Skip to main content
Log in

A framework for semantic image annotation using LEGION algorithm

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

A new method for the annotation of multispectral satellite images based on image segmentation is proposed in this paper. This method performs the multispectral image annotation by incorporating a modified locally excitatory globally inhibitory oscillatory network (LEGION) algorithm and cascaded support vector machine (SVM) classifier. Initially, images in the training set are represented with semantic concepts. The testing image is segmented into various image regions based on the color information. Segmented image regions are classified using cascaded SVM classifier based on the probabilities of semantic classes. Experiments are conducted on multispectral images of Coimbatore, Tamil Nadu, India and the result validates the effectiveness of the proposed image annotation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Luo W, Li HL, Liu GH (2012) Automatic annotation of multispectral satellite images using author-topic model. IEEE Geosci Remote Sens Lett 9(4):634–638

    Google Scholar 

  2. Dai AM, Storkey AJ (2013) The grouped author-topic model for unsupervised entity resolution. In: International Conference on Artificial Neural Networks, pp 241–249

    Google Scholar 

  3. Luo W, Li H, Liu G, Zeng L (2014) Semantic annotation of satellite images using author–genre–topic model. In: IEEE Transactions on Geoscience and Remote Sensing, pp 1356–1368

    Google Scholar 

  4. Gonzalez RC, Woods RE (2008) Digital image processing, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  5. Pratt WK (2007) Digital image processing, 4th edn. Wiley, Los Altos

    MATH  Google Scholar 

  6. Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 13(6):583–598

    Google Scholar 

  7. Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16(6):641–647

    Google Scholar 

  8. Di W, Xiong N, He J, Huang C (2016) Critical data points-based unsupervised linear dimension reduction technology for science data. J Supercomput 72(8):2962–2976

    Google Scholar 

  9. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Google Scholar 

  10. Pham DL, Prince JL (1999) An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity in homogeneities. Pattern Recognit Lett 20(1):57–68

    MATH  Google Scholar 

  11. Deng H, Clausi DA (2004) Unsupervised image segmentation using a simple MRF model with a new implementation scheme. In: Proceedings of 17th International Conference on Pattern Recognition, vol 2, pp 691–694

  12. Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181

    Google Scholar 

  13. Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26(9):1124–1137

    MATH  Google Scholar 

  14. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Google Scholar 

  15. Abdollahi A, Bakhtiari HRR, Nejad MP (2017) Investigation of SVM and level set interactive methods for road extraction from google earth images. J Indian Soc Remote Sens. https://doi.org/10.1007/s12524-017-0702-x

    Google Scholar 

  16. Zoleikani R, Zoej MJV, Mokhtarzadeh M (2017) Comparison of pixel and object oriented based classification of hyperspectral pansharpened images. J Indian Soc Remote Sens 45(1):25–33

    Google Scholar 

  17. Chehreghan A, Ali Abbaspour R (2017) An improvement on the clustering of high-resolution satellite images using a hybrid algorithm. J Indian Soc Remote Sens 45(4):579–590

    Google Scholar 

  18. Ge H, Wang L, Li C, Liu Y, Chen R (2017) An adaptive supervised nonlinear feature extraction for hyperspectral imagery classification. J Indian Soc Remote Sens. https://doi.org/10.1007/s12524-017-0696-4

    Google Scholar 

  19. Sirotkovic J, Dujmic H, Papic V (2012) K-means image segmentation on massively parallel GPU architecture. In: Proceedings of the IEEE 35th International Convention MIPRO, pp 489–484

  20. Horowitz S, Pavlidis T (1976) Picture segmentation by a tree traversal algorithm. J ACM 23:368–388

    MATH  Google Scholar 

  21. Faruquzzaman ABM, Paiker NR, Arafat J, Ali MA, Sorwar G (2008) Literature on image segmentation based on split and merge techniques. In: Proceedings of the 5th International Conference on Information Technology and Applications (ICITA-2008), pp 120–125

  22. Prabhashankar L (1989) Parallel implementation of the split and merge algorithm on the hypercube machine. MS Thesis, Ohio University

  23. Montoya MDG, Gil C, Garcia I (2003) The load unbalancing problem for region growing image segmentation algorithms. J Parallel Distrib Comput 63(4):387–395

    MATH  Google Scholar 

  24. Tyagi A, Bayoumi MA (1992) Image segmentation on a 2D array by a directed split and merge procedure. IEEE Trans Signal Process 40(11):2804–2813

    Google Scholar 

  25. Copty N, Ranka S, Fox G, Shankar R (1993) Solving the region growing problem on the connection machine. In: Proceedings of International Conference on Parallel Processing, vol 3, pp 102–105

  26. Willebeek-LeMair M, Reeves AP (1990) Solving non uniform problems on SIMD computers: case study on region growing. J Parallel Distrib Comput 8(2):135–149

    Google Scholar 

  27. Wang D, Terman D (1997) Image segmentation based on oscillatory correlation. J Neural Comput 9(4):805–836

    Google Scholar 

  28. Ando H, Miyake M, Morie T, Nagata M, Iwata A (1999) A nonlinear oscillator network circuit for image segmentation with double- threshold phase detection. In: IEEE 9th International Conference on Artificial Neural Networks, vol 2, pp 655–660

  29. Morimoto T, Harada Y, Koide T, Mattausch HJ (2005) Pixel parallel digital CMOS implementation of image segmentation by region growing. IEE Proc Circuits Devices Syst 152(6):579–589

    Google Scholar 

  30. Roy P, Biswas PK (2008) VLSI implementation of fast connected component labeling using finite state machine based cell network. In: Proceedings of the 6th Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP’ 08), pp 238–243

  31. Roy P, Biswas PK (2015) A parallel LEGION algorithm and cell-based architecture for real time split and merge video segmentation. J Real-Time Image Process. https://doi.org/10.1007/s11554-015-0488-4

    Google Scholar 

  32. Shobharani P, Suresh RM, Sethukarasi R (2018) Semantic annotation of summarized sensor data stream for effective query processing. J Supercomput. https://doi.org/10.1007/s11227-017-2183-7

    Google Scholar 

  33. Kobori D, Maruyama T (2012) An acceleration of a graph cut segmentation with FPGA. In: 22nd International Conference on Field Programmable Logic and Applications (FPL 2012), pp. 407–413

  34. Mohammed S, Mahmoud AA, Yaser J, Moath J (2017) Accelerating compute-intensive image segmentation algorithms using GPUs. J Supercomput 73(5):1929–1951

    Google Scholar 

  35. Sen-Ching SC, Kamath C (2004) Robust techniques for background subtraction in urban traffic video. Center for Applied Scientific Computing Lawrence Livermore National Laboratory 7000 East Avenue, Livermore, CA 94550

  36. Teh YW, Jordan MI, Beal MJ, Blei DM (2006) Hierarchical Dirichlet processes. J Am Stat Assoc 101(476):1566–1581

    MathSciNet  MATH  Google Scholar 

  37. Blei D, Lafferty J (2006) Correlated topic models. In: Proceedings of the Neural Information Processing Systems, pp 113–120

  38. Hofmann T (2001) Unsupervised learning by probabilistic latent semantic analysis. J Mach Learn Res 42(1–2):177–196

    MATH  Google Scholar 

  39. Steyvers M, Smyth P, Rosen-Zvi M, Griffiths T (2004) Probabilistic author-topic models for information discovery. In: Proceedings of the 10th ACMSIGKDD International Conference on Knowledge Discovery and Data Mining, pp 306–315

  40. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(27):1–27

    Google Scholar 

  41. Fan RE, Chen PH, Lin CJ (2005) Working set selection using the second order information for training SVM. J Mach Learn Res 6:1889–1918

    MathSciNet  MATH  Google Scholar 

  42. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    MATH  Google Scholar 

  43. Ho TK (1995) Random decision forest. In: Proceedings of the 3rd International Conference on Document Analysis and Recognition, pp 278–282

  44. Ojala T, Pietikainen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recognit 29(1):51–59

    Google Scholar 

  45. Lowe DG (2004) Distinctive image features from scale invariant keypoints. Int J Comput Vis 60(2):91–110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kishorekumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishorekumar, R., Deepa, P. A framework for semantic image annotation using LEGION algorithm. J Supercomput 76, 4169–4183 (2020). https://doi.org/10.1007/s11227-018-2280-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-018-2280-2

Keywords

Navigation