes the ceiling function that rounds up to the
nearest integer. The fractional derivative of Caputo-type is defined as:

Dα

∗ y(t) =
1

Γ(⌈α⌉ − α)

∫

T

0

y(⌈α⌉)(t)

(t− τ)α−⌈α⌉+1
dτ.
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The numerical method used in this paper to solve 1 is a fractional ver-
sion of the Adams-Bashforth-Moulton predictor corrector scheme [11]. The
domain [0, T ] is discretized into N intervals with a step size h = T

N
and the

grid points tn = nh, for n ∈ {0, . . . , N}. We will also denote yn = y(tn) and
fn = f(tn, yn) with y0 = y00 as the initial condition.

The first step of the scheme is the predictor, which will give a first
approximation yP

n+1 of our solution:

yPn+1 =

⌈α⌉−1
∑

k=0

tk
n+1

k!
y
(k)
0 + hα

n
∑

k=0

bn−kfk, where bn =
(n+ 1)α + nα

Γ(α+ 1)
. (2)

The final approximation of the solution, called the corrector, is given by:

yn+1 =

⌈α⌉−1
∑

k=0

tk
n+1

k!
y
(k)
0 + hα

(

cnf0 +
n
∑

k=1

an−kfk +
f(tn+1, y

P
n+1)

Γ(α+ 2)

)

,

where the weights an and cn are defined as:

an =
(n+ 2)α+1 − 2(n+ 1)α+1 + nα+1

Γ(α+ 2)
and cn =

nα+1 − (n− α)(n + 1)α

Γ(α+ 2)
.

This numerical scheme can be generalized in a straight-forward way, when
one has to deal with a system of fractional-order differential equations.

The main computational difficulty of this scheme arises from the fact
that at each step, we require the complete history of the variable, i.e., when
computing yn+1, we need to know all previous values yk that are used to
compute fk, for k ≤ n. This makes numerical methods addressed at solving
fractional differential equations (or systems) notoriously hard to parallelize.

3 Parallel numerical algorithm

The parallel implementation of Adams-Bashforth-Moulton algorithm as a
method for solving a fractional-order dynamical system was first presented
by Diethelm [10]. The solution presented there is not suitable to be running
on a HPC cluster because there is an unbalanced workload and waiting (idle)
times for the processes that can cause the performance to be very low, due
to the HPC parallel implementation rules [19]. Also, the amount of messages
passed between processes does not respect the HPC parallel implementation
idea [19], and strongly influence the overall performance.

3.1 The classical parallel approach

In the previous works [1, 3], we explored how numerical implementations of
the Adams-Bashforth-Moulton method for fractional-order systems can be
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accelerated by using parallel computing techniques. We investigated the fea-
sibility of parallel computing algorithms and their efficiency in reducing the
computational costs over a large time interval. The results in [1] concerning
the parallel implementation for the Adams-Bashforth-Moulton method on
HPC and CUDA show that some execution times are quite high and thus,
they limit the time frame needed for more accurate simulations.

Figure 1: One master process

In [1], the HPC implementation was made using a classical approach: a
process is the master and all others are slaves to help compute the values
for the predictor and corrector. The classical execution flow is presented in
Figure 1 and shows that the master process is working either by computing
or communicating, while the slave processes have idle times. On a HPC
architecture these idle times could causes huge delays in communication and
drastically increase the overall simulation time. Due to this low performance,
the research of optimizing the HPC solution was further pursued, generating
the results presented in [3].

3.2 Parallel implementation using pure MPI

In order to improve the overall simulation time, the workload has been im-
proved in [3]. First, the idle times of the processes have been removed.
Secondly, we decreased the number of messages, which implied saving times
in the communication part.

The parallel implementation method presented in Algorithm 1 reflects the
core of our implementation. The computation for the partial sum is done by
each process and the final sum for the predictor and corrector is reduced to
all processes (by MPI_Allreduce(Sp, Sc)). So instead of having the classical
architecture where one process is the master and all the other processes are
slaves just to compute the partial sum, in this approach all processes P
compute the iteration function values (yn), and all act as master processes.
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Figure 2: No master process

Algorithm 1 Parallel Algorithm for the Adams-Bashforth-Moulton scheme.

T end of the time interval.
N global number of points.
P number of processes.
p current process.
NP ← N/P
y0 ← initial condition
for n ∈ [1, N ]

Sp← 0
Sc← 0
nmin ← NP p
nmax ← NP (p+ 1)
compute local sum for predictor and corrector

for k ∈ [nmin, nmax]
Sp← Sp+ bn−kfk
Sc← Sc+ cn−kfk

compute the global sum and sent to all processes

MPI_Allreduce(Sp, Sc)
compute the predictor at time tn
yPn ← y0 + an ∗ Sp
compute the corrector at time tn
yn ← y0 + cn ∗ (y

P
n + Sc)

In our approach (designed in Figure 2) we have been able to avoid idle
times for the processes, obtaining a more balanced work load. Another
advantage is that the overall communication between processes was reduced
by removing the messages between the slave and master processes. There
is only one message being exchanged when the global sum is reduced to
all processes, and because the workload inside the process is balanced, the
synchronized exchange time is very short. A similar method/solution was
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also presented and tested on a PC using a CPU core by [21] with very
interesting results from the parallel computational point of view.

An in-depth analysis of the architecture of the available BlueGene/P clus-
ter (used for simulations) reveals the advantages provided by the hardware
capabilities which further reduce the communication between the processes.
Our actual BlueGene/P cluster consists of 1024 nodes, one node having 4G
bytes of RAM and a quad-core processor.

In order to efficiently use the resources, the processes are launched in
Virtual Node (VN) mode accordingly to [19]. In VN mode each process is
executed by only one core from an available node. Hence, on the BlueGene/P
cluster, four processes are executed on each physical node. In this way, a
maximal number of 4048 parallel processes can be executed. On our tests
we run 1024 processes in VN mode, and thus we actually use 256 physical
nodes.

3.3 Optimal communication time using MPI and OpenMP

Aiming for a more efficient use of the BlueGene resources, we combine the
MPI with OpenMP capabilities in our new implementation. This leads to a
full employment of the 256 physical nodes as follows.

In order to run one process in one physical node we change the previous
Virtual Node mode by Symmetrical Multiprocessing mode. Thus, a process
can use all the cores from the processor, and the computation can be paral-
lelized by multi-threading. Therefore, by using 256 processes we obtain 1024
computational threads but the MPI messages are exchanged only between
256 instead of 1024 processes.

Using OpenMP, the improvement of the previous Algorithm 1 is reflected
in Algorithm 2 at line 8, which computes the partial sum by using all local
cores.

On our BlueGene/P cluster, the processor in one node is quad-core.
Thus, we can use four parallel threads to compute the partial sum. Therefore,
only 256 processes are used instead of 1024 as in the pure MPI implemen-
tation, the communication between processes being much faster while the
computational time is the same.

3.4 Memory saving improves computing time

All previous tests were done using long double data types, because the simu-
lations need high precision and they are very costly in CPU operations and
memory usage.

The long double data is classically represented in the memory on 10
bytes with the precision of 21 decimal points. However, a closer look at the
memory usage (in the current hardware) by changing data type to double

has a major impact on computation time, due to data alignment. Having the
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Algorithm 2 Parallel Algorithm using OpenMP

T end of the time interval.
N global number of points.
P number of processes.
p current process.
NP ← N/P
y0 ← initial condition
for n ∈ [1, N ]

Sp← 0
Sc← 0
nmin ← NP p
nmax ← NP (p+ 1)
compute local sum for predictor and corrector

#pragma omp parallel for reduction(+:Sp, Sc)
for k ∈ [nmin, nmax]

Sp← Sp+ bn−kfk
Sc← Sc+ cn−kfk

compute the global sum and sent to all processes

MPI_Allreduce(Sp, Sc)
compute the predictor at time tn
yPn ← y0 + an ∗ Sp
compute the corrector at time tn
yn ← y0 + cn ∗ (y

P
n + Sc)

data aligned by 32 bytes, the data access is faster, and improves the overall
performance by a factor of at least 10 compared to the MPI and OpenMP
implementations.

The drawback is a decrease in precision. For 3 millions steps, the preci-
sion is still conserved by 10−6, so it can be used for an overall view of the
evolution of the numerical solution, and then, for a more precise simulation,
long double version can be used. Even with this drawback, the performance
in computation time is a good compromise, as it can be seen in the simulation
results.

4 Simulation results

We implemented and tested the presented approach using the HPC cluster of
the West University of Timişoara (Romania), namely, a BlueGene/P cluster
that consists of a fully loaded single BlueGene/P rack that has 1024 quad-
core CPUs and 4TB of RAM memory and can offer a performance up to
11.7 TFlops.

In Table 1 we present the simulation run time results (in seconds) using
different number of time steps (number of global points). The total running
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Table 1: Simulation results in seconds for different numbers of time steps

#steps HPC classic pure MPI MPI and OpenMP Memory saving

1000000 4621.25 549.64 506.58 69.06
1500000 9162.33 1158.13 1059.35 115.67
2000000 14931.16 2009.87 1810.72 169.23
2500000 22697.66 3066.92 2762.92 234.56
3000000 31659.66 4381.42 3912.29 304.17

times of the HPC Classic approach have been obtained by the algorithm
presented in [1]. With the HPC pure MPI implementation by the algorithm
presented in [3], the running time decreased by a factor of 8 with respect to
classical approach [1]. Although in these two approaches the pure computa-
tion time is similar, we emphasize that the overall running time is massively
improved, due to the synchronized communication.

Moreover, using the MPI combined with OpenMP approach, we can see
an improvement of around 10% at the overall running time, compared to the
pure MPI version. This is due to the fact that using the same resources,
instead of having 1024 processes running, we only have 256 processes that
have to communicate between each other. We emphasize that the compu-
tation time is the same, and the improvement is due to the communication
time.

The graphical representation of the running times (Figure 3) clearly
presents the speed up using our different approaches of parallelizing the
algorithm. Studying the available hardware architecture, we were able to
improve the communication time, confirmed by the 10% efficiency obtained
in practice.

Paying attention to data usage, the computation time is massively im-
proved, having the simulations running very fast. The execution time (see
Figure 4) is improved by a factor of at least 10 compared to the execution
running time in the MPI and OpenMP implementations.

The non-classical parallel approaches are fast enough to enable us to run
simulations with even more than 5 million steps. These improvements allow
us to compute the numerical solution of a fractional-order system over a
large number of steps, providing a better understanding about the system’s
behavior from the dynamic point of view. The next section includes more
details about the numerical analysis of a test system.
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Figure 3: Running time comparison for all approaches

Figure 4: Running time comparison for optimized approaches
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5 Numerical experiment

Our test case is the fractional-order version of the normalized system de-
scribing a forced series LCR circuit [17]:

{

Dα1x(t) = y − g(x)

Dα2y(t) = −σy − x+ f sin(ωt)
(3)

where α1, α2 ∈ (0, 1), σ, f, ω > 0 and the function g is piecewise linear and
is defined as:

g(x) =











bx− a+ b, if x ≤ −1

ax, if |x| < 1

bx+ a− b, if x ≥ 1

The parameter values considered for the numerical simulations are: σ =
1.015, ω = 0.55, a = −1.02 and b = −0.58.

In the absence of the forcing term (i.e. f = 0), system (3) is autonomous

and has three equilibrium states: E0 = (0, 0) and E± =
(

±σ(a−b)
1+σb

,± b−a

1+σb

)

.

However, when f > 0, the system (3) is non-autonomous and a series of
period-doubling bifurcations leading to onset of chaotic behavior has been
reported [17] when f is increased from 0 to 0.2, considering the fractional
orders α1 = α2 = 0.9.

Using the HPC implementation of the parallel algorithm described in
section 3, we are able to depict the dynamic behavior of system (3) with an
improved precision compared to [17], using a small step size and computing
the numerical solution over a large time interval.

Figure 5 shows the attractors of (3), for different values of the parameter
f . For f = 0.085, the existence of two quasi-periodic attractors is observed
and the period-doubling cascade actually involves both attractors, eventually
leading to the appearance of two chaotic attractors (e.g. for f = 0.117).
When the value of f is increased, these chaotic attractors collide and a
double-scroll attractor takes their place (e.g. for f = 0.125). As we further
increase f , a sequence of period-doubling bifurcations and reversed period-
doubling bifurcations is observed, involving the single attractor of the system.

6 Conclusion and future work

By taking a closer look at the hardware architecture we obtained an improve-
ment on the running time by decreasing the communication time between
the process. A similar algorithm was implemented to run on PC using MPI
or/and OpenMP with similar results [21, 22]. Additionally, by running our
MPI implementation combined with OpenMP on the available BlueGene/P
hardware, we gain 10% running time performance. Moreover, in order to
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Figure 5: Rich dynamic behavior in system (3), for α1 = α2 = 0.9 and
different values of the parameter f .

improve the computation running time, some hardware features and capa-
bilities were exploited, leading to a 10 fold reduction of the overall simulation
time, with the expense of loosing data precision.

The algorithm that implements the Adams-Bashforth-Moulton method
is valid for solving any kind of fractional-order system with fractional deriva-
tives of Caputo-type, hence, having the algorithm run with parameters and
functions as input and execute the simulation as a black box is one of the
future research objectives.

As another direction for future research, other numerical methods, pos-
sibly using nested meshes, for solving fractional-order systems of ordinary
differential equations or partial differential equations [16] will be explored,
as well as their parallel implementation algorithms.
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