

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/121116

San Juan-Sebastian, P.; Virtanen, T.; García Mollá, VM.; Vidal Maciá, AM. (2018). Analysis
of an efficient parallel implementation of active-set Newton algorithm. The Journal of
Supercomputing. 75(3):1298-1309. https://doi.org/10.1007/s11227-018-2423-5

http://doi.org/10.1007/s11227-018-2423-5

Springer-Verlag

Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Analysis of an Efficient Parallel Implementation of
Active-Set Newton Algorithm

Pablo San Juan · Tuomas Virtanen · Victor M.
Garcia-Molla · Antonio M. Vidal

Received: date / Accepted: date

Abstract This paper presents an analysis of an efficient parallel implementation of
the Active-Set Newton Algorithm (ASNA), which is used to estimate the nonnegative
weigths of linear combinations of the atoms in a large-scale dictionary to approxi-
mate an observation vector by minimizing the Kullback-Leibler divergence between
the observation vector and the approximation. The performance of ASNA has been
proved in previous works against other state of the art methods. The implementa-
tions analysed in this paper have been developed in C, using parallel programming
techniques to obtain a better performance in multicore architectures than the origi-
nal MATLAB implementation. Also a hardware analysis is performed to check the
influence of CPU frequency and number of CPU cores in the different implementa-
tions proposed. The new implementations allow ASNA algorithm to tackle real time
problems due to the execution time reduction obtained.

Keywords Newton algorithm, convex optimization, sparse representation, multi-
core, parallel computing

Acknowledgements

This work has been partially supported by Programa de FPU del MECD, by MINCO
and FEDER from Spain, under the projects TEC2015-67387- C4-1-R, and by project
PROMETEO FASE II 2014/003 of Generalitat Valenciana. The authors want to thank
Dr. Konstantinos Drossos for some very useful mind changing discussions. This work
has been conducted in Laboratory of Signal Processing, Tampere University of Tech-
nology.

P. San Juan · V. M. Garcia-Molla · A. M. Vidal
Department of Information Systems and Computing, Universitat Politècnica de València
E-mail: p.sanjuan@upv.es, vmgarcia@dsic.upv.es, avidal@dsic.upv.es

T Virtanen
Department of Signal Processing,Tampere University of Technology
E-mail: tuomas.virtanen@tut.fi

2 Pablo San Juan et al.

1 Introduction and motivation

One of the most commonly used models in modern audio processing is the represen-
tation of an audio magnitude or power spectrum x ∈ ℜ

1× f
+ as a non-negative linear

combination of basis vectors belonging to a precomputed ”dictionary”. This model
is used in different applications, such as source separation [1], automatic music tran-
scription [2], and sound event detection [3].

Usually the n basis vectors in the dictionary are stored as a matrix B ∈ ℜ
n× f
+ ,

where each signal of the dictionary is a row of B. The model of the problem can be
written as x ≈ v = wB subject to w ≥ 0. The simplest solution would be to find the
vector of nonnegative weights w ∈ ℜ1×n such that ||wB− x||2 is minimized. This
amounts to solving a nonnegative least squares problem, which is usually solved
through active set methods [4].

However, in audio applications (and in some other fields) better results are often
obtained using different measures instead of the 2-norm, such as the Kullback-Leibler
(KL) divergence [5].

The KL divergence between vectors x and x́ is defined as

KL(x||x́) = ∑
i

d(xi, x́i)

where function d is

d(p,q) =


p log(p/q)− p+q) p > 0 and q > 0
q p = 0
∞ p > 0 and q = 0

In the problem of obtaining nonnegative representations of audio for overcom-
plete dictionaries approached by [6], for each input signal x ∈ℜ

1× f
+ we want to find

a nonnegative vector w ∈ℜ
1×n
+ that minimizes the KL divergence with respect to the

dictionary B ∈ℜ
n× f
+ :

min
w>0

KL(x||wB)

However, the KL divergence is a nonlinear function; therefore, the minimization
of the KL divergence is a nonlinear optimization problem, with the additional restric-
tion of nonnegativity. In [6], an active-set Newton algorithm (ASNA) was proposed
to solve this problem. The algorithm was implemented in Matlab and the experiments
showed its advantages against some state of the art algorithms like the expectation-
maximization update rules [7] and the projected gradient algorithm [8, pp. 267-268].

Due to the great performance of the ASNA algorithm but the lack of a computa-
tional efficient implementation of the algorithm, the authors decided to improve the
existing MATLAB [9] implementation in order to obtain a lower execution time. This
reduction of the execution time is necessary to approach real-time applications. The
resulting implementation is an efficient parallel version suitable for shared memory
multicore machines.

The structure of the paper is as follows. In Section 2 ASNA algorithm and its
existing implementation is explained. In Section 3 the developed implementations

Analysis of an Efficient Parallel Implementation of ASNA 3

are presented, and in Section 4 the problem used for the experiments on this paper
is explained. Then, Section 5 shows several experimental analysis performed with all
the proposed implementations. Finally, in Section 6 the results are discussed.

2 ASNA algorithm

The ASNA algorithm falls into the category of active set algorithms. These are a fam-
ily of iterative matricial algorithms where in each iteration only some of the columns
or rows are used to compute the iterative approximation of the algorithm. Those
columns (or rows) are considered columns (or rows) in the active set, and usually
there are steps in the algorithm where columns (or rows) are added or removed from
the active set.

The main principle of the ASNA algorithm is that it estimates and updates a
set of active atoms (which are the rows of the dictionary matrix) that have non-zero
weights. The active set is initialized with a single atom which alone gives the smallest
divergence. Then, it finds the most promising atom not in the active set by identifying
the atom whose weight derivative is the smallest, and adds it to the active set. The
weights of the atoms in the active set are estimated using the Newton method where
the step size is chosen to ensure non-negativity of the weights. Atoms whose weights
become zero or negative are removed from the active set. The algorithm iterates until
a convergence criterion is achieved or a maximum number of iterations given by the
user are reached. A detailed view of the algorithm can be found in [6, Sec. III].

The existing implementation programmed in MATLAB, that can be found in [10],
uses a more general model than the one shown in the original algorithm [6, pp. 5]. The
extended model can work with multiple observations at time, becoming X ≈V =WB
subject to (W,V) ≥ 0 where the rows of X ,V ∈ ℜ

o× f
+ are the observations and the

rows of W ∈ ℜ
o×n
+ are the non-negative weights corresponding to each observation.

That model gets some advantages from the fact of computing multiple observations
at a time because some matrix-vector operations are replaced by matrix-matrix op-
erations which are more efficient. In this model the approximation matrix V in each
iteration is defined as

V =WABA (1)

where A is the global active set composed of the union of the active sets of each
observation Xm (a). In (1) WA denotes a submatrix formed with the columns of W
which are in the global active set A and BA denotes a submatrix formed with the rows
of B which are in the global active set.

A brief pseudocode of that implementation can be found in Algorithm 1. In that
implementation the weights in the active set are represented by the nonzero elements
in a sparse weight matrix W and the active atoms in the dictionary are represented by
BA.

4 Pablo San Juan et al.

2.1 Initialization

Under this model, after normalizing each dictionary atom to Euclidean length, the
sets of active atoms are initialized with a single index n that alone minimizes the KL
divergence for each observation Xm, which is defined as (2) where the weight of each
atom Wm,n is computed as (3) [11].

a = argmin
n

KL(Xm||Wm,nBn) (2) Wm,n =
Xm1T

Bn1T (3)

Here 1 is an all-one vector of length f .

2.2 Adding atoms to the active set

Every K-th iteration with K > 1 the algorithm tries to add one new atom to the ac-
tive set of each observation. The atom with the lowest gradient (the one which will
decrease the KL divergence the most) is selected.

The gradients are computed with respect to all weights (the ones corresponding
to the atoms in the active set and not in the active set) and then all the atoms not
already in the active set are used as candidates to add new atoms to the active set.
The gradients of the ones that are already in the active set will be used lately by
the algorithm to update the weighs, so computing them together in this step saves
computation time.

Taking advantage of the matricial model, the formula of this gradient computation
is

d
dW

KL(W) = (1− X
V
)BT (4)

here the division of matrices is computed entry-wise and V is computed according to
(1). Note that 1BT can be precomputed at the initialization to save computation time
during the iterations.

2.3 Updating weights of active atoms

In the updating phase of the algorithm (which corresponds to the inner loop), all
operations are performed for each observation Xm as in the original model with one
observation vector. In this phase the algorithm uses the Newton method to update the
weights of the atoms on the active set, choosing an appropriate step size to ensure
non-negativity. Let us denote a dictionary matrix whose rows consists of atoms in the
active set a of Xm as Ba and a weight row vector which consists of the weights of the
active atoms of Xm as wa. The model (1) can be written as Vm = waBa, where Vm is a
row of matrix V and corresponds to an approximated observation. The gradient of the
KL divergence with respect to wa is given as (5) and the Hessian matrix with respect
to wa computed at wa is given by (6).

Analysis of an Efficient Parallel Implementation of ASNA 5

grad = (1− Xm

Vm
)BT

a (5) Hwa = Badiag(
Xm

V 2
m
)BT

a (6)

Here, ”diag” denotes a diagonal matrix whose entries consists on the elements of
its argument vector, and V 2

m denotes entry-wise squaring of vector Vm.
When the gradients have been computed in the atom addition steps of the algo-

rithm, the algorithm uses that gradients instead of computing (5).
Finally the weights are updated as (7) where α is the step size and the search

direction can be obtained by solving the system of equations (8).

wa← wa−α searchDir (7) (Hwa + εI)× searchDir = grad (8)

An identity matrix I multiplied by a small constant ε is added to ensure numerical
stability.

The step size α is obtained by computing the ratio vector r = wa/searchDir
element-wise and choosing the minimum positive element. If α > 1 the step size
α = 1 is used, which corresponds to the standard Newton algorithm. This computa-
tion ensures that the weights computed in (7) are non-negative.

3 Proposed algorithms

The first step was to improve the existing MATLAB implementation before tackling
the reimplementation of the algorithm in a different programming language; then
we implemented a version of the algorithm in C programming language using the
HPC mathematical libraries BLAS and LAPACK. Finally, we implemented a parallel
version of the algorithm using threading with OPENMP together with BLAS and
LAPACK. A first approach to the proposed implementations were presented in [12].
The source code of all proposed implementations can be found in the repository [13].
All line numbers mentioned in the current section refer to Algorithm 1.

3.1 Improved MATLAB implementation

The improved MATLAB implementation has some modifications that affect posi-
tively to the performance of the algorithm.

The first change was transposing the problem. Most of the operations in the
original implementation were made row-wise while MATLAB uses a column-wise
memory arrangement. Transposing the problem allows the algorithm to do its oper-
ations column-wise taking advantage of MATLAB’s memory arrangement. The sec-
ond modification was changing some conditionals that were checking the existence of
a variable containing all gradients to boolean variables, what caused a surprising im-
prove in the performance. Then the sparse product function in line 23 was reworked
to use both matrices in column-wise order and the system of equations solving in line
32 was solved directly using the Cholesky decomposition instead of using the default
MATLAB solver. Finally, some minor tweaks and structural changes were done to
improve performance and code readability.

6 Pablo San Juan et al.

Algorithm 1 Original ASNA implementation algorithm
Require: X ∈ℜ

o× f
+ B ∈ℜ

n× f
+ .

1: return W ∈ℜ
o×n
+

2: Normalize each dictionary atom to unity norm
3: Pre compute 1BT for the gradient computations
4: Initialize active set for each observation

(Active atoms have values in WA and not active are 0)
5: for i = 1 to maximum number o f iterations do
6: Find global active atoms A
7: Compute V =WABA (1)
8: R = X/V (element-wise)
9: if i mod K = 0 then

10: Compute gradient w.r.t all weights (4)
11: if i mod 10 = 0 then
12: Check convergence for non converged observations
13: Remove converged observations from the computations
14: if all observation have converged then
15: Scale back W and exit
16: end if
17: end if
18: Mark as 0 the gradient of the already active weights
19: Add the atom with the minimum gradient of each observation

to the active set, adding a small number to WA
20: end if
21: Compute R2 = X/V 2 (element-wise)
22: Find the indexes of the active atoms
23: Compute sparse product Rcov = RBT

24: for each observation not converged Xm do
25: Find the active atoms of Xm (a)
26: if all gradients computed then
27: Get grad from the already computed gradients
28: else
29: Compute gradients w.r.t active atoms of Xm (grad) (5)
30: end if
31: Compute Hessian Hwa (6)
32: Compute the search direction (8)
33: Compute step size
34: Update weights in WA (7). If a weight becomes negative is removed.
35: end for
36: end for

3.2 C implementation

The authors chose the C programming language because it is much more efficient
than MATLAB. The C implementation uses the BLAS and LAPACK linear algebra
interfaces through the Intel Math Kernel Library (MKL) which is a very efficient
implementation for Intel architectures.

The implementation is based on the improved MATLAB implementation and uses
all improvements explained in Section 3.1. In this implementation the weight matrix
is stored in memory as a full matrix, and the atoms in the active set are controlled
by a double linked list of “atoms” for each observation. Each “atom” contains a link
to the adjacent active atoms and the index of that atom in the full matrix in memory.
Using this strategy the algorithm still can compute the sparse products in lines 7 and

Analysis of an Efficient Parallel Implementation of ASNA 7

23 without the need of finding the active atoms each time (lines 6 and 22), reducing
the computation time needed for the sparse products. When removing active atoms
in line 34 the atom should be removed from the atom list of observation Xm.

The second main improvement is that the sparse product on line 23, the computa-
tion of R2 (line 21), the computation of the gradient (line 29) and the computation of
the Hessian (line 31) have been combined. All these operations use the same data, so
mixing the computations in the proper way instead of computing them one after the
other diminishes the number of memory accesses and operations.

Finally, the system of linear equations in line 32 has been solved by mean of
the LAPACK functions DPOTRF and DPOTRS. The first function computes the
Cholesky factorization of a symmetric and positive definite matrix, while the sec-
ond function uses the factor computed by DPOTRF to solve a triangular system of
linear equations. Note that the DPOTRF function is threaded inside the MKL library,
which means that in a multicore architecture it will benefit from the multiple cores
increasing the algorithm performance. This function is one of the most costly parts
of the algorithm, and this is why we do not name sequential the non-parallel imple-
mentation.

3.3 Parallel C implementation

The parallel implementation of the ASNA algorithm takes advantage of the data inde-
pendence between all the observations. Due to this, all observations can be processed
in parallel. For the parallel implementation we used the OpenMP [14] pragma“parallel
for” for all loops which iterate along the observations. These loops correspond to lines
4, 7, 18, 19 and 24 . The schedule chosen is dynamic because during the iterative pro-
gression of the algorithm the already converged observations are removed from the
computations, so the thread that tries to compute an already converged observation
will skip it. The dynamic scheduling improves the performance for unbalanced load
situations like that.

As said in Section 3.2 the DPOTRF functions is already threaded inside the li-
brary. But in the parallel implementation is used sequentially for each observation
because the threading is controlled at observation level. That fact will impact the
speedup between both versions.

4 Analysed problem

The sound separation problem analysed in the original ASNA paper [6] was used
again to test the proposed implementations with a real application. In this problem the
algorithm should compute the weights matrix W to approximate the mixture matrix
X (created by mixing two speech signals) taking into account the dictionary matrix
B which contains dictionaries of both speakers from the original speech signals. The
goal is to separate the mixed signal into two individual signals, one for each speaker.
For those experiments, 100 signals were generated mixing 2 random speakers for
each signal from a pool of 34 speakers . Each signal is represented by a magni-
tude spectrogram matrix X obtained by using the short-time Fourier transform with

8 Pablo San Juan et al.

o columns (observations) and f = 751 rows (features). The number of observations
o ranges between 94 and 177, with an average of 129.73. The dictionaries for each
speaker were generated by k-means clustering and then combined to form the dictio-
nary B of each test signal. Different dictionary sizes were evaluated: 100, 1000 and
10000 atoms (50, 500 and 5000 atoms per speaker). In the present paper a bigger
dictionary size of 100000 atoms per speaker will be evaluated. For more detailed in-
formation on the matrix generation process check [6, Sec. V]. Once the weights are
estimated using the ASNA, the models for each speaker in a mixture can be calculated
separately, and signals corresponding to each speaker reconstructed as described in
[6].

5 Experimental analysis

5.1 Evaluation of the proposed implementations

The experimental environment, from now on called Server, consists of a multicore
machine with two Intel Xeon E5-2697 V2 (2,7GHz) processors with 12 physical
cores each and 128 GB RAM. By the software side, the machine has MATLAB
R2016b and the Intel parallel studio 2017 (contains icc v17.0.1 and MKL v2017)
installed. All the tests were executed using the 24 cores available. The development
process was carried out in a multicore Workstation equipped with an Intel Core i7-
3820 (3,6 GHz) processor with 4 physical cores and 16 GB RAM. By the software
side, the machine has MATLAB R2016b and the Intel parallel studio 2017 installed.
All the tests were executed using the 4 cores available. Note that the workstation has
a lower number of cores that the Server but with a higher CPU frequency.

In all proposed versions the KL divergence value obtained is the same and equal
to the KL divergence obtained by the original MATLAB implementation. Due to this,
we are not going to evaluate the KL divergence value in this experiment.

To compare the results of the proposed implementations with the experiments
in the original ASNA paper [6], all implementations were tested with three different
dictionary sizes (100, 1000 and 10000) until convergence was achieved. Furthermore,
we tested a new bigger dictionary size of 100000 atoms that we will discuss deeper
in section 5.3.

Table 1 shows the execution times in seconds of every proposed implementation
for all the dictionary sizes tested. Each cell represents the averaged execution time
of the 100 signals tested, and the execution time of each signal has been obtained by
averaging 10 measurements to avoid system load effects on the measured times.

It is necessary to test all the signal database because the algorithm convergence
criterion affects the execution time of each signal. On the other hand, the matrix X
representing each signal has a different number of observations o and this will affect
the proposed implementations execution time, especially the Parallel C Implementa-
tion. The signal duration in seconds range from 1.46 to 2.71, with an average of 1.99
seconds.

Analysis of an Efficient Parallel Implementation of ASNA 9

100 1000 10000 100000
Original MATLAB Implementation 0.962 3.306 20.021 92.253

Improved MATLAB Implementation 0.552 1.970 11.554 63.171
C Implementation 0.212 0.925 6.588 31.514

Parallel C Implementation 0.021 0.144 1.343 16.084

Table 1: Execution times of each ASNA implementation for different dictionary sizes on Server (seconds)

The results show that there is a huge improvement in the execution time of more
than one order of magnitude. Comparing the three dictionary sizes from the origi-
nal ASNA paper, computing the decomposition with the biggest dictionary (10000
atoms) with the Parallel C implementation is almost as fast as the original MATLAB
implementation with the smallest (100 atoms) and needs less than half of the time of
the medium size dictionary (1000 atoms).

The reduction of execution time obtained by the Parallel C implementation makes
possible to use the ASNA algorithm with 1000 and 10000 atoms for real time applica-
tions because the execution time is lower than the signal duration for almost all cases,
with the exception of three signals with 10000 atoms dictionaries. Furthermore, the
execution time obtained by the improved MATLAB implementation for the 1000
atoms dictionary is good enough to tackle some real time applications because it is
lower than the signal duration for 60 of the 100 signals.

In order to clarify the improvement obtained, Table 2 shows the speedup obtained
from the different implementations respect the original MATLAB implementation.

100 1000 10000 100000
Original MATLAB Implementation 1.000 1.000 1.000 1.000

Improved MATLAB Implementation 1.742 1.678 1.733 1.460
C Implementation 4.544 3.574 3.039 2.927

Parallel C Implementation 44.986 23.004 14.903 5.736

Table 2: Speedup respect to the original MATLAB implementation

5.2 Hardware comparison

To check the influence of the CPU frequency and the number of cores available we
repeated all the experiments in Workstation which has a higher CPU frequency but
lower number of cores than Server.

Table 3 shows the execution times in seconds of the same experiments presented
in the previous section but in the Workstation machine.

10 Pablo San Juan et al.

100 1000 10000 100000
Original MATLAB Implementation 0.6612 2.5758 14.5771 76.9163

Improved MATLAB Implementation 0.3909 1.5792 9.2278 61.8698
C Implementation 0.1423 0.7979 7.9010 60.3893

Parallel C Implementation 0.0470 0.3354 4.5072 51.2103

Table 3: Execution times of each ASNA implementation for different dictionary sizes on Workstation
(seconds)

The comparison shows that the MATLAB implementations obtain a lower execu-
tion time in Workstation (Table 3) than in Server (Table 1). The lower execution time
in the MATLAB version is due to the higher CPU frequency on Workstation and the
poorer utilisation of the multicore architecture of MATLAB in comparison to the C
implementations. The C implementation still obtains a lower execution time in Work-
station for the smaller dictionary sizes, again due to the higher CPU frequency. How-
ever, for the bigger dictionary sizes Server starts to achieve lower execution times
than Workstation due to the higher number of cores. The parallel C implementation
obtains always lower execution times in Server due to the higher number of CPU
cores.

5.3 Bigger dictionaries evaluation

Due to the big performance obtained by the parallel C implementations with the
original dictionary sizes, more tests with a bigger dictionary of 100000 atoms were
performed. As shown in Table 1 the execution time of the parallel C implementation
for the 100000 atom dictionary is lower than the original MATLAB implementation
for the 10000 atom dictionary.

The motivation of these experiments with bigger dictionaries was to check if it
was worth to use that big dictionaries for the sound separation problem, because the
100000 atom dictionary is much bigger than the usual dictionaries used in the audio
field. Some Signal to Distortion Ratio (SDR) experiments were performed to measure
the quality of the reconstructed signal with the 100000 atom dictionaries. We use the
signal-to-distortion ratio (SDR) as the metric to measure the separation quality. SDR
calculates the ratio of energies of the target signal and the separation error [6, Sec.
VI.C], and is a commonly used objective metric in audio source separation evalua-
tions. Figure 1 shows the evolution of the SDR with the progression of the algorithm
for different dictionary sizes. As shown in the Figure, the bigger dictionaries need
more iterations to achieve convergence. Also, the execution time of each iteration
increases with the dictionary size. On the other hand, bigger dictionaries are able to
obtain asymptotically the best separation quality measured by the SDR. The results
obtained with the new dictionary size (100 000 atoms) achieves the best separation
quality among the tested methods. Table 4 shows the SDR achieved on convergence
and the time needed to achieve it for the best proposed implementation.

Analysis of an Efficient Parallel Implementation of ASNA 11

Number of iterations

0 50 100 150 200 250 300 350 400 450 500

S
ig

n
a

l-
to

-D
is

to
ri
o

n
 r

a
ti
o

 (
d

B
)

3

4

5

6

7

8

9

10

11

100 Atoms

1000 Atoms

10000 Atoms

100000 Atoms

Fig. 1: Signal to distortion ratio (dB) per iteration for the different dictionary sizes.

100 1000 10000 100000
Signal to distortion ratio (dB) 9.684 9.923 10.246 10.869

Execution time (s) 0.021 0.144 1.343 16.084

Table 4: Signal to distortion ratio comparison for the parallel C implementation

6 Discussion

The experimental results show a big improvement in the performance of the algorithm
by using the proposed versions. Especially the parallel C implementation obtains an
improvement of more than one order of magnitude in multicore systems. Further-
more, if only one observation needs to be computed, due to the internal parallelism
of the MKL library , the algorithm will still benefit from the multicore architecture
with the C implementation.

Nonnegative sparse representations have recently been used in many audio pro-
cessing problems. However, their use in practical applications has been so far lim-
ited because of their high computational complexity. In this paper we show that the
computational complexity of state-of-the-art ASNA algorithm, which itself is sig-
nificantly faster than the established expectation-maximization update rules, can be
reduced by more than 10 times. This makes the algorithm appealing for real-time
applications such as speech enhancement.

The hardware experiments showed that when using the ASNA algorithm on MAT-
LAB, a faster CPU frequency with a low number of cores will obtain better results
than a multicore with more CPU cores but slower CPU frequency. On the other hand,
the parallel C implementation will always benefit from a higher number of CPU
cores.

To our knowledge, the 100000-atom dictionaries used in this paper are the largest
used for NMF-based sound source separation. The previously used dictionary sizes

12 Pablo San Juan et al.

were typically significantly smaller, the largest used until so far being around 16000
[15] and 10 000 atoms [6]. We showed that increasing the dictionary size up to 100
000 atoms can still increase the source separation quality, and the large dictionary
still benefits significantly from the proposed efficient implementation. Such large dic-
tionary sizes may not be feasible in real-time processing, but the methods will still
benefit from the obtained computational savings even in offline processing, where
high accuracy is needed requiring large dictionaries.

Due to the trivial parallelism of the multiple observations model a GPU version
of the algorithm can be implemented in future works to speed up the process even
more.

References

1. B. RAJ AND P. SMARAGDIS, Latent variable decomposition of spectrograms for single channel
speaker separation, Proceedings of the IEEE Workshop on Applications of Signal Processing to Au-
dio and Acoustics (WASPAA 2005), New Paltz, Ny, October 2005.

2. N. BERTIN R. BADEAU AND E. VINCENT, Enforcing Harmonicity and Smoothness in Bayesian
Non-Negative Matrix Factorization Applied to Polyphonic Music Transcription, IEEE Transactions
on Audio, Speech, and Language Processing, vol. 18, no. 3, pp. 538-549, March 2010.

3. O. DIKMEN AND A. MESAROS, Sound Event Detection Using Non-negative Dictionaries Learned
From Annotated Overlapping Events, IEEE Workshop on Applications of Signal Processing to Audio
and Acoustics (WASPAA 2013), New Paltz, NY, 2013.

4. C. L. LAWSON AND R. J. HANSON, Solving least squares problems, Society for Industrial and
Applied Mathematics, 1995.

5. T. VIRTANEN, Monaural Sound Source Separation by Nonnegative Matrix Factorization with Tem-
poral Continuity and Sparseness Criteria, IEEE Transactions on Audio, Speech, and Language Pro-
cessing, vol 15, no. 3, March 2007.

6. T. VIRTANEN J. GEMMEKE AND B. RAJ, Active-set Newton algorithm for overcomplete non-
negative representations of audio, IEEE Transactions on Audio, Speech, and Language Process-ing,
vol. 21, no. 11, 2013.

7. A. T. CEMGIL, Bayesian inference for nonnegative matrix factorisation models, Computational In-
telligence and Neuroscience, 2009, vol. 2009.

8. A. CICHOCKI R. ZDUNEK A. H. PHAN AND S. AMARI,, Nonnegative Matrix and Tensor Factor-
izations., Wiley 2009.

9. MATLAB, The Mathworks Inc., MATLAB R2014B, Natnick MA. 2014
10. TUOMAS VIRTANEN, Original MATLAB implementation of ASNA algorithm,

http://www.cs.tut.fi/ tuomasv/software.html.
11. J. CARABIAS-ORTI F. RODRIGUEZ-SERRANO P. VERA-CANDEAS F. CANADAS-QUESADA AND

N. RUIZ-REYES, Constrained non-negative sparse coding using learnt instrument templates for re-
altime music transcription, Engineering Applications of Artificial Intelligence, 2013.

12. P.SAN JUAN T. VIRTANEN VICTOR M. GARCIA-MOLLA AND ANTONIO M. VIDAL, Efficient Par-
allel Implementation of Active-Set Newton Algorithm for Non-Negative Sparse Representations, 16th
International Conference on Computational and Mathematical Methods in Science and Engineering
(CMMSE 2016), Rota, Spain.

13. P. SAN JUAN, Efficient implementations of ASNA algorithm, https://gitlab.com/P.SanJuan/ASNA.
14. OpenMP v4.5 specification, 2015, http://www.openmp.org/wpcontent/uploads/openmp-4.5.pdf
15. J. F. GEMMEKE A. HURMALAINEN T. VIRTANEN AND Y. SUN, Toward a practical implemen-

tation of exemplar-based noise robust ASR, Signal Processing Conference, 2011 19th European (pp.
1490-1494). IEEE.

